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The purpose of this vignette is to show how to fit different genotype by environment (GxE) models using the
lme4breeding package:

1) Multienvironment model: Main effect model
2) Multienvironment model: Diagonal model (DG)
3) Multienvironment model: Compund symmetry model (CS) 3.2) Multienvironment model: Compund

symmetry model + Diagonal (CS+DG)
4) Multienvironment model: Unstructured model (US)
5) Multienvironment model: Random regression model (RR) 5.2) Multienvironment model: Finlay-

Wilkinson regression
6) Multienvironment model: Factor analytic (reduced rank) model (FA)
7) Two stage analysis

When the breeder decides to run a trial and apply selection in a single environment (whether because the
amount of seed is a limitation or there’s no availability for a location) the breeder takes the risk of selecting
material for a target population of environments (TPEs) using an environment that is not representative of
the larger TPE. Therefore, many breeding programs try to base their selection decision on multi-environment
trial (MET) data. Models could be adjusted by adding additional information like spatial information,
experimental design information, etc. In this tutorial we will focus mainly on the covariance structures for
GxE and the incorporation of relationship matrices for the genotype effect.

1) MET: main effect model

A multi-environment model is the one that is fitted when the breeding program can afford more than one
location. The main effect model assumes that GxE doesn’t exist and that the main genotype effect plus the
fixed effect for environment is enough to predict the genotype effect in all locations of interest.
library(lme4breeding)
data(DT_example)
DT <- DT_example
A <- A_example

ansMain <- lmebreed(Yield ~ Env + (1|Name),
relmat = list(Name = A ),
data=DT)

## * Cholesky decomposition finished.

## * Relfactors (relmat) applied to Z

## * Optimizing ...

## * Done!!
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vc <- VarCorr(ansMain); print(vc,comp=c("Variance"))

## Groups Name Variance
## Name (Intercept) 4.8559
## Residual 8.1086

In this model, the only term to be estimated is the one for the germplasm (here called Name). For the sake
of example we have added a relationship matrix among the levels of the random effect Name. This is just a
diagonal matrix with as many rows and columns as levels present in the random effect Name, but any other
non-diagonal relationship matrix could be used.

2) MET: diagonal model (DG)

A multi-environment model is the one that is fitted when the breeding program can afford more than one
location. The diagonal model assumes that GxE exists and that the genotype variation is expressed differently
at each location, therefore fitting a variance component for the genotype effect at each location. The main
drawback is that this model assumes no covariance among locations, as if genotypes were independent (despite
the fact that is the same genotypes). The fixed effect for environment plus the location-specific BLUP is used
to predict the genotype effect in each locations of interest.
Z <- with(DT, smm(Env))
diagFormula <- paste0( "Yield ~ Env + (0+", paste(colnames(Z), collapse = "+"), "|| Name)")
for(i in 1:ncol(Z)){DT[,colnames(Z)[i]] <- Z[,i]}
print(as.formula(diagFormula))

## Yield ~ Env + (0 + CA.2011 + CA.2012 + CA.2013 || Name)
ansDG <- lmebreed(as.formula(diagFormula),

relmat = list(Name = A ),
data=DT)

## * Cholesky decomposition finished.

## * Relfactors (relmat) applied to Z

## * Optimizing ...

## * Done!!
vc <- VarCorr(ansDG); print(vc,comp=c("Variance"))

## Groups Name Variance
## Name CA.2011 17.4934
## Name.1 CA.2012 5.3376
## Name.2 CA.2013 7.8839
## Residual 4.3806
ve <- attr(vc, "sc")ˆ2; ve

## [1] 4.380609

3) MET: compund symmetry model (CS)

A multi-environment model is the one that is fitted when the breeding program can afford more than one
location. The compound symmetry model assumes that GxE exists and that a main genotype variance-
covariance component is expressed across all location. In addition, it assumes that a main genotype-by-
environment variance is expressed across all locations. The main drawback is that the model assumes the
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same variance and covariance among locations. The fixed effect for environment plus the main effect for
BLUP plus genotype-by-environment effect is used to predict the genotype effect in each location of interest.
DT$EnvName <- paste(DT$Env, DT$Name, sep = ":")
E <- Matrix::Diagonal(length(unique(DT$Env)));
colnames(E) <- rownames(E) <- unique(DT$Env);E

