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Abstract

Optimal design ideas are increasingly used in different disciplines to rein in experimen-
tal costs. Given a statistical model and a design criterion, optimal designs determine the
number of experimental points to observe the responses, the design points and the number
of replications at each design point. Currently, there are very few free and effective com-
puting tools for finding different types of optimal designs for a general nonlinear model,
especially when the criterion is not differentiable. We introduce an R package ICAOD

to find various types of optimal designs and they include locally, minimax and Bayesian
optimal designs for different nonlinear models. Our main computational tool is a novel
metaheuristic algorithm called imperialist competitive algorithm (ICA) and inspired by
socio-political behavior of humans and colonialism. We demonstrate its capability and
effectiveness using several applications. The package also includes several theory-based
tools to assess optimality of a generated design when the criterion is a convex function of
the design.

Keywords: c−optimality, D−optimality, design of experiments, evolutionary algorithm, opti-
mization, population-based algorithm, R.

1. Introduction

Optimal designs have been extensively applied in many research studies to reduce the cost of
experimentation. For instance, Holling and Schwabe (2013) provided examples in psychology
and Dette, Kiss, Bevanda, and Bretz (2010) gave examples in dose-response studies. Further
applications of optimal designs in engineering and epidemiology are described in Berger and
Wong (2009), which also contains applications of optimal design ideas in other disciplines.
Given a statistical model and an optimality criterion, optimal designs determine the optimal
number of design points required, their locations to observe the responses and the number of
replications required at each location. The optimality criterion should accurately reflect the
objective of the study to the extent possible and is usually formulated as a scalar function of
the Fisher information matrix (FIM) that measures the worth of the design (Lehmann and
Casella 1998). For example, if the objective of a study is to estimate the model parameters
as accurately as possible, D-optimality is often used. Such an optimal design maximizes
the determinant of the FIM and is called D-optimal. When errors are independent and
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normally distributed, D-optimal designs minimize the volume of the confidence ellipsoid of
the model parameters by minimizing the generalized variance, i.e., the determinant of the
variance-covariance matrix (Abdelbasit and Plackett 1983).

For nonlinear models, the FIM depends on the unknown model parameters to be estimated
and so the design criterion cannot be directly optimized. There are different approaches to
deal with this parameter dependency: a) locally optimal designs: These are found by replacing
the unknown parameters with some initial estimates from a pilot or previous study (Chernoff
1953). Locally optimal designs usually become inefficient when the initial estimates are far
from their true unknown values. b) minimax optimal designs: They minimize the maximum
inefficiency over a user-selected parameter space (Sitter 1992). The optimal designs are con-
servative in that they protect the experiment from the worst case scenario that may happen
from a poor choice of parameter values over a user-specified space of plausible values for the
unknown parameters. Finding minimax optimal designs is complicated because it involves
solving multi-level nested optimization problems and the objective function (minimax cri-
terion) is not differentiable. c) Bayesian optimal designs: These optimal designs are found
by optimizing an optimality criterion averaged over a user-specified (continuous) prior dis-
tribution for the unknown parameters (Chaloner and Larntz 1989; Chaloner and Verdinelli
1995; Atkinson 1996). Strictly speaking, the latter are not fully Bayesian because they do
not involve computing a posterior distribution. Instead, they borrow the concept of having
prior distributions to find robust designs for the frequentists (Graßhoff, Holling, and Schwabe
2012; Bürkner, Schwabe, and Holling 2019). Accordingly, they are sometimes referred to as
“pseudo” Bayesian designs (Firth and Hinde 1997). In the optimal design literature, Bayesian
optimal designs found under a discrete prior distribution are usually referred to as robust or
optimum-on-average designs (Fedorov and Hackl 2012). For an overview of optimal designs
for nonlinear models, see Fedorov and Leonov (2013).

