The adjoint operator in the freealg package

Robin K. S. Hankin
Auckland University of Technology

Abstract

In this very short document I discuss the adjoint operator ad () and illustrate some of
its properties.

Keywords: Adjoint operator, free algebra.

freealg

> ad

function (x)
{
function(y) {
new("dot") [as.freealg(x), as.freealg(y)]
}
}
<bytecode: 0x7fbb5f7al8b78>
<environment: namespace:freealg>

The adjoint operator: definition

Given an associative algebra A and X,Y € A, we define the Lie Bracket [X,Y] as XY —Y X.
In the freealg package this is implemented with the. []1 construction:

> X <- as.freealg("X")
> Y <- as.freealg("Y")
> . [X,Y]

free algebra element algebraically equal to
- 1xYX + 1*XY



2 The adjoint operator

The Jacobi identity

The Lie bracket is bilinear and satisfies the Jacobi condition:
> X <- rfalg(3)

> Y <- rfalg(3)

> Z <- rfalg(3)
> X # Y and Z are similar objects

free algebra element algebraically equal to
+ lxaba + 2*ca + 3*cb

> .[X,Y] # quite complicated

free algebra element algebraically equal to

- 3*aaababa - 6*aaabca - 9%aaabcb - l1*aaba + 1*abaa + 3*abaaaab + 2*abab -
2xaca - 3*acb - 2xbaba - 4xbca - 6*bcb + 2%caa + 6%*caaaab + 4*cab + 3*cba +
9%cbaaab + 6*cbb

> . [X,.[v,Zz]1] + .[Y,.[Z,X]] + .[Z,.[X,Y]] # Zero by Jacobi

free algebra element algebraically equal to
0

The adjoint map: definition
Now we define the adjoint as follows. Given a Lie algebra g, and X € A, we define a linear
map adyx:g — g with
adx (V) = [X,Y]
In the freealg package, this is implemented using the ad () function:

> ad(X)

function (y)

{
new("dot") [as.freealg(x), as.freealg(y)]

}
<bytecode: 0x7fb5f7a19048>
<environment: 0x7fb613b91680>

See how function ad () returns a function. We can play with this:

> f <- ad(X)
> £(Y)



Robin K. S. Hankin

free algebra element algebraically equal to

- 3*aaababa - 6*%aaabca - 9%aaabcb - lxaaba + 1*abaa + 3*abaaaab + 2*abab -
2%aca - 3*acb - 2%baba - 4xbca - 6*bcb + 2%caa + 6%caaaab + 4*cab + 3*cba +
9%cbaaab + 6*cbb

> £(Y) == X*xY-Y*X
(1] TRUE

The first thing to note is that adx is NOT a Lie homomorphism, for any particular (non-
constant) value of X. If ¢ is a Lie homomorphism then ¢([z,y]) = [¢(z), ¢(y)]. There is no
reason to expect the adjoint to be a Lie homomorphism, but it does not hurt to check:

> phi <- ad(2)
> phi(.[X,Y]) == .[phi(X),phi(Y)]

[1] FALSE
With this definition, it is easy to calculate, say, [Z,[Z, [Z,[Z,[Z, X]]]]]:

> f <- ad("x")
> f(EEEE("y")))))

free algebra element algebraically equal to
+ 1xxxxxXy - O*xxxXXyX + 10*xxxyxx — 10*xXXyxxx + 5*XyXXXX — L1*yXXXXX

Above, we see that ad() coerces its argument to a freealg object.

The adjoint operator is a derivation

A derivation of a Lie bracket is a function ¢: g — g that satisfies
o([Y, Z]) = [¢(Y), Z] + [Y, 0(Z)].

We will verify that adx is indeed a derivation:

> phi <- ad(X)
> phi(.[Y,Z]) == .[phi(Y),Z] + .[Y,phi(2Z)]

(1] TRUE

The adjoint operator ad: g — End(g) is a Lie homomorphism

Even though adx is not a Lie homomorphism, we can view the adjoint operator as a map
from a Lie algebra to its endomorphism group, and this is a Lie homomorphism. We are
asserting that

ad[X7y] = [adx, ady]

In package idiom we would have:



4 The adjoint operator

> ad(.[X,Y])(Z) == .[ad(X),ad(Y)](Z)
[1] TRUE

Observe that “. [ad(X) ,ad(Y)]” is a function:
> . [ad(X),ad(Y)]

function (z)
{
i(3(2)) - jE (=)
}
<environment: 0x7fb613b49800>

which we evaluate (on the right hand side) at Z.

Adjoints in other contexts

Function ad () works in a more general context than the free algebra. For example, we might
use it for matrices:

> f <- ad(matrix(c(4,6,2,3),2,2))
> M <- matrix(1:4,2,2)
> £(M)

free algebra element algebraically equal to
- 1xab - 1xac - 1*xad - 1*af + 1%ba - 1xbf + 1*ca - 1*cf + 1*da - 1xdf + 1xfa +
1xfb + 1xfc + 1xfd

Note on the definition of ad()

It would seem that one could define ad () as follows:

“ad™ <- function(x){
function(y){
. [as.freealg(x),as.freealg(y)]

}

(A3

which would be a lot clearer. However,
Writing R extensions says, in a footnote:

is an object, loaded via the lazydata system.

Note that lazy-loaded datasets are not in the package’s namespace so need to be accessed via
11, e.g. survival: :survexp.us.

This would make it “freelg::. [x,y]”, which is not really any better IMO.



Robin K. S. Hankin

Affiliation:

Robin K. S. Hankin
Auckland University of Technology

freealg

E-mail: hankin.robin@gmail.com


mailto:hankin.robin@gmail.com