## 3 x 3 diagonal matrix of class "ddiMatrix"
## CA.2013 CA.2011 CA.2012
## CA.2013 1 . .
## CA.2011 . 1 .
## CA.2012 . . 1
EA <- Matrix::kronecker(E,A, make.dimnames = TRUE)
ansCS <- lmebreed(Yield ~ Env + (1|Name) + (1|EnvName),

relmat = list(Name = A, EnvName= EA ),
data=DT)

## * Cholesky decomposition finished.

## * Relfactors (relmat) applied to Z

## * Optimizing ...

## * Done!!
vc <- VarCorr(ansCS); print(vc,comp=c("Variance"))

## Groups Name Variance
## EnvName (Intercept) 5.1732
## Name (Intercept) 3.6819
## Residual 4.3662
ve <- attr(vc, "sc")ˆ2; ve

## [1] 4.366211

3.2) MET: compund symmetry model + diagonal (CS+DG)

A multi-environment model is the one that is fitted when the breeding program can afford more than one
location. The compound symmetry model assumes that GxE exists and that a main genotype variance-
covariance component is expressed across all location. In addition, it assumes that a main genotype-by-
environment variance is expressed across all locations. The main drawback is that the model assumes the
same variance and covariance among locations. The fixed effect for environment plus the main effect for
BLUP plus genotype-by-environment effect is used to predict the genotype effect in each location of interest.
Z <- with(DT, smm(Env))
csdiagFormula <- paste0( "Yield ~ Env + (", paste(colnames(Z), collapse = "+"), "|| Name)")
for(i in 1:ncol(Z)){DT[,colnames(Z)[i]] <- Z[,i]}
print(as.formula(csdiagFormula))

## Yield ~ Env + (CA.2011 + CA.2012 + CA.2013 || Name)
ansCSDG <- lmebreed(as.formula(csdiagFormula),

relmat = list(Name = A ),
data=DT)

## * Cholesky decomposition finished.

## * Relfactors (relmat) applied to Z
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## * Optimizing ...

## * Done!!
vc <- VarCorr(ansCSDG); print(vc,comp=c("Variance"))

## Groups Name Variance
## Name (Intercept) 2.9637
## Name.1 CA.2011 10.4264
## Name.2 CA.2012 2.6589
## Name.3 CA.2013 5.7017
## Residual 4.3976
ve <- attr(vc, "sc")ˆ2; ve

## [1] 4.397594

4) MET: unstructured model (US)

A multi-environment model is the one that is fitted when the breeding program can afford more than
one location. The unstructured model is the most flexible model assuming that GxE exists and that an
environment-specific variance exists in addition to as many covariances for each environment-to-environment
combinations. The main drawback is that is difficult to make this models converge because of the large
number of variance components, the fact that some of these variance or covariance components are zero, and
the difficulty in choosing good starting values. The fixed effect for environment plus the environment specific
BLUP (adjusted by covariances) is used to predict the genotype effect in each location of interest.
Z <- with(DT, smm(Env))
usFormula <- paste0( "Yield ~ Env + (0+", paste(colnames(Z), collapse = "+"), "| Name)")
for(i in 1:ncol(Z)){DT[,colnames(Z)[i]] <- Z[,i]}
print(as.formula(usFormula))

## Yield ~ Env + (0 + CA.2011 + CA.2012 + CA.2013 | Name)
ansDG <- lmebreed(as.formula(usFormula),

relmat = list(Name = A ),
data=DT)

## * Cholesky decomposition finished.

## * Relfactors (relmat) applied to Z

## * Optimizing ...

## * Done!!
vc <- VarCorr(ansDG); print(vc,comp=c("Variance"))

## Groups Name Variance Cov
## Name CA.2011 15.9930
## CA.2012 5.2743 6.172
## CA.2013 7.6897 6.366 0.375
## Residual 4.3862
ve <- attr(vc, "sc")ˆ2; ve