There are several software packages to create and analyze design of experiment (DoE) for
different purposes. For a review on statistical R packages in design of experiments, see
https://cran.r-project.org/web/views/ExperimentalDesign.html. Only a few of them
are able to find different types of optimal designs to deal with the parameter dependency
for various nonlinear models. To the best of our knowledge, none of the available software
packages, commercial or otherwise, provides an option to find minimax optimal designs for
nonlinear models. For example, the R (R Core Team 2019) package LDOD (Masoudi, Sarmad,
and Talebi 2013) finds locally D−optimal approximate designs for a large class of nonlinear
models and the acebayes R package (Overstall, Woods, and Adamou 2017) determines a
more general class of fully Bayesian exact designs using the approximate coordinate exchange
algorithm (Overstall and Woods 2017). Likewise, the recently available VNM R package
finds multiple-objective locally optimal designs for a specific model, i.e., the four-parameter
Hill model commonly used in dose-response studies (Hyun, Wong, and Yang 2018). Among
the commercial software, JMP® (SAS Institute Inc. 2016) can also find Bayesian D−optimal
exact designs for nonlinear models.

This paper introduces the R package ICAOD (Masoudi, Holling, and Wong 2016) for finding
a variety of optimal designs for nonlinear models using a novel metaheuristic algorithm called
imperialist competitive algorithm(ICA). This algorithm is inspired by socio-political behavior
of humans (Atashpaz-Gargari and Lucas 2007; Hosseini and Al Khaled 2014) and is modified
by Masoudi, Holling, and Wong (2017) to find optimal designs for nonlinear models. We
believe that this ICAOD package is the first single self-contained statistical package that

https://cran.r-project.org/web/views/ExperimentalDesign.html
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presents a framework to find locally, minimax and Bayesian optimal designs for nonlinear
models. Similar to many popular nature-inspired metaheuristic algorithms, such as particle
swarm optimization (PSO) algorithm (Kennedy and Eberhart 1995), ICA does not have a
rigorous proof of convergence (Yang 2011). When the criterion is a convex function on the
set of design measures, equivalence theorems are available and the ICAOD package includes
tools to confirm optimality of a design. More generally, the proximity of any design to the
optimum without knowing the latter can be evaluated in terms of an efficiency lower bound.
In particular, if this bound is unity, this confirms optimality of the design. This feature is
useful to recognize a case of pre-mature convergence in optimal design problems.

Section 2 reviews the statistical setup and theory for finding optimal designs for nonlin-
ear models. Section 3 describes the imperialist competitive algorithm (ICA) and Section 4
provides implementation details for the ICAOD package. In Section 5, we provide two exam-
ples to show the functionality of the ICAOD package; Section 5.1 finds locally and minimax
D−optimal designs for a logistic model with application in educational testing and Section 5.2
presents optimum-on-average and Bayesian D−optimal designs for a sigmoid Emax model
for dose-response studies. The ICAOD package was first written to find locally D−optimal
designs, which are arguably most overused in practice, but it now also finds user-defined op-
timal designs. Section 6 illustrates how to use this feature to find c−optimal designs for a
two-parameter logistic model in dose response studies. Section 7 concludes with a summary.

2. Background and Optimal Designs

Let E(Y ) = f(x,θ) be the mean of the response Y at the values of the independent variables
x defined on a user-selected design space χ, and let f be a known function, apart from the
model parameters θ = (θ1, ..., θp)T . Throughout we assume that there are resources to take N
observations for the study and given an optimality criterion, we want to find the best choices
for the levels of the independent variables to observe the outcome Y . There are two types of
designs: exact and approximate. An exact design ξN on χ is defined by a set of k distinct
levels xi,

ξN =

{

x1 x2 ... xk

n1/N n2/N ... nk/N

}

, (1)

where xj ∈ χ, nj is the number of replications of xj in the observations sample and N =
∑k

j=1 nj . Here, xj , j = 1..., k are referred to as support points or design points of ξN . Given
N and a specific design criterion, an optimal exact design finds the best value of k and the
best values of x1, . . . , xk, n1, . . . , nk. Such optimization problems are notoriously difficult and
in practice, we find optimal approximate designs instead. They are probability measure on χ
are found independent of the sample size N . An approximate design ξ with k support points
has the form

ξ =

{

x1 x2 ... xk

w1 w2 ... wk

}

, (2)

where wj > 0 is the proportion of observations that are assigned to xj and
∑k

j=1wj = 1.
They are implemented by first rounding each value of Nwi to the nearest integer Nw∗

i subject
to Nw∗

1 + . . . + Nw∗

k = N and taking Nwi∗ observations at xi, i = 1, . . . , k. Some optimal
rounding procedures are available in (Pukelsheim and Rieder 1992). When the criterion is
convex, there are algorithms for finding many types of optimal approximate designs and
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theory to confirm optimality of an approximate design. When the design is not optimal, a
theory-based efficiency lower bound of the design is available to determine its proximity to the
optimum, without knowing the optimum. For these reasons, we focus on optimal approximate
designs found under a convex functional in the rest of the paper.

