An environment for multicolumn output™

Frank Mittelbach

Email: see top of the source file

Printed March 27, 2024

This file is maintained by the IXTEX Project team.
Bug reports can be opened (category tools) at
https://latex-project.org/bugs.html.

Abstract

This article describes the use and the implementation of the multicols environment. This environment
allows switching between one and multicolumn format on the same page. Footnotes are handled correctly
(for the most part), but will be placed at the bottom of the page and not under each column. KTEX’s
float mechanism, however, is partly disabled in this implementation. At the moment only page-wide

floats (i.e., star-forms) can be used within the scope of the environment.

Preface to version 1.8

The 1.8 release improves on the
balancing approach. If due
to a limited number of break
points (e.g., due to large ob-
jects) the balanced columns ex-
ceed the available vertical space,
then balancing is canceled and
a normal page is produced
first. Some overflow is allowed
(controlled by the parameter
\maxbalancingoverflow which
defaults to 12pt). This ensures
that we only cut a normal page
if we get enough material carried
over to next page.

Also added was support for
\enlargethispage. This means
it is now possible to request a
page to be artificially enlarged
or shortened. Note that if you
enlarge pages by more than one
line you may have to increase the

collectmore counter value to en-
sure that enough material is be-
ing picked up.

This command was used on the
second page of this manual to
shorten it by one line, in order
to get rid of a number of widow
lines on the following pages.

There are also some small en-
hancements to the balancing al-
gorithm including a ways to re-
quire a minimum number of rows
in the result.

Finally, version 1.8 adds the
command \docolaction to help
with more complicated actions
that depend on the current col-
umn. This command expects 3
arguments: code that is executed
if we are in the “first” column,
code to execute if we end up in
any “middle” column (if there are

*This file has version number v1.9g, last revised 2024/01/29.
TNote: This package is released under terms which affect its use in commercial applications. Please see the details at the

top of the source file.

more than two) and finally code
to execute if we are in the “last”
column. Thus

\docolaction{first}
{middle}{last}

would typeset a different word
depending the type of column
this code is executed. Using it
like this is probably pointless, but
you can imagine applications like
writing something into the near-
est margin, etc.

As this feature needs at least
two IMTEX runs to produce cor-
rect results and as it adds to the
processing complexity it is only
made available if one add the op-
tion colaction when loading the
package.

https://latex-project.org/bugs.html

Preface to version 1.7 (right to left support)

The 1.7 release adds support for
languages that are typeset right-
to-left. For those languages the
order of the columns on the
page also need to be reversed—

For example:

\renewcommand \footnoterule{}
\kern-3pt\hbox to\textwidth
{\hskip .6\textwidth
\hrulefill }%
\kern2.6pt}

something that wasn’t supported
before. The next paragraph
demonstrates the result (as it
is typeset as if we are writ-
ing in a left-to-right language—

directions within the columns.
As footnotes are typeset in full
measure the footnote rule needs
to be redefined as if they are be-
low a single column, i.e., using
\textwidth not \columnwidth.

Preface to version 1.5 + 1.6

The 1.5 release contains two
major changes: multicols will
now support up to 10 columns
and two more tuning possibilities
have been added to the balanc-
ing routine. The balancing rou-

1 Introduction

Switching between two-column
and one-column layout is pos-
sible in IATEX, but every use
of \twocolumn or \onecolumn
starts a new page. More-
over, the last page of two-
column output isn’t balanced
and this often results in an
empty, or nearly empty, right col-
umn. When I started to write
macros for docssty (see “The

2 The User Interface

To use the environment one sim-
ply says
\begin{multicols}{(number)}

(multicolumn text)
\end{multicols}

tine now checks the badness of
the resulting columns and rejects
solutions that are larger than a
certain threshold. At the same
time multicols has been upgraded
to run under ITEX 2¢.

doc—Option”, TUGboat volume
10 #2, pp. 245-273) I thought
that it would be nice to place
the index on the same page as
the bibliography. And balancing
the last page would not only look
better, it also would save space;
provided of course that it is also
possible to start the next article
on the same page. Rewriting the
index environment was compar-

where (number) is the required
number of columns and (multi-
column texrt) may contain arbi-
trary KTEX commands, except
that floats and marginpars are
not allowed in the current imple-

so read the rightmost column
first). The change is initialized
via \RLmulticolcolumns and re-
turning to left-right (default) is
done via \LRmulticolcolumns.

Right-to-left typesetting will
only reverse the column orders.
Any other support needed will
have to be provided by other
means, e.g., using appropriate
fonts and reversing the writing

Later changes to 1.5 include
\columnbreak and multicols*.
For version 1.6 micro-spacing
around the boxes produced by
multicols has been improved to al-
low for baseline-grid typesetting.

atively easy, but the next goal,
designing an environment which
takes care of footnotes, floats,
etc., was a harder task. It took
me a whole weekend' to get to-
gether the few lines of code below
and there is still a good chance
that I missed something after all.
Try it and, hopefully, enjoy it;
and please direct bug reports and
suggestions back to Mainz.

mentation?.

As its first action, the multicols
environment measures the cur-
rent page to determine whether
there is enough room for some
portion of multicolumn out-

1 started with the algorithm given in the TEXbook on page 417. Without this help a weekend would not have been enough.
(This remark was made in the documentation of the initial release, since then several hundreds more hours went into improving

the original code.)

2This is dictated by lack of time. To implement floats one has to reimplement the whole IATEX output routine.

put. This is controlled by the
(dimen) variable \premulticols
which can be changed by the
user with ordinary KETEX com-
mands. If the space is less than
\premulticols, a new page is
started. Otherwise, a \vskip of
\multicolsep is added.’?

When the end of the mul-
ticols environment is encoun-
tered, an analogous mechanism
is employed, but now we test
whether there is a space larger
than \postmulticols available.
Again we add \multicolsep or
start a new page.

It is often convenient to spread
some text over all columns, just
before the multicolumn output,
without any page break in be-
tween. To achieve this the multi-
cols environment has an optional
second argument which can be
used for this purpose. For exam-
ple, the text you are now reading
was started with

\begin{multicols}{3}
[\section{The User
Interfacel}]

If such text is unusually
long (or short) the value of
\premulticols might need ad-
justing to prevent a bad page
break. We therefore provide a
third argument which can be
used to overwrite the default
value of \premulticols just for
this occasion. So if you want
to combine some longer single
column text with a multicols en-
vironment you could write

\begin{multicols}{3}
[\section{Index}
This index contains ...]
[6cm]

The space between columns is
controlled by the length param-
eter \columnsep. The width
for the individual columns is
automatically calculated from
this parameter and the current
\linewidth. In this article a
value of 18.0pt was used.

Separation of columns with
vertical rules is achieved
by setting the parameter
\columnseprule to some posi-
tive value. In this article a value
of .4pt was used.

The color of the rules
separating the columns
can be specified through

\columnseprulecolor. The de-
fault value is \normalcolor.

Since narrow columns tend
to need adjustments in in-
terline spacing we also pro-
vide a (skip) parameter called
\multicolbaselineskip which
is added to the \baselineskip
parameter inside the multicols en-
vironment. Please use this pa-
rameter with care or leave it
alone; it is intended only for
package file designers since even
small changes might produce to-
tally unexpected changes to your
document.

2.1 Balancing columns

Besides the previously mentioned
parameters, some others are pro-
vided to influence the layout of
the columns generated.
Paragraphing in TEX is con-
trolled by several parameters.
One of the most important is
called \tolerance: this controls
the allowed ‘looseness’ (i.e. the
amount of blank space between
words). TIts default value is 200
(the WTEX \fussy) which is too

small for narrow columns. On the
other hand the \sloppy declara-
tion (which sets \tolerance to
10000 = o0) is too large, allow-
ing really bad spacing.*

We therefore use a
\multicoltolerance parameter
for the \tolerance value inside
the multicols environment. Its
default value is 9999 which
is less than infinity but ‘bad’
enough for most paragraphs
in a multicolumn environment.
Changing its value should be
done outside the multicols envi-
ronment. Since \tolerance is
set to \multicoltolerance at
the beginning of every multicols
environment one can locally
overwrite this default by as-
signing \tolerance = (desired
value). There also exists a
\multicolpretolerance pa-
rameter holding the value
for \pretolerance within a
multicols environment. Both
parameters are usually used only
by package designers.

Generation of multicolumn
output can be divided into two
parts. In the first part we are
collecting material for a page,
shipping it out, collecting mate-
rial for the next page, and so on.
As a second step, balancing will
be done when the end of the mul-
ticols environment is reached. In
the first step TEX might consider
more material whilst finding the
final column content than it ac-
tually uses when shipping out the
page. This might cause a prob-
lem if a footnote is encountered
in the part of the input consid-
ered, but not used, on the current
page. In this case the footnote
might show up on the current
page, while the footnotemark

3 Actually the added space may be less because we use \addvspace (see the IATEX manual for further information about this

command).

