Package ‘tmap.glyphs’

May 30, 2025
License GPL-3
Title Extension to 'tmap' for Creating Glyphs
Type Package

Description Provides new layer functions to 'tmap' for draw-
ing glyphs. A glyph is a small chart (e.g., donut chart) shown at specific map locations to visual-
ize multivariate or time-series data. The functions work with the syntax of 'tmap' and allow flexi-
ble control over size, layout, and appearance.

Version 0.1

Encoding UTF-8

Depends R (>=3.5.0),

Imports tmap (>=4.1), data.table

Config/Needs/check Nowosad/spDatal.arge, lwgeom, r-tmap/tmap
Config/Needs/coverage Nowosad/spDatalarge, lwgeom

Config/Needs/website bookdown, rmarkdown, r-tmap/tmap

URL https://github.com/r-tmap/tmap.glyphs,
https://r-tmap.github.io/tmap.glyphs/

BugReports https://github.com/r-tmap/tmap.glyphs/issues

RoxygenNote 7.3.2

NeedsCompilation no

Author Martijn Tennekes [aut, cre]

Maintainer Martijn Tennekes <mtennekes@gmail.com>

Repository CRAN

Date/Publication 2025-05-30 09:30:05 UTC

Contents
tmap.glyphs-package 2
opt_tm_donuts e e e e e e e 2
opt_tm_flowers 5
tm_scale_compositionl e e 9
tm_scale_multi e 11

https://github.com/r-tmap/tmap.glyphs
https://r-tmap.github.io/tmap.glyphs/
https://github.com/r-tmap/tmap.glyphs/issues

Index

opt_tm_donuts

13

tmap.glyphs-package Extension for "tmap’: glyphs can be created

Description

New layer functions available for "tmap’ that are used to create glyph maps.

Author(s)

Martijn Tennekes <mtennekes@gmail . com>

See Also
Useful links:
e https://github.com/r-tmap/tmap.glyphs
* https://r-tmap.github.io/tmap.glyphs/
* Report bugs at https://github.com/r-tmap/tmap.glyphs/issues

opt_tm_donuts Map layer: donuts

Description

Map layer that draw donuts as glyphs

Usage

opt_tm_donuts(
start = 0,
direction = 1,
inner = 0.4,
fill_hole = NA,

points_only = "ifany",

point_per = "feature”,

on_surface = FALSE,

icon.scale = 6,

just = NA,

grob.dim = c(width = 48, height = 48, render.width = 256, render.height = 256)
)
tm_donuts(

parts = tmap::tm_vars(multivariate = TRUE),
parts.scale = tm_scale_composition(),

https://github.com/r-tmap/tmap.glyphs
https://r-tmap.github.io/tmap.glyphs/
https://github.com/r-tmap/tmap.glyphs/issues

opt_tm_donuts 3

part
part
part
size
size

size.
size.
size.
fill.

fill

fill.

fill
col
col.
col.
col.
col.
lwd
lwd.
lwd.
lwd.
lwd.
plot
zind
grou
grou
popu
popu
hove
id =
opti

Arguments
start
direct
inner
fill_h

points

point_

s.legend = tmap::tm_legend_hide(),
s.chart = tmap::tm_chart_none(),
s.free = NA,

= tmap::tm_const(),

.scale = tmap::tm_scale(),
legend = tmap::tm_legend(),
chart = tmap::tm_chart_none(),
free = NA,

scale = tmap::tm_scale(),
.legend = tmap::tm_legend(),
chart = tmap::tm_chart_none(),
.free = NA,

= tmap::tm_const(),

scale = tmap::tm_scale(),

legend = tmap::tm_legend(),
chart = tmap::tm_chart_none(),
free = NA,

= tmap::tm_const(),

scale = tmap::tm_scale(),

legend = tmap::tm_legend(),
chart = tmap::tm_chart_none(),
free = NA,

.order = tmap::tm_plot_order("DATA", reverse = FALSE),
ex = NA,

p = NA,

p.control = "check”,

p.vars = NA,

p.format = list(),

r= ”"7

ons = opt_tm_donuts()

starting angle of the pies. 0 means top

ion direction in which the pies are stacked. 1 means clockwise, 0 counterclockwise
proportion of the inner circle

ole should the hole be filled? Either ‘FALSE* or a fill color.