A design that minimizes a convex design criterion ψ over the space of all designs on ξ. This
means that given the model and ψ, the optimal number of support points, k, the optimal
support points x1, . . . ,xk and their corresponding w1, . . . , wk have to be determined. For
example, if estimating model parameters is of interest, D−optimality, defined by the logarithm
of the determinant of the inverse of the FIM, is a convex functional over the space of all designs
on χ (Fedorov and Leonov 2013; Silvey 1980) and the resulting design is called D−optimal.
In what follows, we focus on the D−optimality criterion. The description for other optimality
criteria is very similar.

Assuming all observation errors are independent and normally distributed with means 0 and
a constant variance Var(Y ), the FIM of a generic k-point approximate design ξ is given by

M(ξ,θ) =
k

∑

i=1

wiI(xi,θ), (3)

where

I(xi,θ) =
1

Var(Yi)
∇f(xi,θ)∇f(xi,θ)T ,

and ∇f(xi,θ)T =
(

∂f(xi,θ)
∂θ1

, · · · , ∂f(xi,θ)
∂θp

)

. Here, ∂f(xi,θ)
∂θj

denotes the partial derivative of f

with respect to θj . The FIM is singular if k < p. To avoid singular designs, i.e., designs with
singular Fisher information matrices, we assume k ≥ p.

Clearly, the FIM (3) depends on the unknown parameters for nonlinear models. Different
approaches have been proposed to deal with this parameter dependency based on the type of
information available for the unknown parameters. For example, let θ0 be an initial guess for
θ available from a similar study. A locally D−optimal design ξ∗

loc minimizes

ψloc(ξ) = − log |M(ξ,θ0)|, (4)

where |.| denotes the determinant. In practice, it is more realistic to assume that the unknown
parameters belong to a user-specified parameter space Θ, which is comprised of all possible
values for θ. Given Θ, we can find minimax optimal designs that minimize the maximum
inefficiency over Θ and protect the experiment from the worst-case scenario over the parameter
space. A minimax D−optimal design ξ∗

min is obtained by minimizing

ψmin(ξ) = max
θ∈Θ

− log |M(ξ,θ)|, (5)

over the space of all designs on χ. The minimax problem (5) is a bi-level nested optimiza-
tion problem with inner and outer optimization problems. Given any arbitrary design, the
inner optimization problem is to maximize the D−criterion − log |M(ξ,θ)| over Θ to find the
maximum inefficiency and the outer optimization problem is to minimize the maximum of
the inner problem over the space of all designs on χ. Alternatively, when a prior distribution
πΘ(θ) is available for the unknown parameters on Θ, Bayesian optimal designs may also be
found: a (pseudo) Bayesian D−optimal design ξ∗

bayes minimizes

ψbayes(ξ) =

∫

θ∈Θ
− log |M(ξ,θ)|πΘ(θ)dθ. (6)
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When πΘ(θ) is a discrete prior, the obtained designs are sometimes referred to as optimum-
on-average or robust designs.

One advantage of working with approximate designs is existence of an equivalence theorem,
which can be used to verify the optimality of a given design if the criterion is a convex
function on the set of design measures. Each convex optimality criterion gives rise to a
different equivalence theorem, but they generally have the same form. For example, a design
ξ∗

loc is locally D−optimal if and only if the following inequality holds for all x ∈ χ,

cloc(x, ξ
∗

loc) = trM−1(ξ∗

loc,θ0)I(x,θ0) − p ≤ 0, (7)

with equality in (7) at all support points of ξ∗

loc. The left hand-side of inequality (7) is
sometimes called sensitivity function. The equivalence theorem for Bayesian D−optimality
criterion is very similar (Kiefer and Wolfowitz 1959; Chaloner and Larntz 1989): a design
ξ∗

bayes is a Bayesian D−optimal design if and only if the following inequality holds for all
x ∈ χ,

cbayes(x, ξ∗

bayes) =

∫

Θ
tr{M−1(ξ∗

bayes,θ)I(x,θ)}π(θ)dθ − p ≤ 0, (8)

with equality in (8) at all support points of ξ∗

bayes. However, the equivalence theorem for a
minimax type criterion takes on a more complicated form because (5) is not differentiable.
The equivalence theorem states that a design ξ∗

min is minimax D−optimal among all the
designs on χ if and only if there exists a probability measure µ∗ on

