This package performs a methodological approach for spatial estimation of regional trends of a prevalence using data from surveys using a stratified two-stage sample design (as Demographic and Health Surveys). In these kind of surveys, positive and control cases are spatially positioned at the centre of their corresponding surveyed cluster.
This package provides functions to estimate a prevalence surface using a kernel estimator with adaptative bandwidths of equal number of persons surveyed (a variant of the nearest neighbor technique) or with fixed bandwidths. The prevalence surface could also be calculated using a spatial interpolation (kriging or inverse distance weighting) after a moving average smoothing based on circles of equal number of observed persons or circles of equal radius.
With the kernel estimator approach, it’s also possible to estimate a surface of relative risks.
The methodological approach has been described in:
Application to generate HIV prevalence surfaces can be found at:
Other papers using prevR could be found on Google Scholar.
To create a prevR object, you need three elements:
SpatialPolygons defining the studied
arealibrary(prevR, quietly = TRUE)## 
## 
## Welcome to 'prevR': estimate regional trends of a prevalence.##  - type help('prevR') for details
##  - type demo(prevR) for a demonstration
##  - type citation('prevR') to cite prevR in a publication.
## 
## col <- c(
  id = "cluster",
  x = "x",
  y = "y",
  n = "n",
  pos = "pos",
  c.type = "residence",
  wn = "weighted.n",
  wpos = "weighted.pos"
)
dhs <- as.prevR(fdhs.clusters, col, fdhs.boundary)
str(dhs)## Formal class 'prevR' [package "prevR"] with 4 slots
##   ..@ clusters:'data.frame': 401 obs. of  10 variables:
##   .. ..$ id    : int [1:401] 1 10 100 101 102 103 104 105 106 107 ...
##   .. ..$ x     : num [1:401] -1.21 -1.79 -2.29 -2.71 -1.96 ...
##   .. ..$ y     : num [1:401] 7.29 6.13 5.96 6.04 5.12 ...
##   .. ..$ n     : num [1:401] 23 22 22 28 21 21 11 24 23 15 ...
##   .. ..$ pos   : num [1:401] 0 0 0 0 3 4 0 1 0 0 ...
##   .. ..$ c.type: Factor w/ 2 levels "Rural","Urban": 1 1 1 1 1 1 1 1 1 1 ...
##   .. ..$ wn    : num [1:401] 19.8 19.8 20.2 20.2 20.2 ...
##   .. ..$ wpos  : num [1:401] 0 0 0 0 2.88 ...
##   .. ..$ prev  : num [1:401] 0 0 0 0 14.3 ...
##   .. ..$ wprev : num [1:401] 0 0 0 0 14.3 ...
##   ..@ boundary:Classes 'sf' and 'data.frame':    1 obs. of  1 variable:
##   .. ..$ geometry:sfc_POLYGON of length 1; first list element: List of 1
##   .. .. ..$ : num [1:4056, 1:2] 1.28 1.25 1.23 1.22 1.22 ...
##   .. .. ..- attr(*, "class")= chr [1:3] "XY" "POLYGON" "sfg"
##   .. ..- attr(*, "sf_column")= chr "geometry"
##   .. ..- attr(*, "agr")= Factor w/ 3 levels "constant","aggregate",..: 
##   .. .. ..- attr(*, "names")= chr(0) 
##   .. ..- attr(*, "valid")= logi TRUE
##   ..@ proj    :List of 2
##   .. ..$ input: chr "+proj=longlat +datum=WGS84"
##   .. ..$ wkt  : chr "GEOGCRS[\"unknown\",\n    DATUM[\"World Geodetic System 1984\",\n        ELLIPSOID[\"WGS 84\",6378137,298.25722"| __truncated__
##   .. ..- attr(*, "class")= chr "crs"
##   ..@ rings   : list()print(dhs)## Object of class 'prevR'## Number of clusters: 401## Number of observations: 8000## Number of positive cases: 810## The dataset is weighted.## 
## National prevalence: 10.12%## National weighted prevalence: 10.16%## 
## Projection used: +proj=longlat +datum=WGS84## 
## Coordinate range##        min     max
## x -5.37750  3.6850
## y  4.80326 14.1225## 
## Boundary coordinate range##      xmin      ymin      xmax      ymax 
## -5.518916  4.736723  3.851701 15.082593An interactive helper function import.dhs() could be
used to compute statistics per cluster and to generate the
prevR object for those who downloaded individual files
(SPSS format) and location of clusters (dbf format) from DHS website (https://dhsprogram.com/).
imported_data <- import.dhs("data.sav", "gps.dbf")Boudaries of a specific country could be obtained with
create.boundary().