4Look at the next paragraph, it was set with the \sloppy declaration.
5The reason behind this behavior is the asynchronous character of the TEX page_builder. However, this could be avoided
by defining very complicated output routines which don’t use TEX primitives like \insert but do everything by hand. This is
clearly beyond the scope of a weekend problem.
6This message will be generated even if there are no footnotes in this part of the text.

corresponding to this footnote
might be set on the next one.’
Therefore the multicols environ-
ment gives a warning message’
whenever it is unable to use all
the material considered so far.

If you don’t use footnotes too
often the chances of something
actually going wrong are very
slim, but if this happens you can
help TEX by using a \pagebreak
command in the final document.
Another way to influence the be-
havior of TEX in this respect
is given by the counter variable
‘collectmore’. If you use the
\setcounter declaration to set
this counter to (number), TEX
will consider (number) more (or
less) lines before making its fi-
nal decision. So a value of —1
may solve all your problems at
the cost of slightly less optimal
columns.

In the second step (balanc-
ing columns) we have other bells
and whistles. First of all you
can say \raggedcolumns if you
don’t want the bottom lines to
be aligned. The default is
\flushcolumns, so TEX will nor-
mally try to make both the
top and bottom baselines of all
columns align.

If there is only a small amount
of material available for balanc-
ing then you may end up with
very few lines per column. In an
extreme case there may be only
one line which looks distinctly
odd. In that case it might be
better to have more material dis-
tributed to the earlier columns
even if that means that later
columns are empty or partially
empty. This is controlled through
the counter ‘minrows’ (default 1).
If set to a higher value then the
balancing will have at least that
many rows in the first column
(and also all further columns un-
til it runs outs of material).

Additionally you can set an-
other counter, the ‘unbalance’

counter, to some positive
(number). This will make all but
the right-most column (number)
of lines longer than they would
normally have been. ‘Lines’ in
this context refer to normal text
lines (i.e. one \baselineskip
apart); thus, if your columns
contain displays, for example,
you may need a higher (number)
to shift something from one col-
umn into another. A negative
value can make sense if you have
set minrows and want to locally
adjust that.

Unlike ‘collectmore,’ the
‘unbalance’ counter is reset to
zero at the end of the environ-
ment so it only applies to one
multicols environment.

The two methods may be com-
bined but I suggest using these
features only when fine tuning
important publications.

Two more general tuning pos-
sibilities were added with ver-
sion 1.5. TgX allows to mea-
sure the badness of a column in
terms of an integer value, where
0 means optimal and any higher
value means a certain amount
of extra white space. 10000 is
considered to be infinitely bad
(TgX does not distinguish any
further). In addition the special
value 100000 means overfull (i.e.,
the column contains more text
than could possibly fit into it).

The new release now measures
every generated column and ig-
nores solutions where at least
one column has a badness be-
ing larger than the value of the
counter columnbadness. The de-
fault value for this counter is
10000, thus TEX will accept all
solutions except those being over-
full. By setting the counter to a
smaller value you can force the
algorithm to search for solutions
that do not have columns with a
lot of white space.

However, if the setting is too
low, the algorithm may not find

any acceptable solution at all and
will then finally choose the ex-
treme solution of placing all text
into the first column.

Often, when columns are bal-
anced, it is impossible to find a
solution that distributes the text
evenly over all columns. If that
is the case the last column usu-
ally has less text than the oth-
ers. In the earlier releases this
text was stretched to produce a
column with the same height as
all others, sometimes resulting in
really ugly looking columns.

In the new release this stretch-
ing is only done if the badness
of the final column is not larger
than the value of the counter fi-
nalcolumnbadness. The default
setting is 9999, thus preventing
the stretching for all columns
that TgX would consider in-
finitely bad. In that case the fi-
nal column is allowed to run short
which gives a much better result.

And there are two more
parameters of some exper-
imental nature, one called

\multicolovershoot the other
\multicolundershoot. They
control the amount of space a col-
umn within the multicols environ-
ment is allowed to be “too full”
or “too short” without affecting
the column badness. They are
set to Opt and 2pt, respectively.

Finally, when doing the bal-
ancing at the end, columns
may become higher than the
remaining available space. In
that case the algorithm aborts
and instead generates a normal
page. However, if the amount
is not too large, e.g., a line or
so, then it might be better to
keep everything on the same
page instead of starting a new
page with just one line after
balancing. So the parameter
\maxbalancingoverflow gov-
erns this process: only when the
excess gets larger than its value
balancing is aborted.

2.2 Not balancing the
columns

Although this package was writ-
ten to solve the problem of bal-
ancing columns, 1 got repeated
requests to provide a version
where all white space is auto-
matically placed in the last col-
umn or columns. Since version
v1.5q this now exists: if you
use multicols* instead of the
usual environment the columns
on the last page are not balanced.
Of course, this environment only
works on top-level, e.g., inside a
box one has to balance to deter-
mine a column height in absence
of a fixed value.

2.3 Manually breaking
columns

Another request often voiced
was: “How do I tell WTEX that
it should break the first column
after this particular line?”. The
\pagebreak command (which
works with the two-column op-
tion of KTEX) is of no use here
since it would end the collection
phase of multicols and thus all
columns on that page. So with
version 1.5u the \columnbreak
command was added. If used
within a paragraph it marks the
end of the current line as the de-
sired breakpoint. You can ob-
serve its effect on the previous
page where three lines of text
have been artificially forced into
the second column (resulting in
some white space between para-
graphs in the first column).
From version 1.9 onwards
\columnbreak accepts an op-
tional argument (just like
\pagebreak) in which you can
specify the desirability to break
the column at that point: sup-
ported values are 0 (slightly de-
sirable) to 4 (forced). This ver-
sion also adds \newcolumn which
forces a column break but runs

the column short (comparable to
\newpage).

2.4 Floats inside a mul-
ticols environment

Within the multicols environment
the usual star float commands
are available but their function is
somewhat different as in the two-
column mode of standard KTEX.
Stared floats, e.g., figurex*, de-
note page wide floats that are
handled in a similar fashion as
normal floats outside the multi-
cols environment. However, they
will never show up on the page
where they are encountered. In
other words, one can influence
their placement by specifying a
combination of t, b, and/or p
in their optional argument, but
h doesn’t work because the first
possible place is the top of the
next page. One should also note,
that this means that their place-
ment behavior is determined by
the values of \topfraction, etc.
rather than by \dbl....

2.5 Support for right-
to-left typesetting

In right-to-left typesetting the or-
der of the columns on the page
also need to be reversed, i.e., the
first column has to appear on
the far right and the last col-
umn on the left. This is sup-
ported through the commands
\RLmulticolcolumns (switching
to right-to-left typesetting) and
\LRmulticolcolumns (switching
to left-to-right typesetting) the
latter being the default.

2.6 Warnings

Under certain circumstances the
use of the multicols environment
may result in some warnings from
TEX or XTEX. Here is a list of the
important ones and the possible
cause:

Underfull \hbox (badness
)

As the columns are often very
narrow TEX wasn’t able to find
a good way to break the para-
graph. Underfull denotes a loose
line but as long as the badness
value is below 10000 the result
is probably acceptable.

Underfull \vbox ...
\output is active

while

If a column contains a character
with an unusual depth, for ex-
ample a ‘(’, in the bottom line
then this message may show up.
It usually has no significance as
long as the value is not more
than a few points.

LaTeX Warning: I moved
some lines to the next
page
As mentioned above, multicols
sometimes screws up the foot-
note numbering. As a precau-
tion, whenever there is a foot-
note on a page where multicols
had to leave a remainder for the
following page this warning ap-
pears. Check the footnote num-
bering on this page. If it turns
out that it is wrong, you have to
manually break the page using
\newpage or \pagebreak[..].

Floats and marginpars not
allowed inside ‘multicols’
environment!

This message appears if you try
to use the \marginpar com-
mand or an unstarred version of
the figure or table environment.
Such floats will disappear!

Very deep columns! Grid
alignment might be broken

This message can only appear if
the option grid was chosen. In
that case it will show up if a col-
umn has a very large depth so
that multicols is unable to back
up to its baseline. This is only
relevant if one tries to produce

a document where all text lines
are aligned at an invisible grid,
something that requires careful
adjustment of many parameters
and macros, e.g., heading defini-
tions.

2.7 Tracing the output

To understand the reasoning be-
hind the decisions TEX makes
when processing a multicols envi-
ronment, a tracing mechanism is
provided. If you set the counter
‘tracingmulticols’ to a positive
(number) you then will get some
tracing information on the termi-
nal and in the transcript file:

(number) = 1. TEX will now

3 Prefaces to older

3.1 Preface to version 1.4

Beside fixing some bugs as men-
tioned in the multicol.bug file this
new release enhances the multi-
cols environment by allowing for
balancing in arbitrary contexts.
It is now, for example, possible
to balance text within a multicols
or a minipage as shown in 2 where
a multicols environment within a
quote environment was used. It
is now even possible to nest mul-
ticols environments.