_only should only point geometries of the shape object (defined in [tm_shape()]) be
plotted? By default “"ifany"‘, which means “TRUE‘ in case a geometry collec-
tion is specified.

per specification of how spatial points are mapped when the geometry is a multi line
or a multi polygon. One of "feature”, "segment” or "largest”. The first
generates a spatial point for every feature, the second for every segment (i.e.
subfeature), the third only for the largest segment (subfeature). Note that the
last two options can be significant slower.

on_surface

icon.scale

just

grob.dim

opt_tm_donuts

In case of polygons, centroids are computed. Should the points be on the sur-
face? If ‘TRUE®, which is slower than the default ‘FALSE°, centroids outside
the surface are replaced with points computed with [sf::st_point_on_surface()].

scaling number that determines how large the icons (or grobs) are in plot mode
in comparison to proportional symbols (such as bubbles). For view mode, use
the argument ‘grob.dim*

justification of the text relative to the point coordinates. Either one of the fol-
lowing values: "left" , "right", "center”, "bottom”, and "top"”, or a vector
of two values where first value specifies horizontal and the second value vertical
justification. Besides the mentioned values, also numeric values between 0 and 1
can be used. 0 means left justification for the first value and bottom justification
for the second value. Note that in view mode, only one value is used.

vector of four values that determine how grob objects (see details) are shown in
view mode. The first and second value are the width and height of the displayed
icon. The third and fourth value are the width and height of the rendered png
image that is used for the icon. Generally, the third and fourth value should be
large enough to render a graphic successfully. Only needed for the view mode.

parts, parts.scale, parts.legend, parts.chart, parts.free

Variables that determine the size of the parts

size, size.scale, size.legend, size.chart, size.free

Variables that determine the size of the donut

col, col.scale, col.legend, col.chart, col.free

Visual variable that determines the col color. See details.

lwd, 1wd.scale, lwd.legend, lwd.chart, lwd. free

plot.order

zindex

group

group.control

popup.vars

popup.format

Visual variable that determines the line width. See details.

Specification in which order the spatial features are drawn. See [tm_plot_order()]
for details.

Map layers are drawn on top of each other. The ‘zindex‘ numbers (one for each
map layer) determines the stacking order. By default the map layers are drawn
in the order they are called.

Name of the group to which this layer belongs. This is only relevant in view
mode, where layer groups can be switched (see ‘group.control ‘)

In view mode, the group control determines how layer groups can be switched
on and off. Options: ‘'radio"‘ for radio buttons (meaning only one group can
be shown), “"check"‘ for check boxes (so multiple groups can be shown), and

3l ne

none"* for no control (the group cannot be (de)selected).

ne

13 3

names of data variables that are shown in the popups in ‘"view"‘ mode. Set
popup.vars to “TRUE’ to show all variables in the shape object. Set popup.vars
to ‘FALSE" to disable popups. Set popup.vars to a character vector of variable
names to those those variables in the popups. The default (‘NA‘) depends on
whether visual variables (e.g.‘col‘) are used. If so, only those are shown. If not
all variables in the shape object are shown.

list of formatting options for the popup values. See the argument ‘legend.format*
for options. Only applicable for numeric data variables. If one list of formatting
options is provided, it is applied to all numeric variables of ‘popup.vars‘. Also, a

opt_tm_flowers 5

(named) list of lists can be provided. In that case, each list of formatting options
is applied to the named variable.

hover name of the data variable that specifies the hover labels (view mode only). Set
to ‘FALSE’ to disable hover labels. By default ‘FALSE‘, unless ‘id* is specified.
In that case, it is set to ‘id°,

id name of the data variable that specifies the indices of the spatial features. Only
used for “"view"‘ mode.

options options passed on to the corresponding ‘opt_<layer_function>‘ function

fill, fill.scale, fill.legend, fill.chart, fill.free
Visual variable that determines the fill color. See details.

