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Abstract

DNA evidence is the pre-eminent tool in the modern forensic scientists toolbox. It is widely accepted
by the public, scientific and legal communities and it has been instrumental in determining both the
innocence and guilt of individuals involved in the legal process. Despite this widespread acceptance there
is unease regarding the statistical measures used to evaluate DNA evidence amongst some of members of
all these communities. In particular, some people regard the random match probabilities associated with
DNA evidence as just too small or basically unsupportable. In this article we discuss what it means for
a pair of DNA profiles to match or partially match, and we present an R package that allows a rational
examination of the statistical properties of a DNA database.

1 Introduction

In 2001, a poster was presented by a forensic scientist from Arizona (Troyer et al., 2001) at a scientific
meeting on human identification. This poster reported a nine locus match between two unrelated men, one
white and one black (Kaye, 2009). It was not a full match. Both men had been typed at thirteen loci in total,
and “partially matched” at three of the remaining four loci. These partially or non-matching loci would
have excluded either man as a suspect if the other was the true offender. However, such a match seemed
to be at odds with the random match probabilities. On one hand, these two men were in a DNA database
which consisted of approximately 65,000 profiles, and on the other hand, the random match probabilities
for the nine locus genotype were “1 in 754 million in Caucasians, 1 in 561 billion in African Americans, and
1 in 113 trillion in Southwest Hispanics”, Troyer et al. (2001).

As we will show later this is, in effect, an example of the “birthday problem” and therefore is regarded as
completely predictable from a statistical perspective. However, most us who have taught a class on the
birthday problem know that our students are initially skeptical.

1.1 DNA evidence, matches and partial matches

Forensic genetics has its terminology which we briefly explain here. Human DNA consists of 23 pairs of
chromosomes and those chromosomes are composed of a sequence of nucleotides which are labeled A, G, C
and T after the bases adenine, guanine, cytosine and thymine that are used to form them. Modern DNA
typing uses short tandem repeats (STRs). These are regions of DNA which are highly variable, but are
patterned in that they consist of repeats of a short sequence of DNA bases. The locations at which this
information is collected are called loci, and the (length) variations in the patterns observed at each locus
are called alleles. We have two alleles at each locus, because humans are a diploid species, meaning they
have two copies of each chromosome. One allele comes from our mother, and the other from our father.
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A pair of alleles at a locus is called a genotype, and therefore a DNA profile is actually a multi-locus
genotype. Modern forensic laboratories genotype DNA evidence using commercial kits, called multiplexes
which consist of 9–17 loci. The multiplex currently used in the United Kingdom (and until recently New
Zealand and Denmark) is called AmpFlSTR® SGM Plus�, or SGM Plus for short, and consists of 10 loci,
plus one sex specific locus, Amelogenin. Forensic laboratories in the United States which load profiles into
the FBI’s Combined DNA Index System (CODIS) collect a core set of thirteen loci, although they are not
constrained to use one multiplex.

Locus vWA D18 TH01 D2 D8 D3 FGA D16 D21 D19

Alleles 15,18 14,17 6,9.3 17,23 12,15 15,15 19,23 11,12 28,28 13,14

Table 1: A DNA profile from the AmpFlSTR® SGM Plus� multiplex

Table 1 shows a DNA profile from the AmpFlSTR® SGM Plus� multiplex. There are two numbers at
each locus representing the two alleles that make up the genotype at that locus. The numbers relate to the
number of times the pattern or motif that describe the alleles at the locus are repeated. For example, this
person’s genotype at the locus THO1 is 6,9.3. This means that on one chromosome, the motif for THO1,
TCAT was repeated 6 times, and on the other chromosome it was repeated 9 times, and then followed by
TCA. The .3 represents the fact that three of the four bases have been repeated.

A pair of profiles is said to (fully) match if every allele at every locus that occurs in one profile occurs
in the other. A pair of profiles are said to partially match if there are allelic matches at a subset of loci.
Weir (2004) provided a taxonomy for describing partial matches which depends on the number of fully,
partial and non-matching loci between a pair of profiles. For any given pair of (full) profiles from the same
multiplex there will be: m2 loci where both alleles match, m1 loci where only one of the alleles matches,
and m0 loci where none of the alleles match. For example, the profile that Troyer et al. (2001) found was a
9/3/1 partial match - nine fully matching loci, three partially matching loci, and one non-matching locus.