The only restriction to such
inner multicols environments
(nested, or within TEX’s internal
vertical mode) is that such vari-

3.2 Preface to version 1.2

After the article about the mul-
ticols environment was published
in TUGboat 1043, I got numer-
ous requests for these macros.
However, I also got a changed
version of my style file, together
with a letter asking me if I would
include the changes to get better
paragraphing results in the case

tell you, whenever it enters
or leaves a multicols environ-
ment, the number of columns it
is working on and its decision
about starting a new page be-
fore or after the environment.

(number) = 2. In this case
you also get information from
the balancing routine: the
heights tried for the left and
right-most columns, informa-
tion about shrinking if the
\raggedcolumns declaration is
in force and the value of the
‘unbalance’ counter if positive.

(number) = 3. Setting
(number) to this value will ad-
ditionally trace the mark han-

versions

ants will produce a box with the
balanced material in it, so that
they can not be broken across
pages or columns.

Additionally I rewrote the al-
gorithm for balancing so that it
will now produce slightly better
results.

I updated the source documen-
tation but like to apologize in ad-
vance for some ‘left over’ parts
that slipped through the revision.

A note to people who like
to improve the balancing algo-
rithm of multicols: The balanc-
ing routine is now placed into

of narrow lines. The main dif-
ferences to my original style op-
tion were additional parameters
(like \multicoladjdemerits to
be used for \adjdemerits, etc.)
which would influence the line
breaking algorithm.

But actually resetting such pa-
rameters to zero or even worse to

dling algorithm. It will show
what marks are found, what
marks are considered, etc. To
fully understand this informa-
tion you will probably have to
read carefully trough the imple-
mentation.

(number) > 4. Setting
(number) to such a high value
will additionally place an
\hrule into your output, sep-
arating the part of text which
had already been considered
on the previous page from the
rest. Clearly this setting should
not be used for the final out-
put. It will also activate even
more debugging code for mark
handling.

a single macro which is called
\balance@columns. This means
that one can easily try different
balancing routines by rewriting
this macro. The interface for it
is explained in table 1. There
are several improvements possi-
ble, one can think of integrating
the \badness function of TEX3,
define a faster algorithm for find-
ing the right column height, etc.
If somebody thinks he/she has an
enhancement I would be pleased
to learn about it. But please obey
the copyright notice and don’t
change multicol.dtx directly!

a negative value won’t give bet-
ter line breaks inside the multicols
environment. TEXs line break-
ing algorithm will only look at
those possible line breaks which
can be reached without a badness
higher than the current value of
\tolerance (or \pretolerance
in the first pass). If this isn’t pos-

The macro \balance@columns that contains
the code for balancing gathered material is a
macro without parameters. It assumes that
the material for balancing is stored in the box
\mult@box which is a \vbox. It also “knows”
about all parameters set up by the multicols
environment, like \col@number, etc. It can
also assume that \@colroom is the still avail-
able space on the current page.

When it finishes it must return the individ-
ual columns in boxes suitable for further pro-
cessing with \page@sofar. This means that
the left column should be stored in box reg-

ister \mult@firstbox, the next in register
\mult@firstbox + 2, ..., only the last one
as an exception in register \mult@grightbox.
Furthermore it has to set up the two macros
\kept@firstmark and \kept@botmark to hold
the values for the first and bottom mark as
found in the individual columns. There are
some helper functions defined in section 5.1
which may be used for this. Getting the marks
right “by hand” is non-trivial and it may pay
off to first take a look at the documentation
and implementation of \balance@columns be-
low before trying anew.

Table 1: Interface description for \balance@columns

sible, then, as a last resort, TEX
will produce overfull boxes. All
those (and only those) possible
break points will be considered
and finally the sequence which re-
sults in the fewest demerits will
be chosen. This means that a
value of —1000 for \adjdemerits
instructs TEX to prefer visibly in-
compatible lines instead of pro-
ducing better line breaks.
However, with TEX 3.0 it is
possible to get decent line breaks
even in small columns by setting
\emergencystretch to an appro-
priate value. I implemented a
version which is capable of run-
ning both in the old and the
new TEX (actually it will sim-
ply ignore the new feature if it
is not available). The calculation

of \emergencystretch is proba-
bly incorrect. I made a few tests
but of course one has to have
much more experience with the
new possibilities to achieve the
maximum quality.

Version 1.1a had a nice ‘fea-
ture’: the penalty for using
the forbidden floats was their
ultimate removal from KTEXs
\@freelist so that after a few
\marginpars inside the multi-
cols environment floats where dis-
abled forever. (Thanks to Chris
Rowley for pointing this out.) I
removed this misbehavior and at
the same time decided to allow at
least floats spanning all columns,
e.g., generated by the figurex
environment. You can see the
new functionality in table 2 which

4 The Implementation

was inserted at this very point.
However single column floats are
still forbidden and I don’t think I
will have time to tackle this prob-
lem in the near future. As an ad-
vice for all who want to try: wait
for TEX 3.0. It has a few fea-
tures which will make life much
easier in multi-column surround-
ings. Nevertheless we are work-
ing here at the edge of TEXs ca-
pabilities, really perfect solutions
would need a different approach
than it was done in TEXs page
builder.

The text below is nearly un-
changed, I only added documen-
tation at places where new code
was added.

We are now switching to two-column output to show the abilities of this environment (and bad layout

decisions).

4.1 The documentation driver file

The next bit of code contains the documentation
driver file for TEX, i.e., the file that will produce the
documentation you are currently reading. It will be
extracted from this file by the docstrip program.
Since this is the first code in this file one can produce
the documentation simply by running ETEX on the

.dtx file.
1 (xdriver)

2 \documentclass{ltxdoc}

We use the balancingshow option when loading
multicols so that full tracing is produced. This has to
be done before the doc package is loaded, since doc

\setemergencystretch: This is a hook for people
who like to play around. It is supposed to set the
\emergencystretch (dimen) register provided in
the new TEX 3.0. The first argument is the num-
ber of columns and the second one is the current
\hsize. At the moment the default definition is

4pt X #1, i.e. the \hsize isn’t used at all. But
maybe there are better formulae.
\set@floatcmds: This is the hook for the experts
who like to implement a full float mechanism for
the multicols environment. The @ in the name
should signal that this might not be easy.

Table 2: The new commands of multicol.sty version 1.2. Both commands might be removed if good solutions
to these open problems are found. I hope that these commands will prevent that nearly identical style files

derived from this one are floating around.

otherwise requires multicols without any options.

3 \usepackage{multicol}[1999/05/25]

4 \usepackage{doc}
First we set up the page layout suitable for this ar-
ticle.

5 \setlength{\textwidth}{39pc}

6 \setlength{\textheight}{54pc}

7 \setlength{\parindent}{1lem}

8 \setlength{\parskip}{Opt plus 1pt}

9 \setlength{\oddsidemargin}{Opc}

10 \setlength{\marginparwidth}{Opc}

11 \setlength{\topmargin}{-2.5pc}

12 \setlength{\headsep}{20pt}

13 \setlength{\columnsep}{1.5pc}
We want a rule between columns.

14 \setlength\columnseprule{.4pt}

We also want to ensure that a new multicols envi-
ronment finds enough space at the bottom of the
page.

15 \setlength\premulticols{6\baselineskip}
When balancing columns we disregard solutions that
are too bad. Also, if the last column is too bad we
typeset it without stretch.

16 \setcounter{columnbadness}{7000}

17 \setcounter{finalcolumnbadness}{7000}

The index is supposed to come out in four columns.
And we don’t show macro names in the margin.

4.2 Identification and option processing

We start by identifying the package. Since it makes
use of features only available in IXTEX 2 we ensure
that this format is available. (Now this is done ear-
lier in the file.)

39 (xpackage)

40 % \NeedsTeXFormat{LaTeX2e}

41 % \ProvidesPackage{multicol}[..../../..
42 %, v... multicolumn formatting]

Next we declare options supported by multicols.
Two-column mode and multicols do not work to-
gether so we warn about possible problems. How-

18 \setcounter{IndexColumns}{4}

The following redefinitions have to be moved un-
til after the preamble because version 3 of doc re-
sets them after the premable (this is tmp, because
hypdoc is not yet integrated, but as we all know,
tmp solutions have a tendency to survive for a long
time. ..).

19 \AddToHook{begindocument}{%

20 \let\DescribeMacro\SpecialUsageIndex

21 \let\DescribeEnv\SpecialEnvIndex

22 \renewcommand\PrintMacroName [1]{}%

23 }

24 \CodelineIndex
25 %\DisableCrossrefs
26 \RecordChanges

% Partial index
% Change log

Line numbers are very small for this article.

27 \renewcommand{\theCodelineNo}

28 {\scriptsize\rm\arabic{CodelineNo}}

29 \settowidth\MacroIndent{\scriptsize\rm 00\ }
30

31 \begin{document}

32 \typeout

33 Lotk ok koo koK ok KK oKk ok ok koK o kK ok kK ok KK ok KK ok oK KoK K
34 ~7J* Expect some Under- and overfull boxes.
35 77 Jakskkkskkokk kR kKRR KRk KKK KKKk Kok)
36 \DocInput{multicol.dtx}

37 \end{document}

38 (/driver)

ever, since you can revert to \onecolumn in which
case multicols does work, we don’t make this an er-
Tor.