plot(dhs, main = "Clusters position")plot(dhs, type = "c.type", main = "Clusters by residence")plot(dhs, type = "count", main = "Observations by cluster")plot(dhs, type = "flower", main = "Positive cases by cluster")plot(dhs, axes = TRUE)dhs <- changeproj(
  dhs,
  "+proj=utm +zone=30 +ellps=WGS84 +datum=WGS84 +units=m +no_defs"
)
print(dhs)## Object of class 'prevR'## Number of clusters: 401## Number of observations: 8000## Number of positive cases: 810## The dataset is weighted.## 
## National prevalence: 10.12%## National weighted prevalence: 10.16%## 
## Projection used: +proj=utm +zone=30 +ellps=WGS84 +datum=WGS84 +units=m +no_defs## 
## Coordinate range##        min     max
## x 240094.2 1231995
## y 531003.3 1562155## 
## Boundary coordinate range##      xmin      ymin      xmax      ymax 
##  224228.1  523628.1 1251165.0 1669034.2plot(dhs, axes = TRUE)Function quick.prevR() allows to perform a quick
analysis:
Noptim()rings()kde()krige()quick.prevR(fdhs)Several values of N could be specified, and several options allows you to return detailed results.
res <- quick.prevR(
  fdhs,
  N = c(100, 200, 300),
  return.results = TRUE,
  return.plot = TRUE,
  plot.results = FALSE,
  progression = FALSE,
  nb.cells = 50
)
res$plot# Calculating rings of the same number of observations for different values of N
dhs <- rings(fdhs, N = c(100, 200, 300, 400, 500), progression = FALSE)
print(dhs)## Object of class 'prevR'## Number of clusters: 401## Number of observations: 8000## Number of positive cases: 810## The dataset is weighted.## 
## National prevalence: 10.12%## National weighted prevalence: 10.16%## 
## Projection used: +proj=longlat +datum=WGS84## 
## Coordinate range##        min     max
## x -5.37750  3.6850
## y  4.80326 14.1225## 
## Boundary coordinate range##      xmin      ymin      xmax      ymax 
## -5.518916  4.736723  3.851701 15.082593## 
## Available (N,R) couples in the slot 'rings':##    N   R
##  100 Inf
##  200 Inf
##  300 Inf
##  400 Inf
##  500 Infsummary(dhs)## Object of class 'prevR'## SLOT CLUSTERS##        x                 y                n              pos         c.type   
##  Min.   :-5.3775   Min.   : 4.803   Min.   : 8.00   Min.   :0.00   Rural:230  
##  1st Qu.:-1.7925   1st Qu.: 6.375   1st Qu.:17.00   1st Qu.:0.00   Urban:171  
##  Median :-0.7650   Median : 7.455   Median :20.00   Median :2.00              
##  Mean   :-0.6605   Mean   : 8.647   Mean   :19.95   Mean   :2.02              
##  3rd Qu.: 0.1590   3rd Qu.:11.205   3rd Qu.:23.00   3rd Qu.:3.00              
##  Max.   : 3.6850   Max.   :14.123   Max.   :31.00   Max.   :9.00              
##        wn             wpos            prev            wprev       
##  Min.   :18.58   Min.   :0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.:19.84   1st Qu.:0.000   1st Qu.: 0.000   1st Qu.: 0.000  
##  Median :20.04   Median :1.544   Median : 7.692   Median : 7.692  
##  Mean   :19.95   Mean   :2.027   Mean   :10.143   Mean   :10.143  
##  3rd Qu.:20.12   3rd Qu.:3.166   3rd Qu.:15.789   3rd Qu.:15.789  
##  Max.   :21.76   Max.   :8.806   Max.   :43.750   Max.   :43.750## 
## SLOT RINGS FOR N=100 AND R=Inf##      r.pos            r.n            r.prev          r.radius      
##  Min.   : 0.00   Min.   :100.0   Min.   : 0.000   Min.   :  4.155  
##  1st Qu.: 4.00   1st Qu.:105.0   1st Qu.: 4.000   1st Qu.: 23.046  
##  Median :11.00   Median :110.0   Median : 9.483   Median : 37.853  
##  Mean   :11.63   Mean   :110.7   Mean   :10.550   Mean   : 42.219  
##  3rd Qu.:18.00   3rd Qu.:115.0   3rd Qu.:15.789   3rd Qu.: 57.861  
##  Max.   :32.00   Max.   :127.0   Max.   :27.586   Max.   :142.042  
##    r.clusters        r.wpos            r.wn           r.wprev      
##  Min.   :4.000   Min.   : 0.000   Min.   : 79.76   Min.   : 0.000  
##  1st Qu.:5.000   1st Qu.: 4.515   1st Qu.:100.25   1st Qu.: 3.895  
##  Median :6.000   Median :11.175   Median :118.70   Median : 9.551  
##  Mean   :5.591   Mean   :11.792   Mean   :111.52   Mean   :10.684  
##  3rd Qu.:6.000   3rd Qu.:17.256   3rd Qu.:120.13   3rd Qu.:15.735  
##  Max.   :7.000   Max.   :33.937   Max.   :140.88   Max.   :28.210## 
## SLOT RINGS FOR N=200 AND R=Inf##      r.pos            r.n            r.prev           r.radius      
##  Min.   : 2.00   Min.   :200.0   Min.   : 0.8929   Min.   :  7.171  
##  1st Qu.: 9.00   1st Qu.:206.0   1st Qu.: 4.3902   1st Qu.: 37.579  
##  Median :22.00   Median :211.0   Median :10.2804   Median : 58.657  
##  Mean   :22.55   Mean   :210.8   Mean   :10.7053   Mean   : 64.005  
##  3rd Qu.:33.00   3rd Qu.:216.0   3rd Qu.:15.4229   3rd Qu.: 89.381  
##  Max.   :56.00   Max.   :226.0   Max.   :26.2136   Max.   :231.980  
##    r.clusters        r.wpos           r.wn          r.wprev      
##  Min.   : 9.00   Min.   : 2.47   Min.   :175.0   Min.   : 1.030  
##  1st Qu.:10.00   1st Qu.:10.50   1st Qu.:199.8   1st Qu.: 4.563  
##  Median :11.00   Median :22.30   Median :217.3   Median :10.485  
##  Mean   :10.53   Mean   :22.66   Mean   :210.0   Mean   :10.824  
##  3rd Qu.:11.00   3rd Qu.:31.98   3rd Qu.:220.0   3rd Qu.:15.797  
##  Max.   :12.00   Max.   :53.47   Max.   :241.0   Max.   :26.666## 
## SLOT RINGS FOR N=300 AND R=Inf##      r.pos            r.n            r.prev          r.radius      
##  Min.   : 5.00   Min.   :300.0   Min.   : 1.587   Min.   :  9.971  
##  1st Qu.:15.00   1st Qu.:304.0   1st Qu.: 4.983   1st Qu.: 45.750  
##  Median :32.00   Median :310.0   Median :10.559   Median : 73.931  
##  Mean   :33.37   Mean   :309.8   Mean   :10.764   Mean   : 79.767  
##  3rd Qu.:47.00   3rd Qu.:315.0   3rd Qu.:15.142   3rd Qu.:108.783  
##  Max.   :78.00   Max.   :327.0   Max.   :24.759   Max.   :268.172  
##    r.clusters        r.wpos            r.wn          r.wprev      
##  Min.   :13.00   Min.   : 4.284   Min.   :260.6   Min.   : 1.532  
##  1st Qu.:15.00   1st Qu.:15.937   1st Qu.:299.2   1st Qu.: 5.080  
##  Median :15.00   Median :33.525   Median :301.8   Median :10.319  
##  Mean   :15.44   Mean   :33.297   Mean   :307.9   Mean   :10.853  
##  3rd Qu.:16.00   3rd Qu.:46.856   3rd Qu.:320.0   3rd Qu.:15.429  
##  Max.   :17.00   Max.   :76.990   Max.   :341.4   Max.   :25.273## 
## SLOT RINGS FOR N=400 AND R=Inf##      r.pos            r.n            r.prev          r.radius     
##  Min.   : 8.00   Min.   :400.0   Min.   : 2.000   Min.   : 12.70  
##  1st Qu.:22.00   1st Qu.:405.0   1st Qu.: 5.327   1st Qu.: 54.42  
##  Median :44.00   Median :410.0   Median :10.602   Median : 85.41  
##  Mean   :44.18   Mean   :410.3   Mean   :10.764   Mean   : 94.79  
##  3rd Qu.:58.00   3rd Qu.:415.0   3rd Qu.:14.217   3rd Qu.:127.73  
##  Max.   :98.00   Max.   :427.0   Max.   :23.278   Max.   :293.64  
##    r.clusters        r.wpos            r.wn          r.wprev      
##  Min.   :18.00   Min.   : 8.229   Min.   :360.1   Min.   : 2.045  
##  1st Qu.:20.00   1st Qu.:22.358   1st Qu.:399.9   1st Qu.: 5.345  
##  Median :21.00   Median :43.851   Median :415.4   Median :10.315  
##  Mean   :20.54   Mean   :44.298   Mean   :409.6   Mean   :10.851  
##  3rd Qu.:21.00   3rd Qu.:58.963   3rd Qu.:421.0   3rd Qu.:14.341  
##  Max.   :22.00   Max.   :95.591   Max.   :443.4   Max.   :23.452## 
## SLOT RINGS FOR N=500 AND R=Inf##      r.pos             r.n            r.prev          r.radius     
##  Min.   : 14.00   Min.   :500.0   Min.   : 2.783   Min.   : 16.38  
##  1st Qu.: 31.00   1st Qu.:505.0   1st Qu.: 6.163   1st Qu.: 67.01  
##  Median : 54.00   Median :510.0   Median :10.700   Median : 98.47  
##  Mean   : 55.24   Mean   :510.3   Mean   :10.811   Mean   :107.68  
##  3rd Qu.: 70.00   3rd Qu.:515.0   3rd Qu.:13.699   3rd Qu.:140.71  
##  Max.   :116.00   Max.   :528.0   Max.   :22.612   Max.   :347.09  
##    r.clusters        r.wpos            r.wn          r.wprev      
##  Min.   :23.00   Min.   : 12.93   Min.   :455.7   Min.   : 2.499  
##  1st Qu.:25.00   1st Qu.: 31.71   1st Qu.:499.5   1st Qu.: 6.138  
##  Median :26.00   Median : 51.91   Median :510.9   Median :10.222  
##  Mean   :25.53   Mean   : 55.12   Mean   :509.3   Mean   :10.869  
##  3rd Qu.:26.00   3rd Qu.: 70.17   3rd Qu.:520.8   3rd Qu.:13.929  
##  Max.   :28.00   Max.   :110.78   Max.   :555.8   Max.   :22.822## 
## QUANTILES OF r.radius (in kilometers):##              0%   10%   25%   50%    75%    80%    90%    95%    99%   100%
## N100.RInf  4.15  7.84 23.05 37.85  57.86  62.99  79.63  93.12 121.77 142.04
## N200.RInf  7.17 14.58 37.58 58.66  89.38  94.40 114.97 134.81 173.37 231.98
## N300.RInf  9.97 18.75 45.75 73.93 108.78 114.65 138.17 159.10 211.31 268.17
## N400.RInf 12.70 31.42 54.42 85.41 127.73 136.67 163.91 177.11 241.44 293.64
## N500.RInf 16.38 41.15 67.01 98.47 140.71 156.53 181.92 201.87 286.18 347.09# Prevalence surface for N=300
prev.N300 <- kde(dhs, N = 300, nb.cells = 200, progression = FALSE)
plot(
  prev.N300["k.wprev.N300.RInf"],
  pal = prevR.colors.red,
  lty = 0,
  main = "Regional trends of prevalence (N=300)"
)# with ggplot2
library(ggplot2)
ggplot(prev.N300) +
  aes(fill = k.wprev.N300.RInf) +
  geom_sf(colour = "transparent") +
  scale_fill_gradientn(colours = prevR.colors.red()) +
  labs(fill = "Prevalence (%)") +
  theme_prevR_light()# Surface of rings' radius
radius.N300 <- krige("r.radius", dhs, N = 300, nb.cells = 200)## [using ordinary kriging]plot(
  radius.N300,
  pal = prevR.colors.blue,
  lty = 0,
  main = "Radius of circle (N=300)"
)The content of prevR can be broken up as follows:
fdhs is a fictive dataset used for testing the
package.TMWorldBorders provides national borders of every
countries in the World and could be used to define the limits of the
studied area.prevR functions takes as input objects of class prevR.
import.dhs() allows to import easily, through a step by
step procedure, data from a DHS (Demographic and Health Surveys)
downloaded from http://www.measuredhs.com.as.prevR() is a generic function to create an object of
class prevR.create.boundary() could be used to select borders of a
country and transfer them to as.prevR in order to define the studied
area.show(), print() and
summary() display a summary of a object of class
prevR.plot() could be used on a object of class
prevR for visualizing the studied area, spatial position of clusters,
number of observations or number of positive cases by cluster.changeproj() changes the projection of the
spatial coordinates.as.data.frame() converts an object of class
prevR into a data frame.export() export data and/or the studied area
in a text file, a dbf file or a shapefile.rings() calculates rings of equal number of
observations and/or equal radius.kde() calculates a prevalence surface or a relative
risks surface using gaussian kernel density estimators (kde) with
adaptative bandwidths.krige() executes a spatial interpolation using an
ordinary kriging.idw() executes a spatial interpolation using an inverse
distance weighting (idw) technique.kde(), krige() and
idw() are objects of class
SpatialPixelsDataFrame (sp package).spplot()
from sp.prevR.colors) compatible with spplot().writeRaster() from terra (see examples in
the documentation of kde() and krige().