A B C D E F G I L M O P R S T V
averagePrecision | Calculate the average precision |
brierScore | brierScore |
calibrationLine | calibrationLine |
computeAuc | Compute the area under the ROC curve |
computeGridPerformance | Computes grid performance with a specified performance function |
configurePython | Sets up a python environment to use for PLP (can be conda or venv) |
covariateSummary | covariateSummary |
createCohortCovariateSettings | Extracts covariates based on cohorts |
createDatabaseDetails | Create a setting that holds the details about the cdmDatabase connection for data extraction |
createDatabaseSchemaSettings | Create the PatientLevelPrediction database result schema settings |
createDefaultExecuteSettings | Creates default list of settings specifying what parts of runPlp to execute |
createDefaultSplitSetting | Create the settings for defining how the plpData are split into test/validation/train sets using default splitting functions (either random stratified by outcome, time or subject splitting) |
createExecuteSettings | Creates list of settings specifying what parts of runPlp to execute |
createExistingSplitSettings | Create the settings for defining how the plpData are split into test/validation/train sets using an existing split - good to use for reproducing results from a different run |
createFeatureEngineeringSettings | Create the settings for defining any feature engineering that will be done |
createGlmModel | createGlmModel |
createIterativeImputer | Create Iterative Imputer settings |
createLearningCurve | createLearningCurve |
createLogSettings | Create the settings for logging the progression of the analysis |
createModelDesign | Specify settings for developing a single model |
createNormalizer | Create the settings for normalizing the data @param type The type of normalization to use, either "minmax" or "robust" |
createPlpResultTables | Create the results tables to store PatientLevelPrediction models and results into a database |
createPreprocessSettings | Create the settings for preprocessing the trainData. |
createRandomForestFeatureSelection | Create the settings for random foreat based feature selection |
createRareFeatureRemover | Create the settings for removing rare features |
createRestrictPlpDataSettings | createRestrictPlpDataSettings define extra restriction settings when calling getPlpData |
createSampleSettings | Create the settings for defining how the trainData from 'splitData' are sampled using default sample functions. |
createSimpleImputer | Create Simple Imputer settings |
createSklearnModel | Plug an existing scikit learn python model into the PLP framework |
createSplineSettings | Create the settings for adding a spline for continuous variables |
createStratifiedImputationSettings | Create the settings for using stratified imputation. |
createStudyPopulation | Create a study population |
createStudyPopulationSettings | create the study population settings |
createTempModelLoc | Create a temporary model location |
createUnivariateFeatureSelection | Create the settings for defining any feature selection that will be done |
createValidationDesign | createValidationDesign - Define the validation design for external validation |
createValidationSettings | createValidationSettings define optional settings for performing external validation |
diagnoseMultiplePlp | Run a list of predictions diagnoses |
diagnosePlp | diagnostic - Investigates the prediction problem settings - use before training a model |
evaluatePlp | evaluatePlp |
externalValidateDbPlp | externalValidateDbPlp - Validate a model on new databases |
extractDatabaseToCsv | Exports all the results from a database into csv files |
fitPlp | fitPlp |
getCalibrationSummary | Get a sparse summary of the calibration |
getCohortCovariateData | Extracts covariates based on cohorts |
getDemographicSummary | Get a demographic summary |
getEunomiaPlpData | Create a plpData object from the Eunomia database' |
getPlpData | Extract the patient level prediction data from the server |
getPredictionDistribution | Calculates the prediction distribution |
getThresholdSummary | Calculate all measures for sparse ROC |
ici | Calculate the Integrated Calibration Index from Austin and Steyerberg https://onlinelibrary.wiley.com/doi/full/10.1002/sim.8281 |
insertCsvToDatabase | Function to insert results into a database from csvs |
insertResultsToSqlite | Create sqlite database with the results |
listAppend | join two lists |
listCartesian | Cartesian product |
loadPlpAnalysesJson | Load the multiple prediction json settings from a file |
loadPlpData | Load the plpData from a folder |
loadPlpModel | loads the plp model |
loadPlpResult | Loads the evalaution dataframe |
loadPlpShareable | Loads the plp result saved as json/csv files for transparent sharing |