43 \DeclareOption{twocolumn}

44 {\PackageWarning{multicol}{May not work

45 with the twocolumn option}}

Tracing is done using a counter. However it is also
possible to invoke the tracing using the options de-
clared below.

46 \newcount\c@tracingmulticols
47 \DeclareOption{errorshow}

48 {\c@tracingmulticols\z@}

49 \DeclareOption{infoshow}

50 {\c@tracingmulticols\@ne}

51 \DeclareOption{balancingshow}

52 {\c@tracingmulticols\tw@}

53 \DeclareOption{markshow}

54 {\c@tracingmulticols\thre@@}
55 \DeclareOption{debugshow}

56 {\c@tracingmulticolsb\relax}

The next option is intended for typesetting on a
\baselineskip grid. Right now it doesn’t do any-
thing other than warning if it thinks that the grid
got lost.

57 \let\mc@gridwarn\maxdimen

58 \DeclareOption{grid}

59 {\def\mc@gridwarn{\@maxdepth}}

Next option enables the \docolaction command.
As this changes the .aux file content this is not au-
tomatically enabled.

60 \DeclareOption{colaction}{/
61 \def\mc@col@status@urite{

62 \protected@urite\@auxout{}/,

63 {\string\mc@col@status

64 {\ifmc@firstcol 1\else 2\fil}}%
65 \mc@firstcolfalse}’,

66 \def\mc@lastcol@statusQwrite{’

67 \protected@write\Qauxout{}/

68 {\string\mc@col@status{3}}}/
69 }

70 \1let\mc@col@status@urite\relax
71 \let\mc@lastcol@status@uwrite\relax

72 \ProcessOptions

4.3 Starting and Ending the multicols Environment

As mentioned before, the multicols environment has
one mandatory argument (the number of columns)
and up to two optional ones. We start by reading
the number of columns into the \col@number regis-
ter.

73 \def\multicols#1{\col@number#1\relax

If the user forgot the argument, TEX will complain
about a missing number at this point. The error
recovery mechanism will then use zero, which isn’t
a good choice in this case. So we should now test
whether everything is okay. The minimum is two
columns at the moment.

74 \ifnum\col@number<\tw@

75 \PackageWarning{multicoll}y,

76 {Using ‘\number\col@number’

7 columns doesn’t seem a good idea.”"J
78 I therefore use two columns insteadl}’
79 \col@number\tw@ \fi

We have only enough box registers for twenty
columns, so we need to check that the user hasn’t
asked for more.

80 \ifnum\col@number>20

81 \PackageError{multicol}y,

82 {Too many columns},

83 {Current implementation doesn’t

84 support more than 20 columns.%

85 \MessageBreak

86 I therefore use 20 columns instead}%
87 \col@number20 \fi

Within the environment we need a special version
of the kernel \@footnotetext command since the
original sets the the \hsize to \columnwidth which
is not correct in the multicol environment. Here
\columnwidth refers to the width of the individual
column and the footnote should be in \textwidth.

Since \@footnotetext has a different definition in-
side a minipage environment we do not redefine it
directly. Instead we locally set \columnwidth to
\textwidth and call the original (current) definition
stored in \orig@footnotetext. If the multicols
environment is nested inside another multicols envi-
ronment then the redefinition has already happened.
So be better test for this situation. Otherwise, we
will get a TEX stack overflow as this would generate
a self-referencing definition.

88 \ifx\@footnotetext\mult@footnotetext
89 \else

90 \let\orig@footnotetext\@footnotetext
91 \let\@footnotetext\mult@footnotetext
92 \fi

Now we can safely look for the optional arguments.
93 \@ifnextchar[\mult@cols{\mult@cols[]}}

94 \long\def\mult@footnotetext#1{\begingroup
95 \columnwidth\textwidth
96 \orig@footnotetext{#1}\endgroup}

The \mult@cols macro grabs the first optional ar-
gument (if any) and looks for the second one.

97 \def\mult@cols [#1]{\@ifnextchar [}
This argument should be a (dimen) denoting the
minimum free space needed on the current page to
start the environment. If the user didn’t supply one,
we use \premulticols as a default.

98 {\mult@@cols{#1}}/
99 {\mult@@cols{#1}[\premulticols]}}

After removing all arguments from the input we are
able to start with \mult@@cols.
100 \def\mult@@cols#1 [#2]{/

First thing we do is to decide whether or not this is
an unbounded multicols environment, i.e. one that
may split across pages, or one that has to be typeset
into a box. If we are in TgX’s “inner” mode (e.g.,
inside a box already) then we have a boxed version
of multicols therefore we set the @boxedmulticols
switch to true. The multicols should start in vertical
mode. If we are not already there we now force it
with \par since otherwise the test for “inner” mode
wouldn’t show if we are in a box.

101

102

\par

\ifinner \@boxedmulticolstrue

Otherwise we check \doublecol@number. This
counter is zero outside a multicols environment but
positive inside (this happens a little later on). In
the second case we need to process the current mul-
ticols also in “boxed mode” and so change the switch
accordingly.

103 \else

104 \ifnum \doublecol@number>\z@
105 \@boxedmulticolstrue

106 \fi

107 \fi

Then we look to see if statistics are requested:

108 \mult@info\z@
109 {Starting environment with
110 \the\col@number\space columns

In boxed mode we add some more info.

111 \if@boxedmulticols\MessageBreak
112 (boxed mode)\fi
113 Y

Then we measure the current page to see whether a
useful portion of the multicolumn environment can
be typeset. This routine might start a new page.

114 \enough@room{#2}%

Now we output the first argument and produce ver-
tical space above the columns. (Note that this ar-
gument corresponds to the first optional argument
of the multicols environment.) For many releases
this argument was typeset in a group to get a sim-
ilar effect as \twocolumn[..] where the argument
is also implicitly surrounded by braces. However,
this conflicts with local changes done by things like
sectioning commands (which account for the major-
ity of commands used in that argument) messing up
vertical spacing etc. later in the document so that
from version v1.5q on this argument is again typeset
at the outer level.

115 #1\par\addvspace\multicolsep

When the last line of a paragraph had a posi-
tive depth then this depth normally taken into ac-
count by the baselineskip calculation for the next

10

line. However, the columns produced by a following
multicol are rigid and thus the distance from the
baseline of a previous text line to the first line in
a multicol would differ depending on the depth of
the previous line. To account for this we add a nega-
tive space unless the depth is ~1000pt which signals
something special to TEXand is not supposed to be
a real depth.

\ifdim \prevdepth = -\@m\p@

\else

116
117

The actual generation of this corrective space is a
little bit more complicated as it doesn’t make sense
to always back up to the previous baseline (in case
an object with a very large depth was placed there,
e.g., a centered tabular). So we only back up to the
extend that we are within the \baselineskip grid.
We know that the box produced by multicols has
\topskip at its top so that also needs to be taken
into account.

118 \@tempcnta\prevdepth

119 \@tempcntb\baselineskip

120 \divide\@tempcnta\@tempcntb

121 \advance\@tempcnta\@ne

122 \dimen®@\prevdepth

123 \advance\dimen@ -\@tempcnta\baselineskip
124 \advance\dimen@ \topskip

125 \kern-\dimen®@

126 \fi

We start a new grouping level to hide all subsequent
changes (done in \prepare@multicols for exam-
ple).
127
128

\begingroup

\prepare@multicols
If we are in boxed mode we now open a box to type-
set all material from the multicols body into it, oth-
erwise we simply go ahead.

129 \if@boxedmulticols
130 \setbox\mult@box\vbox\bgroup
131 \color@setgroup

We may have to reset some parameters at this point,
perhaps \@parboxrestore would be the right action

but I leave it for the moment.
132 \fi
We finish by suppressing initial spaces.

133 \ignorespaces}

Here is the switch and the box for “boxed” multicols
code.
134 \newif\if@boxedmulticols

135 \@boxedmulticolsfalse
136 \newbox\mult@box

The \enough@room macro used above isn’t perfect
but works reasonably well in this context. We mea-
sure the free space on the current page by subtract-
ing \pagetotal from \pagegoal. This isn’t en-
tirely correct since it doesn’t take the ‘shrinking’
(i.e. \pageshrink) into account. The ‘recent con-
tribution list” might be nonempty so we start with
\par and an explicit \penalty.” Actually, we use
\addpenalty to ensure that a following \addvspace
will ‘see’ the vertical space that might be present.
The use of \addpenalty will have the effect that all
items from the recent contributions will be moved
to the main vertical list and the \pagetotal value
will be updated correctly. However, the penalty will
be placed in front of any dangling glue item with
the result that the main vertical list may already
be overfull even if TEX is not invoking the output
routine.

137 \def\enough@room#1{/,

Measuring makes only sense when we are not in
“boxed mode” so the routine does nothing if the
switch is true.