1.2 DNA database comparison exercises

The Troyer match came from a database matching exercise. In such an exercise every profile is compared
with every other profile in the database. This type of comparison exercise is absolutely essential and,
in addition, can provide some interesting information about the statistical properties of the population
under consideration. We say that database comparison is essential in the first instance for the detection of
duplicates. Duplicates may arise in a number of different ways. For example, an offender may provide a false
name or an offender’s name may be entered incorrectly. Alternatively, an offender may have an identical
twin who is already in the DNA database. There are six pairs of identical twins in the New Zealand National
DNA Database (NZDNADB). Forensic scientists are also interested in ’very close’ matches. For example, a
pair of profiles might fully match at nine loci out of ten and partially match at the remaining locus. This
may happen either because the donors of the samples are very close relatives. It is more likely, however, that
the profiles do not match because of allelic dropout, primer binding site mutations, nomenclature changes
or somatic mutation.

1.3 The birthday problem

Weir (2007) and others (Brenner, 2007; Curran et al., 2007; Mueller, 2008; Kaye, 2009) note that the
presence of matching profiles in a DNA database is effectively an instance of the well-known “birthday
problem” (Wikipedia, 2010) where, in a group of at least 23 randomly chosen people, there is a greater
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than 50% chance that one pair of them will have the same birthday. Early critics, implicitly calculating
the expected number of matches as Np, used the wrong value for N and the wrong value for p. Firstly, the
number of pairwise matches, not the size of the database, is the relevant quantity. Although the database
size is relatively small, the number of pairwise comparisons is very large. The Arizona database contained
of N = 65, 493 profiles (Brenner, 2007). Therefore, there are

NComparisons =
N(N − 1)

2
= 2, 144, 633, 778

or approximately two billion, possible pairwise comparisons. Secondly, the random match probability is
not the probability we need. The random match probability for the pair of profiles in question answers the
question “What is the probability that someone other than these two men would have this particular nine
locus profile.” The probability we actually want is “What is the probability that two randomly selected
profiles would match at nine loci, partially match at three loci, and not match at one locus.”. Weir (2004),
working on an unrelated case, showed that this probability can be calculated by

Pm0,m1,m2(θ) =
∑

ml0,ml1,ml2

∏
l

Pl2(θ)
ml2Pl1(θ)

ml1Pl0(θ)
ml0 (1)

where ml0, m1l and ml2 are indicator variables that are equal to one if the individuals share zero, one
or two alleles in common respectively and zero otherwise. The expressions Pli(θ) are the probability of
sharing i = 0, 1, 2 alleles in common at locus l for a given degree of population substructure θ and are
given explicitly in Weir (2004, 2007). The coancestry coefficient, θ or FST models low levels of relatedness
between individuals in the same subpopulation, and is typically between 0 and 0.03.

1.4 Modeling the observed data

Weir’s original paper (Weir, 2004) contained an informal analysis where the minimum level of θ required
to explain the observed counts was calculated. For example using the FBI Caucasian data (Budowle and
Moretti, 1999) a θ value of 0.005 is needed to explain the 679 observed one locus matches (at locus FGA).
That is, if θ > 0.005, then the expected count at this locus will exceed the observed count. Curran et al.
(2007) formalized and extended this analysis in the following way. We model the expected number of pairs
of profile which fully match at m2 loci and partially match at m1 loci for a given value of θ, Em2/m1

(θ), as

Em2/m1
(θ) = αEU

m2/m1
(θ) + βEB

m2/m1
(θ) + δEC

m2/m1
(θ) + γEP

m2/m1
(θ)

where 0 ≤ α, β, δ ≤ 1 and γ = 1 − α − β − δ. The quantities ER
m2/m1

(θ), R ∈ {U,B,C, P} are the
expected number of matching pairs of profiles calculated under four relationship categories: unrelated, full
siblings (brothers), cousins, and parent/child. These expressions are derived in Curran et al. (2007), with a
typographical mistake corrected in Curran and Buckleton (2010). Tvedebrink (2010) also derived expressions
for avuncular relationships. Curran et al. (2007) estimated α, β, δ, γ and θ by using a combination of a line
search (across θ) and a Monte Carlo steepest descent method to find the values that minimized several
different distance metrics applied to the observed and expected value. Curran et al. (2007) recommended
minimizing

C3(θ) =
L∑
i=0

L−m2∑
j=0

|Ei/j(θ)−Oi/j |
Oi/j

where Oi/j is the observed number of pairs of profiles fully matching at m2 = i and m2 = j loci using
a multiplex consisting of L loci. This metric was chosen because of the belief that it puts emphasis on
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“explaining” the higher order matches. Further research into this by Tvedebrink (2010); Tvedebrink et al.
(2011) has shown that Mahalanobis distance

T2(θ, ) =
(
~E(θ)− ~O

)>
Σ(θ)−

(
~E(θ)− ~O

)
actually provides a “better” fit to the data and does not drive the value of θ to zero. Σ(θ)− is a pseudo
inverse because of constraint

L∑
m2=0

L−m2∑
m1=0

Pm2,m1,m0 = 1

2 The DNAtools package

The aim of the DNAtools package is to provide statisticians and forensic scientists with access to the
procedures described in the previous sections. Early implementations by Weir (2004) and then Curran
et al. (2007) required custom written code for each new database and, in the case of Curran et al. (2007),
generation of at least half a dozen precursor files and a significant amount of memory. Tvedebrink (2010);
Tvedebrink et al. (2011) reduced the computational effort of Weir (2004) and Curran et al. (2007) by
deriving recursion formulas for Equation 1, improved the optimization procedures through the use of the
package Rsolnp (Ghalanos and Theussl, 2010), and derived the variances of the probabilities which allowed
both the computation of Mahalanobis distances and asymptotic confidence intervals. DNAtools aims to
make all of these procedures easier to use in R (R Development Core Team, 2010).

