Provides Test Functions for Multivariate Integration


[Up] [Top]

Documentation for package ‘multIntTestFunc’ version 0.1.1

Help Pages

checkClosedUnitBall Domain check for closed unit ball \{\vec{x} \in R^n : \Vert x \Vert_2 <=q 1\}
checkClosedUnitCube Domain check for closed unit hypercube [0,1]^n
checkRn Domain check for R^n
checkStandardSimplex Domain check for standard simplex \{\vec{x} \in R^n : x_i >=q 0, \Vert x \Vert_1 <=q 1 \}
checkUnitSphere Domain check for unit sphere \{\vec{x} \in R^n : \Vert x \Vert_2 = 1\}
domainCheck Check if node points are in the domain of a test function instance
domainCheck-method Check if node points are in the domain of a test function instance
domainCheckP Check if node points are in the domain of a test function instance ("overload" of domainCheck with additional parameter)
domainCheckP-method Check if node points are in the domain of a test function instance ("overload" of domainCheck with additional parameter)
evaluate Evaluate test function instance for a set of node points
evaluate-method Evaluate test function instance for a set of node points
exactIntegral Get exact integral for test function instance
exactIntegral-method Get exact integral for test function instance
getIntegrationDomain Get description of integration domain for test function instance
getIntegrationDomain-method Get description of integration domain for test function instance
getReferences Get references for test function instance
getReferences-method Get references for test function instance
getTags Get tags for test function instance
getTags-method Get tags for test function instance
multIntTestFunc multIntTestFunc: A package to define test functions for multivariate numerical integration.
Rn_floorNorm An S4 class to represent the function \frac{Gamma(n/2+1)}{pi^{n/2}(1+\lfloor \Vert \vec{x} \Vert_2^n \rfloor)^s} on R^n
Rn_floorNorm-class An S4 class to represent the function \frac{Gamma(n/2+1)}{pi^{n/2}(1+\lfloor \Vert \vec{x} \Vert_2^n \rfloor)^s} on R^n
Rn_Gauss An S4 class to represent the function \exp(-\vec{x}\cdot\vec{x}) on R^n
Rn_Gauss-class An S4 class to represent the function \exp(-\vec{x}\cdot\vec{x}) on R^n
standardSimplex_Dirichlet An S4 class to represent the function prod_{i=1}^{n}x_i^{v_i-1}(1 - x_1 - ... - x_n)^{v_{n+1}-1} on T_n
standardSimplex_Dirichlet-class An S4 class to represent the function prod_{i=1}^{n}x_i^{v_i-1}(1 - x_1 - ... - x_n)^{v_{n+1}-1} on T_n
standardSimplex_exp_sum An S4 class to represent the function \exp(-c(x_1 + ... + x_n)) on T_n
standardSimplex_exp_sum-class An S4 class to represent the function \exp(-c(x_1 + ... + x_n)) on T_n
unitBall_normGauss An S4 class to represent the function \frac{1}{(2pi)^{n/2}}\exp(-\Vert\vec{x}\Vert_2^2/2) on B^{n}
unitBall_normGauss-class An S4 class to represent the function \frac{1}{(2pi)^{n/2}}\exp(-\Vert\vec{x}\Vert_2^2/2) on B^{n}
unitBall_polynomial An S4 class to represent the function prod_{i=1}^n x_i^{a_i} on B_n
unitBall_polynomial-class An S4 class to represent the function prod_{i=1}^n x_i^{a_i} on B_n
unitCube_cos2 An S4 class to represent the function (\cos(\vec{x}\cdot\vec{v}))^2 on [0,1]^n
unitCube_cos2-class An S4 class to represent the function (\cos(\vec{x}\cdot\vec{v}))^2 on [0,1]^n
unitCube_floor An S4 class to represent the function \lfloor x_1 + ... + x_n \rfloor on [0,1]^n
unitCube_floor-class An S4 class to represent the function \lfloor x_1 + ... + x_n \rfloor on [0,1]^n
unitSphere_innerProduct1 An S4 class to represent the function (\vec{x}\cdot\vec{a})(\vec{x}\cdot\vec{b}) on S^{n-1}
unitSphere_innerProduct1-class An S4 class to represent the function (\vec{x}\cdot\vec{a})(\vec{x}\cdot\vec{b}) on S^{n-1}
unitSphere_polynomial An S4 class to represent the function prod_{i=1}^n x_i^{a_i} on S^{n-1}
unitSphere_polynomial-class An S4 class to represent the function prod_{i=1}^n x_i^{a_i} on S^{n-1}