138 \if@boxedmulticols\else

139 \par

To empty the contribution list the first release con-
tained a penalty zero but this had the result that
\addvspace couldn’t detect preceding glue. So this
was changed to \addpenalty. But this turned out
to be not enough as \addpenalty will not add a
penalty when @nobreak is true. Therefore we force
this switch locally to false. As a result there may
be a break between preceding text and the start of
a multicols environment, but this seems acceptable
since there is the optional argument for exactly this
reason.

140 \bgroup\@nobreakfalse\addpenalty\z@\egroup
141 \page@free \pagegoal

142 \advance \page@free -\pagetotal

To be able to output the value we need to assign it
to a register first since it might be a register (de-
fault) in which case we need to use \the or it might
be a plain value in which case \the would be wrong.

143 \@tempskipa#1\relax
Now we test whether tracing information is required:
144 \mult@info\z@

145 {Current page:\MessageBreak

146 height=),

147 \the\pagegoal: used \the\pagetotal
148 \space -> free=\the\page@free

149 \MessageBreak

150 needed \the\@tempskipa

7See the documentation of \endmulticols for further details.

11

151 \space(for #1)1}}

Our last action is to force a page break if there isn’t
enough room left.

152 \ifdim \page@free <#1\newpage \fi
153 \fi}

When preparing for multicolumn output several
things must be done.

154 \def\prepare@multicols{%

We start saving the current \@totalleftmargin
and then resetting the \parshape in case we are
inside some list environment. The correct inden-
tation for the multicols environment in such a case
will be produced by moving the result to the right
by \multicol@leftmargin later on. If we would
use the value of \@totalleftmargin directly then
lists inside the multicols environment could cause a
shift of the output.

155 \multicol@leftmargin\@totalleftmargin

156 \@totalleftmargin\z@

157 \parshape\z@

We also set the register \doublecol@uumber for
later use. This register should contain 2 X
\col@number. This is also an indicator that we are
within a multicols environment as mentioned above.

158 \doublecol@nuumber\col@number
159 \multiply\doublecol@number\tw@
160 \advance\doublecol@number\mult@rightbox

161 \if@boxedmulticols

162 \let\1l@kept@firstmark\kept@firstmark
163 \let\1l@kept@botmark\kept@botmark

164 \global\let\kept@firstmark\@empty
165 \global\let\kept@botmark\@empty

166 \else

We add an empty box to the main vertical list to
ensure that we catch any insertions (held over or in-
serted at the top of the page). Otherwise it might
happen that the \eject is discarded without calling
the output routine. Inside the output routine we re-
move this box again. Again this code applies only
if we are on the main vertical list and not within
a box. However, it is not enough to turn off inter-
line spacing, we also have to clear \topskip before
adding this box, since \topskip is always inserted
before the first box on a page which would leave us
with an extra space of \topskip if multicols start on
a fresh sheet.

167 \nointerlineskip {\topskip\z@\null}%
168 \output{%

169 \global\setbox\partial@page\vbox
170 v

Now we have to make sure that we catch one spe-
cial situation which may result in loss of text! If
the user has a huge amount of vertical material
within the first optional argument that is larger then
\premulticols and we are near the bottom of the
page then it can happen that not the \eject is
triggering this special output routine but rather the
overfull main vertical list. In that case we get an-
other breakpoint through the \eject penalty. As
a result this special output routine would be called
twice and the contents of \partial@page, i.e. the
material before the multicols environment gets lost.
There are several solutions to avoid this problem,
but for now we will simply detect this and inform the
user that he/she has to enlarge the \premulticols
by using a suitable value for the second argument.
171 (xcheck)

172 \ifvoid\partial@page\else

173 \PackageError{multicoll}/,

174 {Error saving partial pagel’
175 {The part of the page before
176 the multicols environment was
177 nearly full with”"Jthe result
178 that starting the environment
179 will produce an overfull

180 page. Some”"Jtext may be lost!
181 Please increase \premulticols
182 either generally or for thisj
183 “~Jenvironment by specifying a
184 suitable value in the second
185 optional argument to”"Jthe
186 multicols environment.}

187 \unvbox\partial@page

188 \box\last@line

189 \fi

190 (/check)

191 \unvbox\@cclv

192 \global\setbox\last@line\lastbox
193 Yh

Finally we need to record the marks that are present
within the \partial@page so that we can construct
correct first and bottom marks later on. This is done
by the following code.

194 \prep@keptmarks

Finally we have to initialize \kept@topmark which
should ideally be initialized with the mark that is
current on “top” of this page. Unfortunately we
can’t use \topmark because this register will not al-
ways contain what its name promises because ITEX
sometimes calls the output routine for float manage-
ment.® Therefore we use the second best solution by
initializing it with \firstmark. In fact, for our pur-
pose this doesn’t matter as we use \kept@topmark
only to initialize \firstmark and \botmark of a fol-

lowing page if we don’t find any marks on the current
one.

195
196

\global\let\kept@topmark\firstmark
Heject

The next thing to do is to assign a new value to
\vsize. BTEX maintains the free room on the page
(i.e. the page height without the space for already
contributed floats) in the register \@colroom. We
must subtract the height of \partial@page to put
the actual free room into this variable.

197 \advance\@colroom-\ht\partial@page

Then we have to calculate the \vsize value to use
during column assembly. \set@mult@vsize takes
an argument which allows to make the setting local
(\relax) or global (\global). The latter variant is
used inside the output routine below. At this point
here we have to make a local change to \vsize be-
cause we want to get the original value for \vsize
restored in case this multicols environment ends on
the same page where it has started.

198 \set@mult@vsize\relax

Now we switch to a new \output routine which will
be used to put the gathered column material to-
gether.

199 \output{\multi@column@out}y,

Finally we handle the footnote insertions. We have
to multiply the magnification factor and the extra
skip by the number of columns since each footnote
reduces the space for every column (remember that
we have page-wide footnotes). If, on the other hand,
footnotes are typeset at the very end of the docu-
ment, our scheme still works since \count\footins
is zero then, so it will not change. To allow even
further customization the setting of the \footins
parameters is done in a separate macro.

200 \init@mult@footins

For the same reason (page-wide footnotes), the
(dimen) register controlling the maximum space
used for footnotes isn’t changed. Having done this,
we must reinsert all the footnotes which are already
present (i.e. those encountered when the material
saved in \partial@page was first processed). This
will reduce the free space (i.e. \pagetotal) by the
appropriate amount since we have changed the mag-
nification factor, etc. above.

201 \reinsert@footnotes

Inside multicols a \clearpage is fairly useless as we
aren’t supporting floats. In fact, it can cause harm
as it doesn’t know about the \partial@page and
may therefore result in making columns too long.

8During such a call the \botmark gets globally copied to \topmark by the TEX program.

12

So we change that to behave like \newpage but
also check if there are any deferred floats. If so,
perhaps the user tried to place them through that
\clearpage (but that needs to be done before start-
ing the multicols environment.

202 \def\clearpage{’

203 \ifx\@deferlist\@empty\else

204 \PackageError{multicol}/,

205 {Deferred floats not cleared}’,
206 {A \string\clearpage\space inside
207 multicols acts like

208 \string\newpage\space and doesn’t
209 clear floats.\MessageBreak

210 Move it before the multicols

211 environment if you need it.}/,
212 \fi

213 \newpagel}’

All the code above was only necessary for the un-
restricted multicols version, i.e. the one that allows
page breaks. If we are within a box there is no point
in setting up special output routines or \vsize, etc.
214 \fi

But now we are coming to code that is necessary
in all cases. We assign new values to \vbadness,
\hbadness and \tolerance since it’s rather hard
for TEX to produce ‘good’ paragraphs within nar-
row columns.

215 \vbadness\@Mi \hbadness5000

216 \tolerance\multicoltolerance

Since nearly always the first pass will fail we ignore
it completely telling TEX to hyphenate directly. In
fact, we now use another register to keep the value
for the multicol pre-tolerance, so that a designer may
allow to use \pretolerance.

217 \pretolerance\multicolpretolerance

For wuse with the new TEX we set
\emergencystretch to \col@number X 4pt. How-
ever this is only a guess so at the moment this is
done in a macro \setemergencystretch which gets
the current \hsize and the number of columns as
arguments. Therefore users are able to figure out
their own formula.

218 \setemergencystretch\col@uumber\hsize

Another hook to allow people adding their own
extensions without making a new package is
\set@floatcmds which handles any redefinitions of
TEXs internal float commands to work with the
multicols environment. At the moment it is only
used to redefine \@dblfloat and \end@dblfloat.

219 \set@floatcmds

Additionally, we advance \baselineskip by
\multicolbaselineskip to allow corrections for
narrow columns.