3 Using the package DNAtools

The expected data format of the databases used as input for the functions in DNAtools is a data frame,
which is constituted by a column of DNA profile identifiers (the first column) and two columns per typed
DNA marker. An example is given below:

head(get(data(dbExample)))[,1:9]

id D16S539.1 D16S539.2 D18S51.1 D18S51.2 D19S433.1 D19S433.2 D21S11.1 D21S11.2

1 11 11 15 21 14 14 28 29

2 13 12 15 14 16 16 29 28

3 9 9 13 17 14 14 28 27

4 11 12 14 15 15 13 32 29

5 12 12 17 12 15.2 13 31.2 28

6 9 13 17 14 13 14 30.2 28

Budowle and Moretti (1999) published data from six US subpopulations of different ethnicity (Caucasians,
Hispanics, African Americans, Bahamians, Jamaican and Trinidad). We demonstrate here our package
DNAtools using the Caucasian profiles typed at nine forensic STR markers.

(caucasian.summary <- dbCompare(caucasian,hit=5))

Summary matrix

partial

match 0 1 2 3 4 5 6 7 8 9

0 17 145 628 1531 2416 2516 1822 752 170 26

1 28 178 733 1426 1902 1455 727 211 40
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2 13 121 303 530 492 310 108 9

3 5 32 64 99 52 23 6

4 0 6 6 7 2 1

5 0 1 0 1 1

6 0 0 0 0

7 0 0 0

8 0 0

9 0

Profiles with at least 5 matching loci

ID1 ID2 match partial

1 10 29 5 4

2 77 116 5 3

3 64 170 5 1

There is a plot method for the returned object. Applying this method to caucasian.summary yields the
“dropping ball”-picture of Figure 1. The right end of the “distribution” is interesting part, due to the larger
number of coinciding loci between profile pairs.
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Figure 1: Plot produced by plot(caucasian.summary,pch=16). Superimposed are the expected counts
and associated 95%-confidence intervals. The labels of the first axis denote the number of matching and
partial-matching loci. The second axis is on a log10-scale.

In Table 2, the estimated parameters are reported using the different object functions implemented in the
optim.relatedness-function of the DNAtools-package. Only for T2 the estimate of θ is different from 0.

The fitted values can be used to compute Em2/m1
(θ). This is done using dbExpect which takes θ and a

list of locus specific probability vectors as input. The function efficiently computes the expectation using a
recursion relation (Tvedebrink et al., 2011). Similarly, the superimposed confidence intervals is Figure 1 were
computed using the dbVariance-function, which computes the covariance matrix of the summary statistic
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θ Unrelated First-Cousins Avuncular Parent-child Full-siblings

C1 0 9.99e-01 2.32e-13 1.15e-08 5.01e-04 1.57e-04
C2 0 9.99e-01 6.90e-08 3.99e-08 1.16e-08 3.68e-14
C3 0 9.99e-01 2.16e-08 1.01e-11 1.08e-04 7.03e-04
T1 0 9.99e-01 3.97e-09 5.64e-12 4.63e-04 1.58e-05
T2 0.015 9.99e-01 1.67e-10 4.60e-06 7.47e-04 6.15e-06

Table 2: The estimated parameters of the model for the Caucasian subsample.

(also by recursion over loci Tvedebrink et al., 2011). The confidence intervals are based on a normal
approximation such that the width of the interval around the expectations is computed as ±2

√
diag{Σ(θ)}.

This approximation is asymptotic, hence the coverage accuracy decreases with the (expected) cell count.

Availability The R package DNAtools is available at CRAN: DNAtools

4 Conclusion

In this paper we have described an R package which allows statisticians and forensic scientists to easily
examine the properties of a forensic DNA database. In particular, our package makes it simple to carry
out a database comparison exercise where every DNA profile in the database is compared to every other
database, and compare the resulting numbers of observed pairs of matching and partially matching profiles
to expectation under a set of population genetic assumptions. There are potential limitations on the use
of this package in that it may not scale well to extraordinarily large databases (>100,000 profiles), but we
expect that this will be remedied by further development.
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