## [1] 4.38618
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5) MET: random regression model

A multi-environment model is the one that is fitted when the breeding program can afford more than one
location. The random regression model assumes that the environment can be seen as a continuous variable
and therefore a variance component for the intercept and a variance component for the slope can be fitted.
The number of variance components will depend on the order of the Legendre polynomial fitted.
# library(orthopolynom)
# DT$EnvN <- as.numeric(as.factor(DT$Env))
#
# Z <- with(DT, smm(leg(EnvN,1)) )
# rrFormula <- paste0( "Yield ~ Env + (0+", paste(colnames(Z), collapse = "+"), "| Name)")
# for(i in 1:ncol(Z)){DT[,colnames(Z)[i]] <- Z[,i]}
# ansRR <- lmebreed(as.formula(rrFormula),
# relmat = list(Name = A ),
# data=DT)
# vc <- VarCorr(ansRR); print(vc,comp=c("Variance"))
# ve <- attr(vc, "sc")ˆ2; ve

In addition, we an fit this without covariance:
# library(orthopolynom)
# DT$EnvN <- as.numeric(as.factor(DT$Env))
# Z <- with(DT, smm(leg(EnvN,1)) )
# rrFormula <- paste0( "Yield ~ Env + (0+", paste(colnames(Z), collapse = "+"), "|| Name)")
# for(i in 1:ncol(Z)){DT[,colnames(Z)[i]] <- Z[,i]}
# ansRR <- lmebreed(as.formula(rrFormula),
# relmat = list(Name = A ),
# data=DT)
# vc <- VarCorr(ansRR); print(vc,comp=c("Variance"))
# ve <- attr(vc, "sc")ˆ2; ve

5.2) Finlay-Wilkinson regression

data(DT_h2)
DT <- DT_h2
## build the environmental index
ei <- aggregate(y~Env, data=DT,FUN=mean)
colnames(ei)[2] <- "envIndex"
ei$envIndex <- ei$envIndex - mean(ei$envIndex,na.rm=TRUE) # center the envIndex to have clean VCs
ei <- ei[with(ei, order(envIndex)), ]
## add the environmental index to the original dataset
DT2 <- merge(DT,ei, by="Env")
DT2 <- DT2[with(DT2, order(Name)), ]

ansFW <- lmebreed(y~ Env + (envIndex || Name), data=DT2)

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model failed to converge
## with max|grad| = 0.00203091 (tol = 0.002, component 1)
vc <- VarCorr(ansFW); print(vc,comp=c("Variance"))

## Groups Name Variance
## Name (Intercept) 2.632643
## Name.1 envIndex 0.041216
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## Residual 7.046535
ve <- attr(vc, "sc")ˆ2; ve

## [1] 7.046535

Alternatively, you can also add the covariance between both the main effect and the sensitivity
ansFW2 <- lmebreed(y~ Env + (envIndex | Name), data=DT2)
vc <- VarCorr(ansFW2); print(vc,comp=c("Variance"))

## Groups Name Variance Cov
## Name (Intercept) 2.75579
## envIndex 0.04279 0.343
## Residual 7.03681
ve <- attr(vc, "sc")ˆ2; ve