220 \advance\baselineskip\multicolbaselineskip

The \hsize of the columns is given by the formula:

\linewidth — (\col@number — 1) x \columnsep

\col@number

The formula above has changed from release to
release. We now start with the current value of
\linewidth so that the column width is properly
calculated when we are inside a minipage or a list
or some other environment. This will be achieved
with:

221 \hsize\linewidth \advance\hsize\columnsep
222 \advance\hsize-\col@number\columnsep
223 \divide\hsize\col@number

We also set \linewidth and \columnwidth to
\hsize In the past \columnwidth was left un-
changed. This is inconsistent, but \columnwidth is
used only by floats (which aren’t allowed in their
current implementation) and by the \footnote
macro. Since we want page-wide footnotes’ this
simple trick saved us from rewriting the \footnote
macros. However, some applications referred to
\columnwidth as the “width of the current column”
to typeset displays (the amsmath package, for exam-
ple) and to allow the use of such applications to-
gether with multicol this is now changed.

Before we change \linewidth to the new value
we record its old value in some register called
\full@width. This value is used later on when we
package all columns together.

224 \full@width\linewidth
225 \linewidth\hsize

226 \columnwidth\hsize

227 }

This macro is used to set up the parameters asso-
ciated with footnote floats. It can be redefined by
applications that require different amount of spaces
when typesetting footnotes.

228 \def\init@mult@footins{’

229 \multiply\count\footins\col@number
230 \multiply\skip \footins\col@number
231 }

97’m not sure that I really want page-wide footnotes. But balancing of the last page can only be achieved with this approach
or with a multi-path algorithm which is complicated and slow. But it’s a challenge to everybody to prove me wrong! Another
possibility is to reimplement a small part of the fire_up procedure in TEX (the program). I think that this is the best solution
if you are interested in complex page makeup, but it has the disadvantage that the resulting program cannot be called TEX

thereafter.

Since we have to set \col@umber columns on one
page, each with a height of \@colroom, we have to
assign \vsize = \col@number X \@colroom in or-
der to collect enough material before entering the
\output routine again. In fact we have to add
another (\col@uumber — 1) X (\baselineskip —
\topskip) if you think about it.

232 \def\set@mult@vsize#1{},

233 \vsize\@colroom

234 \@tempdima\baselineskip

235 \advance\@tempdima-\topskip
236 \advance\vsize\@tempdima
237 \vsize\col@number\vsize

238 \advance\vsize-\@tempdima

But this might not be enough since we use \vsplit
later to extract the columns from the gathered ma-
terial. Therefore we add some ‘extra lines,” one for
each column plus a corrective action depending on
the value of the ‘collectmore’ counter. The final
value is assigned globally if #1 is \global because
we want to use this macro later inside the output
routine too.

239 \advance\vsize\col@number\baselineskip
240 #1\advance\vsize
241 \c@collectmore\baselineskip}

Here is the dimen register we need for saving away
the outer value of \@totalleftmargin.

242 \newdimen\multicol@leftmargin

In versions prior to 1.8r the balancing at the
end of the environment was done by changing
the output routine from \multi@column@out to
\balance@column@out. As it turned out that this
has a couple of issues when the last columns should
not be balanced after all (for example because they
contained several \columnbreak commands we now
stay with one output routine for the environment
and only signal that we reached the end of the envi-
ronment by marking it with a special penalty that
we can check for later.

243 \mathchardef\@Mvi=10006
244

% 10005 is
% \columnbreak

When the end of the multicols environment is sensed
we have to balance the gathered material. Depend-
ing on whether or not we are inside a boxed multicol
different things must happen. But first we end the
current paragraph with a \par command.

245 \def\endmulticols{\par

246 \if@boxedmulticols

In boxed mode we have to close the box in which we
have gathered all material for the columns. But be-
fore we do this we need to remove any space at the

14

end of the box as we don’t want to use this in balanc-
ing. Because of the \color@endgroup this can’t be
done later in \balance@columns as the color com-
mand will hide it.

247
248

\remove@discardable@items
\color@endgroup\egroup

Now we call \balance@columns the routine that
balances material stored in the box \mult@box.

249 \balance@columns

After balancing the result has to be returned by the

command \page@sofar. But before we do this we
reinsert any marks found in box \mult@box.

250 \return@nonemptymark{first}
251 \kept@firstmark
252 \return@nonemptymark{botl}y

253 \kept@botmark

When the boxed multicol is returned to the page
it can happen that it doesn’t fit onto it and I¥TEX
therefore breaks earlier. The problem in that case is
that during the generation \hsize, etc. got changed
and this setting is still in effect right now, and if this
boxed multicol is within, say, multicols* then its
output routine gets very upset. We therefore delay
returning the result by saving it in box for now until
we have left the group below.

254 \global\setbox\mc@boxedresult\vbox{%
255 \page@sofar

256 \global\let\kept@firstmark

257 \1l@kept@firstmark

258 \global\let\kept@botmark

259 \1@kept@botmark

260 Y

261 (*marktrace)

262 \mult@info\tw@

263 {Restore kept marks to\MessageBreak
264 first: \meaning\kept@firstmark
265 \MessageBreak bot\space\space:
266 \meaning\kept@botmark 1}

267 (/marktrace)

This finishes the code for the “boxed” case.

268 \else

If there was a \columnbreak on the very last
line all material will have been moved to the
\colbreak@box. Thus the galley will be empty
and no output routine gets called so that the text
is lost. To avoid this problem (though unlikely)
we check if the current galley is empty and the
\colbreak@box contains text and if so return that
to the galley. If the galley is non-empty any mate-
rial in \colbreak@box is added in the output routine
since it needs to be put in front.

269
270

\ifdim\pagegoal=\maxdimen
\ifvoid\colbreak@box\else

271 \mult@info\@ne{Re-adding forced
272 break(s) for splitting}’
273 \unvbox\colbreak@box\fi

274 \fi

If we are in an unrestricted multicols environment
we end the current paragraph above with \par but
this isn’t sufficient since TEXs page_builder will not
totally empty the contribution list.'? Therefore we
must also add an explicit \penalty. Now the con-
tribution list will be emptied and, if its material
doesn’t all fit onto the current page then the output
routine will be called before we change it. At this
point we need to use \penalty not \addpenalty to
ensure that a) the recent contributions are emptied
and b) that the very last item on the main vertical
list is a valid break point so that TEX breaks the
page in case it is overfull.

275 \penalty\z@

Now it’s safe to call the output routine in order to
balance the columns. We do this by calling it with
a special penalty.

276 \penalty-\@Mvi

If the multicols environment body was completely
empty or if a multi-page multicols just ends at a
page boundary we have the unusual case that the
\eject will have no effect (since the main vertical
list is empty)—thus no output routine is called at
all. As a result the material preceding the multicols
(stored in \partial@page will get lost if we don’t
put this back by hand.

277 \ifvbox\partial@page
278 \unvbox\partial@page\fi

After the output routine has acted we restore the
kept marks to their initial value.

279 \global\let\kept@firstmark\@empty
280 \global\let\kept@botmark\@empty
281 (*marktrace)

282 \mult@info\tw@

283 {Make kept marks emptyl}’

284 (/marktrace)

285 \fi

The output routine above will take care of the
\vsize and reinsert the balanced columns, etc. But
it can’t reinsert the \footnotes because we first
have to restore the \footins parameter since we
are returning to one column mode. This will be
done in the next line of code; we simply close the
group started in \multicols.

To fix an obscure bug which is the result of the
current definition of the \begin ... \end macros,
we check that we are still (logically speaking) in the
multicols environment. If, for example, we forget to
close some environment inside the multicols environ-
ment, the following \endgroup would be incorrectly
considered to be the closing of this environment.

286 \@checkend{multicols}%

287 \endgroup

We also set the ‘unbalance’ counter to its default.
This is done globally since ITEX counters are al-
ways changed this way.'!

288 \global\c@unbalance\z@

Now it’s time to return any footnotes if we are in
unrestricted mode. In boxed mode footnotes are
kept inside, but in that case we have to first re-
turn the saved box to the page and then write an-
other column status into the .aux file to support
\docolaction in case we have nested environments.

289 \if@boxedmulticols

290 \unvbox\mc@boxedresult
291 \mc@col@status@urite
292 \else

293 \reinsert@footnotes

We also take a look at the amount of free space on
the current page to see if it’s time for a page break.
The vertical space added thereafter will vanish if
\enough@room starts a new page.

But there is one catch. If the \end{multicols}
is at the top of which can happen if there is a break
point just before it (such as end ending environment)
which was chosen. In that case we would do the next
page using the internal \vsize for multicol collec-
tion which is a disaster. So we better catch this

case. Fortunately we can detect it by looking at
\pagegoal.

294 \ifdim \pagegoal=\maxdimen

295 \global\vsize\@colroom

296 \else

297 \enough@room\postmulticols

298 \fi

209 \fi

300 \addvspace\multicolsep

There is one more thing to do: the balanced result of
the environment is supposed to have a \prevdepth
of zero as we backed up by its real prevdepth
within \page@sofar. However if the balancing hap-
pened in the output routine then TEX reverts to the

10This once caused a puzzling bug where some of the material was balanced twice, resulting in some overprints. The reason
was the \eject which was placed at the end of the contribution list. Then the page_builder was called (an explicit \penalty
will empty the contribution list), but the line with the \eject didn’t fit onto the current page. It was then reconsidered after
the output routine had ended, causing a second break after one line.