Value

a [tmap::tmap-element], supposed to be stacked after [tmap::tm_shape()] using the ‘+° operator. The
‘opt_<layer_function>* function returns a list that should be passed on to the ‘options* argument.

Examples
library(tmap)
ZH_muni = NLD_muni[NLD_muni$province == "Zuid-Holland"”,]

ZH_muni$income_middle = 100 - ZH_muni$income_high - ZH_muni$income_low
which.max(ZH_muni$population)

ZH_muni$population[c(10,26)] = 500000

ZH_muni$income_high[1:15] = NA

tm_shape(ZH_muni) +

tm_polygons() +
tm_donuts(parts = tm_vars(c(”income_low", "income_middle"”, "income_high"), multivariate = TRUE),

fill.scale = tm_scale_categorical(values = "-pu_gn_div"),
size = "population”,
lwd = 1,

size.scale = tm_scale_continuous(ticks = c(50000, 100000, 250000, 500000)),
options = opt_tm_donuts(fill_hole = FALSE))

opt_tm_flowers Map layer: flowers

Description

Map layer that draw flowers as glyphs

Usage

opt_tm_flowers(

)

start = 0,
direction =
inner = 0.4,
fill_hole = NA,
points_only = "ifany",
point_per = "feature”,
on_surface = FALSE,
icon.scale = 6,

just = NA,

T,

opt_tm_flowers

grob.dim = c(width = 48, height = 48, render.width = 256, render.height = 256)

tm_flowers(

parts = tmap::tm_vars(multivariate = TRUE),
parts.scale = tm_scale_multi(),
parts.legend = tmap::tm_legend_hide(),
parts.chart = tmap::tm_chart_none(),
parts.free = NA,

size = tmap::tm_const(),

size.scale = tmap::tm_scale(),
size.legend = tmap::tm_legend(),
size.chart = tmap::tm_chart_none(),
size.free = NA,

fill.scale = tmap::tm_scale(),
fill.legend = tmap::tm_legend(),
fill.chart = tmap::tm_chart_none(),
fill.free = NA,

col = tmap::tm_const(),

col.scale = tmap::tm_scale(),
col.legend = tmap::tm_legend(),
col.chart = tmap::tm_chart_none(),
col.free = NA,

lwd = tmap::tm_const(),

lwd.scale = tmap::tm_scale(),
lwd.legend = tmap::tm_legend(),
lwd.chart = tmap::tm_chart_none(),
lwd.free = NA,

plot.order = tmap::tm_plot_order("DATA", reverse =
zindex = NA,

group = NA,

group.control = "check”,

popup.vars = NA,

popup.format = list(),

hover = "",

id = "",

options = opt_tm_flowers()

FALSE),

opt_tm_flowers 7

)
Arguments
start starting angle of the pies. 0 means top
direction direction in which the pies are stacked. 1 means clockwise, 0 counterclockwise
inner proportion of the inner circle
fill_hole should the hole be filled? Either ‘FALSE° or a fill color.

points_only should only point geometries of the shape object (defined in [tm_shape()]) be
plotted? By default “"ifany"‘, which means “TRUE‘ in case a geometry collec-
tion is specified.

point_per specification of how spatial points are mapped when the geometry is a multi line
or a multi polygon. One of "feature”, "segment” or "largest”. The first
generates a spatial point for every feature, the second for every segment (i.e.
subfeature), the third only for the largest segment (subfeature). Note that the
last two options can be significant slower.

on_surface In case of polygons, centroids are computed. Should the points be on the sur-
face? If ‘TRUE®, which is slower than the default ‘FALSE°, centroids outside
the surface are replaced with points computed with [sf::st_point_on_surface()].