## [1] 7.036805

6) Factor analytic (reduced rank) model

When the number of environments where genotypes are evaluated is big and we want to consider the genetic
covariance between environments and location-specific variance components we cannot fit an unstructured
covariance in the model since the number of parameters is too big and the matrix can become non-full rank
leading to singularities. In those cases is suggested a dimensionality reduction technique. Among those the
factor analytic structures proposed by many research groups (Piepho, Smith, Cullis, Thompson, Meyer, etc.)
are the way to go. lme4breeding has a reduced-rank factor analytic implementation available through the
rrm() function. Here we show an example of how to fit the model:
# data(DT_h2)
# DT <- DT_h2
# DT=DT[with(DT, order(Env)), ]
#
# # fit diagonal model first to produce H matrix
# Z <- with(DT, smm(Env))
# diagFormula <- paste0( "y ~ Env + (0+", paste(colnames(Z), collapse = "+"), "|| Name)")
# for(i in 1:ncol(Z)){DT[,colnames(Z)[i]] <- Z[,i]}
# print(as.formula(diagFormula))
# ans1a <- lmebreed(as.formula(diagFormula),
# data=DT)
# vc <- VarCorr(ans1a); print(vc,comp=c("Variance"))
# H0 <- ranef(ans1a)$Name # GxE table
#
# # reduced rank model
# Z <- with(DT, rrm(Env, H = H0, nPC = 3))
# Zd <- with(DT, smm(Env))
# faFormula <- paste0( "y ~ Env + (0+", paste(colnames(Z), collapse = "+"), "| Name) + (0+",paste(colnames(Zd), collapse = "+"), "|| Name)")
# for(i in 1:ncol(Z)){DT[,colnames(Z)[i]] <- Z[,i]}
# print(as.formula(faFormula))
# ansFA <- lmebreed(as.formula(faFormula),
# data=DT)
# vc <- VarCorr(ansFA); print(vc,comp=c("Variance"))
# ve <- attr(vc, "sc")ˆ2; ve
#
# loadings=with(DT, rrm(Env, nPC = 3, H = H0, returnGamma = T) )$Gamma
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# Gint <- loadings %*% vc$Name %*% t(loadings)
# Gspec <- diag( unlist(lapply(vc[2:16], function(x){x[[1]]})) )
# G <- Gint + Gspec
# # lattice::levelplot(cov2cor(G))
# # colfunc <- colorRampPalette(c("steelblue4","springgreen","yellow"))
# # hv <- heatmap(cov2cor(G), col = colfunc(100), symm = TRUE)
#
# u <- ranef(ansFA)$Name
# uInter <- as.matrix(u[,1:3]) %*% t(as.matrix(loadings))
# uSpec <- as.matrix(u[,-c(1:3)])
# u <- uSpec + uInter

As can be seen genotype BLUPs for all environments can be recovered by multiplying the loadings (Gamma)
by the factor scores. This is a parsomonious way to model an unstructured covariance.

7) Two stage analysis

It is common then to fit a first model that accounts for the variation of random design elements, e.g., locations,
years, blocks, and fixed genotype effects to obtain the estimated marginal means (EMMs) or best linear
unbiased estimators (BLUEs) as adjusted entry means. These adjusted entry means are then used as the
phenotype or response variable in GWAS and genomic prediction studies.
##########
## stage 1
##########
data(DT_h2)
DT <- DT_h2
head(DT)

## Name Env Loc Year Block y
## 1 W8822-3 FL.2012 FL 2012 FL.2012.1 2
## 2 W8867-7 FL.2012 FL 2012 FL.2012.2 2
## 3 MSL007-B MO.2011 MO 2011 MO.2011.1 3
## 4 CO00270-7W FL.2012 FL 2012 FL.2012.2 3
## 5 Manistee(MSL292-A) FL.2013 FL 2013 FL.2013.2 3
## 6 MSM246-B FL.2012 FL 2012 FL.2012.2 3
envs <- unique(DT$Env)
vals <- list()
for(i in 1:length(envs)){

ans1 <- lmebreed(y~Name + (1|Block), data= droplevels(DT[which(DT$Env == envs[i]),]) )
b <- fixef(ans1)
b[2:length(b)] <- b[2:length(b)] + b[1]
ids <- colnames(model.matrix(~Name-1, data=droplevels(DT[which(DT$Env == envs[i]),]) ))
ids <- gsub("Name","",ids)
vals[[i]] <- data.frame(Estimate=b , stdError= diag( vcov(ans1)), Effect= ids, Env= envs[i])

}

## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
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DT2 <- do.call(rbind, vals)

##########
## stage 2
##########
DT2$w <- 1/DT2$stdError
ans2 <- lmebreed(Estimate~Env + (1|Effect) + (1|Env:Effect), weights = w,data=DT2,

control = lmerControl(
# optimizer="bobyqa",
check.nobs.vs.nlev = "ignore",
check.nobs.vs.rankZ = "ignore",
check.nobs.vs.nRE="ignore"

)
)

vc <- VarCorr(ans2); print(vc,comp=c("Variance"))

## Groups Name Variance
## Env:Effect (Intercept) 2.91649
## Effect (Intercept) 1.99225
## Residual 0.72139
ve <- attr(vc, "sc")ˆ2; ve

## [1] 0.7213944
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