M Actually, we are still in a group started by the \begin macro, so \global must be used anyway.

\prevdepth that was current before the OR once
the OR has finished. In short \prevdepth is some-
thing you can’t set globally it is alway local to the
current list being built. Thus we need to set it back

to zero here to avoid incorrect spacing.
301 \prevdepth\z@

If statistics are required we finally report that we
have finished everything.

302 \mult@info\z@

303 {Ending environment

304 \if@boxedmulticols

305 \space (boxed mode)\fi
306 1}

Let us end this section by allocating all the registers
used so far.

307 \newcount\c@unbalance
308 \newcount\c@collectmore

In the new KWTEX release \col@umber is already al-
located by the kernel, so we don’t allocate it again.
309 %\newcount\col@number

310 \newcount\doublecol@number
311 \newcount\multicoltolerance

4.4 The output routines

We first start with some simple macros. When type-
setting the page we save the columns either in the
box registers 0, 2, 4,... (locally) or 1, 3, 5,... (glob-
ally). This is PLAIN TEX policy to avoid an overflow
of the save stack.

Therefore we define a \process@cols macro to help
us in using these registers in the output routines
below. It has two arguments: the first one is a
number; the second one is the processing informa-
tion. It loops starting with \count@=#1 (\count®@ is
a scratch register defined in PLAIN TEX), processes
argument #2, adds two to \count®, processes ar-
gument #2 again, etc. until \count@ is higher than
\doublecol@number. It might be easier to under-
stand it through an example, so we define it now
and explain its usage afterwards.

331 \def\process@cols#1#2{\count@#1i\relax

332 \loop

333 (xdebug)

334 \typeout{Looking at box \the\count@}
335 (/debug)

336 #2,

337 \advance\count@\tw@

338 \ifnum\count@<\doublecol@number

339 \repeat}

312 \newcount\multicolpretolerance
313 \newdimen\full@width

314 \newdimen\page@free

315 \newdimen\premulticols

316 \newdimen\postmulticols

317 \newskip\multicolsep

318 \newskip\multicolbaselineskip
319 \newbox\partial@page

320 \newbox\last@line

321 \newbox\mc@boxedresult

And here are their default values:

322 \c@unbalance =0
323 \c@collectmore 0

To allow checking whether some macro is used
within the multicols environment the counter
\col@number gets a default of 1 outside the envi-
ronment.

324 %\col@number = 1

325 \multicoltolerance =
326 \multicolpretolerance =
327 \premulticols = 50pt
328 \postmulticols= 20pt
329 \multicolsep = 12pt plus 4pt minus 3pt
330 \multicolbaselineskip=0pt

9999
-1

We now define \page@sofar to give an example
of the \process@cols macro. \page@sofar should
output everything prepared by the balancing routine
\balance@columns.

340 \def\page@sofar{}

\balance@columns prepares its output in the even
numbered scratch box registers. Now we output
the columns gathered assuming that they are saved
in the box registers 2 (left column), 4 (second col-
umn), ... However, the last column (i.e. the right-
most) should be saved in box register 0.1 First
we ensure that the columns have equal width. We
use \process@cols for this purpose, starting with
\count@ \mult@rightbox. Therefore \count@
loops through \mult@rightbox, \mult@rightbox +
2,...(to \doublecol@number).

341

\process@cols\mult@rightbox

We have to check if the box in question is void, be-
cause the operation \wd(number) on a void box will
not change its dimension (sigh).

342 {\ifvoid\count@

343 \setbox\count@\hbox to\hsize{}}
344 \else

345 \wd\count@\hsize

2You will see the reason for this numbering when we look at the output routines \multi@column@out and

\balance@columns@out.

16

346 \fil}¥

Now we give some tracing information.

347 \count@\col@number \advance\count@\m@ne

348 \mult@info\z@

349 {Column spec: \the\full@width\space = indg¢
350 + columns + sep =\MessageBre
351 \the\multicol@leftmargin\space

352 + \the\col@number\space

353 x \the\hsize\space

354 + \the\count@\space

355 x \the\columnsep

356 Yh

At this point we should always be in vertical mode.
357 \ifvmode\else\errmessage{Multicol Error}\fi

Now we put all columns together in an
\hbox of width \full@width (shifting it by
\multicol@leftmargin to the right so that it will
be placed correctly if we are within a list environ-
ment) and separating the columns with a rule if
desired.

The box containing the columns has a large height
and thus will always result in using \1lineskip if the
normal \baselineskip calculations are used. We
therefore better cancel that process.

358 \nointerlineskip

As mentioned earlier we want to have the reference
point of the box we put on the page being at the
baseline of the last line of the columns but we also
want to ensure that the box has no depth so that any
following skip is automatically starting from that
baseline. We achieve this by recording the depths
of all columns and then finally backing up by the
maximum. (perhaps a simpler method would be to
assemble the box in a register and set the depth of
that box to zero (not checked).

We need a global scratch register for this; using
standard TEX conventions we choose \dimen2 and
initialize it with the depth of the character “p” since
that is one of the depths that compete for the max-
imum.

359 \setbox\z@\hbox{\multicolmindepthstring}\g]l
360 \moveright\multicol@leftmargin
361 \hbox to\full@width{%

If the document is written in a language that is type-
set right-to-left then, of course, the multicol columns
should be also typeset right-to-left. To support this
we call \mc@align@columns which with execute dif-
ferent code depending on the typesetting direction.

362 \mc@align@columns

The depths of the columns depend on their last lines.
To ensure that we will always get a similar look as
far as the rules are concerned we force the depth to

1

be at least the depth of a letter ‘p’ or more exactly
\multicolmindepthstring (which is what we set
\dimen2 to above).

363
nt 364 Yh
¥Ppe processed material might consist of a last line
with a descender in which case the \prevdepth will
be non-zero. However, this material is getting refor-
matted now so that this value is likely to be wrong.
We therefore normalize the situation by pretending
that the depth is zero. However, if \page@sofar is
being called inside the OR then setting \prevdepth
here has no long-lasting effect, we therefore have
to repeat this once we return to the main vertical
list. Here we set it only for those cases where the
command is used within a list and then followed by
something else.

365 \prevdepth\z@

Now after typesetting the box we back up to its base-
line by using the value stored in \dimen2 (which will
hold the largest depth found on any column).

366 \kern-\dimen\tw@

However, in case one of the columns was unusu-
ally deep TEX may have tried some corrective ac-
tions in which case backing up by the saved value
will not bring us back to the baseline. A good in-
dication for this is a depth of \@maxdepth though
it is not an absolute proof. If the option grid is
used \mc@gridwarn will expand to this, otherwise
to \maxdimen in which case this warning will not
show up.

367 \ifdim\dimen\tw@ > \mc@gridwarn

368 \PackageWarning{multicol}},

369 {Very deep columns!\MessageBreak
370 Grid alignment might be brokenly
371 \fi

372 }

The default minimum depth of each column corre-

L osaoadaeto tilodagspeh of a ‘p’ in the current font.
This makes sense for Latin-based languages and
was hard-wired intitially, but for Asian languages
it is better to use a zero depth (and alternatively
one might want to use the depth of a strut or a
parentheses). So we now offer a way to adjust
this while maintaining backward compatibility. Use
\renewcommand to alter it.

373 \def\multicolmindepthstring{p}

By default the vertical rule between columns will be
in \normalcolor.

374 \def\columnseprulecolor{\normalcolor}

7

\rlap{\phantom \multicolmindepthstring}’

Before we tackle the bigger output routines we
define just one more macro which will help us
to find our way through the mysteries later.
\reinsert@footnotes will do what its name in-
dicates: it reinserts the footnotes present in
\footinbox so that they will be reprocessed by
TEX’s page_builder.

Instead of actually reinserting the footnotes we
insert an empty footnote. This will trigger insertion
mechanism as well and since the old footnotes are
still in their box and we are on a fresh page \skip
footins should be correctly taken into account.

375 \def\reinsert@footnotes{\ifvoid\footins\else
376 \insert\footins{}\fi}

This curious definition is wused as the space
at the bottom of a column if we implement
\raggedcolumns. Normally one only appends
\vfill in that case but this is actually wrong for
columns that are more or less full: by adding a glue
at the bottom such a column doesn’t have any depth
any more but without it the material would be al-
lowed a depth of \@maxdepth. So we allow shrinking
by that amount. This only makes a difference if the
box would otherwise become overfull and shrinking
never exceeds the specified value, so we should be
fine.

377 \def\vfilmaxdepth{\vskip \z@ \@plus .0001fil
378 \@minus \@maxdepth}

Now we can’t postpone the difficulties any longer.
The \multi@column@out routine will be called in
two situations. Either the page is full (i.e., we
have collected enough material to generate all the
required columns) or a float or marginpar or a
\clearpage is sensed. In the latter case the
\outputpenalty is less than —10000, otherwise the
penalty which triggered the output routine is higher.
Therefore it’s easy to distinguish both cases: we sim-
ply test this register.