icon.scale scaling number that determines how large the icons (or grobs) are in plot mode
in comparison to proportional symbols (such as bubbles). For view mode, use
the argument ‘grob.dim*

just justification of the text relative to the point coordinates. Either one of the fol-
lowing values: "left" , "right", "center”, "bottom”, and "top"”, or a vector
of two values where first value specifies horizontal and the second value vertical
justification. Besides the mentioned values, also numeric values between 0 and 1
can be used. 0 means left justification for the first value and bottom justification
for the second value. Note that in view mode, only one value is used.

grob.dim vector of four values that determine how grob objects (see details) are shown in
view mode. The first and second value are the width and height of the displayed
icon. The third and fourth value are the width and height of the rendered png
image that is used for the icon. Generally, the third and fourth value should be
large enough to render a graphic successfully. Only needed for the view mode.

parts, parts.scale, parts.legend, parts.chart, parts.free
Variables that determine the size of the parts

size, size.scale, size.legend, size.chart, size.free
Variables that determine the size of the donut

col, col.scale, col.legend, col.chart, col.free
Visual variable that determines the col color. See details.

lwd, 1wd.scale, 1wd. legend, 1wd.chart, lwd. free
Visual variable that determines the line width. See details.

plot.order Specification in which order the spatial features are drawn. See [tm_plot_order()]
for details.

zindex Map layers are drawn on top of each other. The ‘zindex‘ numbers (one for each
map layer) determines the stacking order. By default the map layers are drawn
in the order they are called.

group

group.control

popup.vars

popup.format

hover

id

options

fill, fill.scale,

Value

opt_tm_flowers

Name of the group to which this layer belongs. This is only relevant in view
mode, where layer groups can be switched (see ‘group.control ‘)

In view mode, the group control determines how layer groups can be switched
on and off. Options: ‘"radio"‘ for radio buttons (meaning only one group can
be shown), ‘"check"‘ for check boxes (so multiple groups can be shown), and

o ne

none"* for no control (the group cannot be (de)selected).

"e

3 3

names of data variables that are shown in the popups in ‘"view"‘ mode. Set
popup.vars to “TRUE* to show all variables in the shape object. Set popup.vars
to ‘FALSE" to disable popups. Set popup.vars to a character vector of variable
names to those those variables in the popups. The default (‘NA‘) depends on
whether visual variables (e.g.‘col*) are used. If so, only those are shown. If not
all variables in the shape object are shown.

list of formatting options for the popup values. See the argument ‘legend.format’
for options. Only applicable for numeric data variables. If one list of formatting
options is provided, it is applied to all numeric variables of ‘popup.vars‘. Also, a
(named) list of lists can be provided. In that case, each list of formatting options
is applied to the named variable.

name of the data variable that specifies the hover labels (view mode only). Set
to ‘FALSE’ to disable hover labels. By default ‘FALSE®, unless ‘id‘ is specified.
In that case, it is set to ‘id°,

name of the data variable that specifies the indices of the spatial features. Only
used for “"view"* mode.

ne

options passed on to the corresponding ‘opt_<layer_function>‘ function

fill.legend, fill.chart, fill.free
Visual variable that determines the fill color. See details.

a [tmap::tmap-element], supposed to be stacked after [tmap::tm_shape()] using the ‘+* operator. The
‘opt_<layer_function>‘ function returns a list that should be passed on to the ‘options‘ argument.

Examples

library(tmap)

tm_shape(World) +
tm_polygons(fil
tm_shape(World) +
tm_flowers(
parts = tm_va

1 = "white"”, popup.vars = FALSE) +

rs(c("gender”, "press”, "footprint”,

"well_being"”, "inequality"), multivariate = TRUE),

fill.scale = tm_scale(values = "friendly5"),

size = 1.5,
popup.vars = c("gender”, "press", "footprint”, "well_being"”,"inequality"),
id = "name") +

tm_basemap(NULL) +

tm_layout(bg.colo

r = "grey9o")

tm_scale_composition 9

make leaf sizes consistent: the larger, the better
use ranking instead of values

g = function(x) {

r = rank(x)