loadPrediction | Loads the prediction dataframe to json |
MapIds | Map covariate and row Ids so they start from 1 |
migrateDataModel | Migrate Data model |
modelBasedConcordance | Calculate the model-based concordance, which is a calculation of the expected discrimination performance of a model under the assumption the model predicts the "TRUE" outcome as detailed in van Klaveren et al. https://pubmed.ncbi.nlm.nih.gov/27251001/ |
outcomeSurvivalPlot | Plot the outcome incidence over time |
pfi | Permutation Feature Importance |
plotDemographicSummary | Plot the Observed vs. expected incidence, by age and gender |
plotF1Measure | Plot the F1 measure efficiency frontier using the sparse thresholdSummary data frame |
plotGeneralizability | Plot the train/test generalizability diagnostic |
plotLearningCurve | plotLearningCurve |
plotNetBenefit | Plot the net benefit |
plotPlp | Plot all the PatientLevelPrediction plots |
plotPrecisionRecall | Plot the precision-recall curve using the sparse thresholdSummary data frame |
plotPredictedPDF | Plot the Predicted probability density function, showing prediction overlap between true and false cases |
plotPredictionDistribution | Plot the side-by-side boxplots of prediction distribution, by class |
plotPreferencePDF | Plot the preference score probability density function, showing prediction overlap between true and false cases #' |
plotSmoothCalibration | Plot the smooth calibration as detailed in Calster et al. "A calibration heirarchy for risk models was defined: from utopia to empirical data" (2016) |
plotSparseCalibration | Plot the calibration |
plotSparseCalibration2 | Plot the conventional calibration |
plotSparseRoc | Plot the ROC curve using the sparse thresholdSummary data frame |
plotVariableScatterplot | Plot the variable importance scatterplot |
predictCyclops | Create predictive probabilities |
predictGlm | predict using a logistic regression model |
predictPlp | predictPlp |
preprocessData | A function that wraps around FeatureExtraction::tidyCovariateData to normalise the data and remove rare or redundant features |
print.plpData | Print a plpData object |
print.summary.plpData | Print a summary.plpData object |
recalibratePlp | recalibratePlp |
recalibratePlpRefit | recalibratePlpRefit |
runMultiplePlp | Run a list of predictions analyses |
runPlp | runPlp - Develop and internally evaluate a model using specified settings |
savePlpAnalysesJson | Save the modelDesignList to a json file |
savePlpData | Save the plpData to folder |
savePlpModel | Saves the plp model |
savePlpResult | Saves the result from runPlp into the location directory |
savePlpShareable | Save the plp result as json files and csv files for transparent sharing |
savePrediction | Saves the prediction dataframe to a json file |
setAdaBoost | Create setting for AdaBoost with python DecisionTreeClassifier base estimator |
setCoxModel | Create setting for lasso Cox model |
setDecisionTree | Create setting for the scikit-learn DecisionTree with python |
setGradientBoostingMachine | Create setting for gradient boosting machine model using gbm_xgboost implementation |
setIterativeHardThresholding | Create setting for Iterative Hard Thresholding model |
setLassoLogisticRegression | Create modelSettings for lasso logistic regression |
setLightGBM | Create setting for gradient boosting machine model using lightGBM (https://github.com/microsoft/LightGBM/tree/master/R-package). |
setMLP | Create setting for neural network model with python's scikit-learn. For bigger models, consider using 'DeepPatientLevelPrediction' package. |
setNaiveBayes | Create setting for naive bayes model with python |
setPythonEnvironment | Use the python environment created using configurePython() |
setRandomForest | Create setting for random forest model using sklearn |
setSVM | Create setting for the python sklearn SVM (SVC function) |
simulatePlpData | Generate simulated data |
simulationProfile | A simulation profile for generating synthetic patient level prediction data |
sklearnFromJson | Loads sklearn python model from json |
sklearnToJson | Saves sklearn python model object to json in path |
splitData | Split the plpData into test/train sets using a splitting settings of class 'splitSettings' |
summary.plpData | Summarize a plpData object |
toSparseM | Convert the plpData in COO format into a sparse R matrix |
validateExternal | validateExternal - Validate model performance on new data |
validateMultiplePlp | externally validate the multiple plp models across new datasets |
viewDatabaseResultPlp | open a local shiny app for viewing the result of a PLP analyses from a database |
viewMultiplePlp | open a local shiny app for viewing the result of a multiple PLP analyses |
viewPlp | viewPlp - Interactively view the performance and model settings |