379 \def\multi@column@out{%

380 \ifnum\outputpenalty <-\@M

If this was a \clearpage, a float or a marginpar we
call \speci@ls

381 \speci@ls \else

otherwise we construct the final page. For the next
block of code see comments in section 7.2.

382 \ifvoid\colbreak@box\else

383 \mult@info\@ne{Re-adding forced
384 break(s) for splitting}y
385 \setbox\@cclv\vbox{

386 \unvbox\colbreak@box

387 \penalty-\@Mv

388 \unvbox\@cclv},

389 \fi

18

Let us now consider the normal case. We have to
\vsplit the columns from the accumulated mate-
rial in box 255. Therefore we first assign appropriate
values to \splittopskip and \splitmaxdepth.

390
391

\splittopskip\topskip
\splitmaxdepth\@maxdepth

We also need to restrict \boxmaxdepth so that re-
boxing is not generating boxes with arbitrary depth.

392 \boxmaxdepth\@maxdepth

Then we calculate the current column height (in
\dimen@). Note that the height of \partial@page
is already subtracted from \@colroom so we can use
its value as a starter.

393 \dimen@\@colroom

But we must also subtract the space occupied by
footnotes on the current page. Note that we first
have to reset the skip register to its normal value.
Again, the actual action is carried out in a utility
macro, so that other applications can modify it.

394 \divide\skip\footins\col@number
395 \ifvoid\footins \else

396 \leave@mult@footins

397 \fi

And there is one more adjustment that we have to
make: if the user has issue a \enlargethispage
command then the height the \@kludgeins box will
be the negation of the size by which the page should
be enlarged. If the star form of this command has
been used then we also need to shrink the resulting
column.

That local change will be reverted at the end of
the output routine So for the next page the origi-
nal state will be reestablished. However, in theory
there is a possibility to sneak in a whole multicols
environment into the running header definition. If
that happens then it will also be affected by this
change—too bad I think.

\ifvbox \@kludgeins
\advance \dimen@ -\ht\@kludgeins

398
399

The star form of \enlargethispage makes the
width of the box greater than zero (sneaky isn’t it?).

400 \ifdim \wd\@kludgeins>\z@
401 \shr@nkingtrue

402 \fi

403 \fi

Now we are able to \vsplit off all but the last col-
umn. Recall that these columns should be saved in
the box registers 2, 4,... (plus offset).

404 \process@cols\mult@firstbox{%
405 \setbox\count@
406 \vsplit\@cclv to\dimen@

After splitting we update the kept marks.

407 \set@keptmarks

If \raggedcolumns is in force we add a v£ill at the
bottom by unboxing the split box. But we need to
unbox anyway to ensure that at the end of the box
we do not have unwanted space. This can sneak in,
in certain situations, for example, if two lists follow
each other and we break between them. While such
space is usually zero it still has an effect because it
hides depth of the last line in the column and that
will result in incorrect placement.

408 \setbox\count@

409 \vbox to\dimen@

410 {\unvbox\count@

411 \ifshr@nking

412 \vfilmaxdepth\£fil}/,
413 jyA

Then the last column follows.

414 \setbox\mult@rightbox

415 \vsplit\@cclv to\dimen®@

416 \set@keptmarks

417 \setbox\mult@rightbox\vbox to\dimen@
418 {\unvbox\mult@rightbox

419 \ifshr@nking\vfilmaxdepth\fi}J,

Having done this we hope that box 255 is emptied.
If not, we reinsert its contents.

420 \ifvoid\@cclv \else

421 \unvbox\@cclv

422 \ifnum\outputpenalty=\@M
423 \else

424 \penalty\outputpenalty
425 \fi

In this case a footnote that happens to fall into
the leftover bit will be typeset on the wrong page.
Therefore we warn the user if the current page con-
tains footnotes. The older versions of multicols pro-
duced this warning regardless of whether or not foot-
notes were present, resulting in many unnecessary
warnings.

426 \ifvoid\footins\else

427 \PackageWarning{multicol}},

428 {I moved some lines to

429 the next page.\MessageBreak

430 Footnotes on page

431 \thepage\space might be wrongl}
432 \fi

If the ‘tracingmulticols’ counter is 4 or higher we also
add a rule.

433 \ifnum \c@tracingmulticols>\thre@
434 \hrule\allowbreak \fi
435 \fi

To get a correct marks for the current page
we have to (locally) redefine \firstmark and
\botmark. If \kept@firstmark is non-empty then
\kept@botmark must be non-empty too so we can
use their values. Otherwise we use the value of
\kept@topmark which was first initialized when we
gathered the \partical@page and later on was up-
dated to the \botmark for the preceding page.

436 \ifx\Q@empty\kept@firstmark

437 \let\firstmark\kept@topmark
438 \let\botmark\kept@topmark

439 \else

440 \let\firstmark\kept@firstmark
441 \let\botmark\kept@botmark

442 \fi

We also initialize \topmark with \kept@topmark.
This will make this mark okay for all middle pages
of the multicols environment.

443 \let\topmark\kept@topmark

444 (xmarktrace)

445 \mult@info\tw@

446 {Use kept top mark:\MessageBreak
447 \meaning\kept@topmark

448 \MessageBreak

449 Use kept first mark:\MessageBreak
450 \meaning\kept@firstmark

451 \MessageBreak

452 Use kept bot mark:\MessageBreak
453 \meaning\kept@botmark

454 \MessageBreak

455 Produce first mark:\MessageBreak
456 \meaning\firstmark

457 \MessageBreak

458 Produce bot mark:\MessageBreak
459 \meaning\botmark

460 \@gobbletwo}’

461 (/marktrace)

With a little more effort we could have done bet-
ter. If we had, for example, recorded the shrinkage
of the material in \partial@page it would be now
possible to try higher values for \dimen®@ (i.e. the
column height) to overcome the problem with the
nonempty box 255. But this would make the code
even more complex so I skipped it in the current
implementation.

Now we use ITEX’s standard output mecha-
nism.'® Admittedly this is a funny way to do it.

Within the OR \boxmaxdepth needs to be unre-
stricted so we set it back now as it was changed
above.

462 \boxmaxdepth\maxdimen
463 \setbox\@cclv\vbox{\unvbox\partial@page
464 \page@sofarl}y,

13This will produce a lot of overhead since both output routines are held in memory. The correct solution would be to

redesign the whole output routine used in IATEX.

19

The macro \@makecol adds all floats assigned for
the current page to this page. \Qoutputpage ships
out the resulting box. Note that it is just possible
that such floats are present even if we do not allow
any inside a multicols environment.

465 \@makecol\@outputpage

After the page is shipped out we have to pre-
pare the kept marks for the following page.
\kept@firstmark and \kept@botmark reinitialized
by setting them to \@empty. The value of \botmark
is then assigned to \kept@topmark.

466 \global\let\kept@topmark\botmark
467 \global\let\kept@firstmark\Qempty
468 \global\let\kept@botmark\@empty

469 (*marktrace)

470 \mult@info\tw@

471 {(Re)Init top mark:\MessageBreak
472 \meaning\kept@topmark

473 \@gobbletwol}’

474 (/marktrace)

Now we reset \@colroom to \@colht which is
TEX’s saved value of \textheight. We also have
to reset the recorded position of the last \marginpar
as well as the recorded size of in-text floats as we are
now on a new page.

475 \global\@colroom\@colht
476 \global \@mparbottom \z@
477 \global \@textfloatsheight \z@

Then we process deferred floats waiting for their
chance to be placed on the next page.

478 \process@deferreds

479 \@whilesw\if@fcolmade\fi{\@outputpage
480 \global\@colroom\@colht

481 \process@deferreds}y,

If the user is interested in statistics we inform him
about the amount of space reserved for floats.

482 \mult@info\@ne

483 {Colroom:\MessageBreak

484 \the\@colht\space

485 after float space removed
486 = \the\@colroom \@gobblel}/,

Having done all this we must prepare to tackle the
next page. Therefore we assign a new value to
\vsize. New, because \partial@page is now empty
and \@colroom might be reduced by the space re-
served for floats.

487 \set@mult@vsize \global

The \footins skip register will be adjusted when
the output group is closed.

488 \fi}

This macro is used to subtract the amount of space
occupied by footnotes for the current space from the

20

space available for the current column. The space
current column is stored in \dimen@. See above for
the description of the default action.

489 \def\leave@mult@footins{/

490 \advance\dimen@-\skip\footins
491 \advance\dimen@-\ht\footins
492 }

We left out two macros: \process@deferreds and
\speci@ls.

493 \def\speci@ls{/,
494 \ifnum\outputpenalty <-\@Mi

If the document ends in the middle of a mul-
ticols environment, e.g., if the user forgot the
\end{multicols}, TEX adds a very negative
penalty to the end of the galley which is intended
to signal the output routine that it is time to pre-
pare for