rfis.na(x)] = NA

r =r / max(r, na.rm = TRUE)
r

}

World$rank_well_being = q((World$well_being / 8))
World$rank_footprint = q(((50 - World$footprint) / 50))
World$rank_inequality = q(((65 - World$inequality) / 65))
World$rank_press = q(1 - ((100 - World$press) / 100))
World$rank_gender = q(1 - World$gender)

tm_shape(World) +
tm_polygons(fill = "white"”, popup.vars = FALSE) +
tm_shape(World) +
tm_flowers(
parts =
tm_vars(c("rank_gender"”, "rank_press”, "rank_footprint”,
"rank_well_being"”, "rank_inequality"), multivariate = TRUE),
fill.scale = tm_scale(values = "friendly5"),

size = 1.5,
popup.vars = c("rank_gender"”, "rank_press”, "rank_footprint”,
"rank_well_being”,"rank_inequality"”), id = "name") +

tm_basemap(NULL) +
tm_layout(bg.color = "grey9e")

ttmp()

tm_scale_composition Scales: composition

Description

Scales in tmap are configured by the family of functions with prefix ‘tm_scale‘. Such function
should be used for the input of the ‘.scale‘ arguments in the layer functions (e.g. ‘fill.scale‘ in
[tm_polygons()]). The function ‘tm_scale_composition() is used for the creation of composition
glyphs, such as pie charts and donut charts.

Usage

tm_scale_composition(
values = NA,
values.repeat = FALSE,
values.range = NA,
values.scale = 1,

10

tm_scale_composition

value.na = NA,

value.null =

NA,

value.neutral = NA,

labels =
label.na =

Arguments

values

values.repeat

values.range

values.scale

value.na

value.null

value.neutral

labels
label.na
label.null

NULL,
NA,

label.null = NA

(generic scale argument) The visual values. For colors (e.g. ‘fill* or ‘col
for ‘tm_polygons()‘) this is a palette name from the ‘cols4all® package (see
[cols4all::c4a()]) or vector of colors, for size (e.g. ‘size‘ for ‘tm_symbols()‘)
these are a set of sizes (if two values are specified they are interpret as range),
for symbol shapes (e.g. ‘shape‘ for [tm_symbols()]) these are a set of symbols,
etc. The tmap option ‘values.var‘ contains the default values per visual variable
and in some cases also per data type.

(generic scale argument) Should the values be repeated in case there are more
categories?

(generic scale argument) Range of the values. Vector of two numbers (both
between 0 and 1) where the first determines the minimum and the second the
maximum. Full range, which means that all values are used, is encoded as ‘c(0,
1)‘. For instance, when a grey scale is used for color (from black to white),
‘c(0,1) means that all colors are used, ‘0.25, 0.75° means that only colors from
dark grey to light grey are used (more precisely ‘"grey25"‘ to “"grey75"), and
‘0, 0.5° means that only colors are used from black to middle grey (*"grey50"°).
When only one number is specified, this is interpreted as the second number
(where the first is set to 0). Default values can be set via the tmap option ‘val-
ues.range".

o

(generic scale argument) Scaling of the values. Only useful for size-related vi-
sual variables, such as ‘size* of [tm_symbols()] and ‘Iwd* of [tm_lines()].

(generic scale argument) Value used for missing values. See tmap option ‘"value.na"*

for defaults per visual variable.

(generic scale argument) Value used for NULL values. See tmap option ‘"value.null"

for defaults per visual variable. Null data values occur when out-of-scope fea-
tures are shown (e.g. for a map of Europe showing a data variable per country,
the null values are applied to countries outside Europe).

(generic scale argument) Value that can be considered neutral. This is used for
legends of other visual variables of the same map layer. E.g. when both ‘fill‘
and ‘size‘ are used for [tm_symbols()] (using filled circles), the size legend items
are filled with the ‘value.neutral‘ color from the ‘fill.scale‘ scale, and fill legend
items are bubbles of size ‘value.neutral from the ‘size.scale‘ scale.

(generic scale argument) Labels
(generic scale argument) Label for missing values

(generic scale argument) Label for null (out-of-scope) values

tm_scale_multi 11

Value

tmap scale object to be used for the ‘.scale‘ arguments in the tmap layer functions

tm_scale_multi Scales: multivariate

Description

Scales in tmap are configured by the family of functions with prefix ‘tm_scale‘. Such function
should be used for the input of the ‘.scale‘ arguments in the layer functions (e.g. ‘fill.scale‘ in
[tm_polygons()]). The function ‘tm_scale_multi()‘ is used for the creation of glyphs, which take
one or multiple normalized (between 0 and 1) values. E.g. the flower glyph.

Usage

tm_scale_multi(
values = NA,
values.repeat = FALSE,
values.range = NA,
values.scale = 1,
value.na = NA,
value.null = NA,
value.neutral = NA,
labels = NULL,
label.na = NA,
label.null = NA

Arguments

values (generic scale argument) The visual values. For colors (e.g. ‘fill* or ‘col’
for ‘tm_polygons()‘) this is a palette name from the ‘cols4all‘ package (see
[cols4all::c4a()]) or vector of colors, for size (e.g. ‘size‘ for ‘tm_symbols()®)
these are a set of sizes (if two values are specified they are interpret as range),
for symbol shapes (e.g. ‘shape‘ for [tm_symbols()]) these are a set of symbols,
etc. The tmap option ‘values.var® contains the default values per visual variable
and in some cases also per data type.

values.repeat (generic scale argument) Should the values be repeated in case there are more
categories?

values.range (generic scale argument) Range of the values. Vector of two numbers (both
between 0 and 1) where the first determines the minimum and the second the
maximum. Full range, which means that all values are used, is encoded as ‘c(0,
1)‘. For instance, when a grey scale is used for color (from black to white),
‘c(0,1) means that all colors are used, ‘0.25, 0.75° means that only colors from
dark grey to light grey are used (more precisely ‘"grey25"‘ to “"grey75"), and
‘0, 0.5° means that only colors are used from black to middle grey (*"grey50"°).

o

12 tm_scale_multi

When only one number is specified, this is interpreted as the second number
(where the first is set to 0). Default values can be set via the tmap option ‘val-
ues.range’.

values.scale (generic scale argument) Scaling of the values. Only useful for size-related vi-
sual variables, such as ‘size‘ of [tm_symbols()] and ‘Iwd* of [tm_lines()].

value.na (generic scale argument) Value used for missing values. See tmap option ‘"value.na"*
for defaults per visual variable.

value.null (generic scale argument) Value used for NULL values. See tmap option ‘"value.null"
for defaults per visual variable. Null data values occur when out-of-scope fea-
tures are shown (e.g. for a map of Europe showing a data variable per country,
the null values are applied to countries outside Europe).

value.neutral (generic scale argument) Value that can be considered neutral. This is used for
legends of other visual variables of the same map layer. E.g. when both ‘fill‘
and ‘size‘ are used for [tm_symbols()] (using filled circles), the size legend items
are filled with the ‘value.neutral‘ color from the ‘fill.scale‘ scale, and fill legend
items are bubbles of size ‘value.neutral from the ‘size.scale‘ scale.

labels (generic scale argument) Labels

label.na (generic scale argument) Label for missing values

label.null (generic scale argument) Label for null (out-of-scope) values
Value

tmap scale object to be used for the ‘.scale‘ arguments in the tmap layer functions

Index

* GIS
tmap.glyphs-package, 2
* bubble map
tmap.glyphs-package, 2
* choropleth
tmap.glyphs-package, 2
x statistical maps
tmap.glyphs-package, 2
* thematic maps
tmap.glyphs-package, 2

opt_tm_donuts, 2
opt_tm_flowers, 5

tm_donuts (opt_tm_donuts), 2
tm_flowers (opt_tm_flowers), 5
tm_scale_composition, 9
tm_scale_multi, 11

tmap.glyphs (tmap.glyphs-package), 2
tmap.glyphs-package, 2

13

	tmap.glyphs-package
	opt_tm_donuts
	opt_tm_flowers
	tm_scale_composition
	tm_scale_multi
	Index