A(ξ∗

min) =

{

ν ∈ Θ | − log |M(ξ∗

min,ν)| = max
θ∈Θ

− log |M(ξ∗

min,θ)|

}

, (9)

such that the following inequality holds for all x ∈ χ,

cmin(x, ξ∗

min) =

∫

A(ξ∗

min
)
trM−1(ξ∗

min,ν)I(x,ν)µ∗d(ν) − p ≤ 0, (10)

with equality in (10) at all support points of ξ∗

min (Wong 1992; Fedorov 1980; King and Wong
2000; Berger, King, and Wong 2000). The set A(ξ∗

min) is sometimes called the answering
set of ξ∗ and the measure µ∗ is a sub-gradient of the non-differentiable criterion evaluated
at M(ξ∗

min, ν). Understanding the properties of the sub-gradients and how to find them
efficiently for the minimax optimal design problems present a key problem in solving this
type of problems. In particular, there is no theoretical rule on how to choose the number of
points in A(ξ∗

min) as support for the measure µ∗ and they would have to be found by trial-
and-error. For more details, see Masoudi et al. (2017). When χ is one or two dimensional,
it is very common to plot the sensitivity function versus x ∈ χ and visually inspect whether
the graph meets the conditions in the equivalence theorem. If it does, the generated design
is optimal; otherwise it is not optimal.

It is also possible to measure the efficiency of two arbitrary designs relative to each other. For
example, given (4), we measure the proximity of a design ξ1 to a design ξ2 using its relative
D−efficiency defined by

effloc =

(

|M(ξ1,θ)|

|M(ξ2,θ)|

)1/p

= exp

(

ψloc(ξ2) − ψloc(ξ1)

p

)

, (11)

where ξ2 is usually a locally D−optimal design. The relative D−efficiency (11) may be
interpreted in term of sample size; if its value is ρ, then ξ1 requires 1/ρ times as many
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observations to have the same D−efficiency as ξ2. This means that, when ξ2 is an optimal
design, about (1/ρ− 1)100% more number of observations than for the optimal design will be
needed to maintain the D−efficiency for ξ1. Similarly, we can define Bayesian and minimax
D−efficiencies by replacing ψloc with ψmin and ψbayes, respectively.

When the design criterion is a convex functional, we can also use the equivalence theorem to
quantify the proximity of a design to the optimal design without knowing the latter by means
of the efficiency lower bound (ELB) defined by

ELB =
p

p+ maxx∈χ c(x, ξ)
, (12)

as a measure of proximity of a design to the optimum, where c(x, ξ) is one of the sensitivity
functions defined above. According to the equivalence theorem, the value of (12) is between
0 and 1, and it is equal to 1 when the design is optimal. Atwood (1969) showed that (12)
is the efficiency lower bound for the D−efficiency defined by (11). However, based on the
equivalence theorem, we keep to use (12) as a measure of proximity to other types of optimal
designs as well.

3. Imperialist Competitive Algorithm for Finding Optimal Designs

The imperialist competitive algorithm (ICA) is an evolutionary algorithm inspired from
colonialism and socio-political behavior of humans, where developed countries attempt to
take over or colonize less-developed countries to use their resources and extend their power
(Atashpaz-Gargari and Lucas 2007). Within the optimization framework, ICA has a popu-
lation of solutions called countries. In optimal design problems, each country is the location
of the support points and the corresponding weights of a design on the space of all possible
designs. ICA divides the population of countries into some sub-populations called empires.
Each empire contains one imperialist and some colonies. The imperialist is the most powerful
country within the empire. Here, the power of a country is defined to be a function of its
cost value, i.e., criterion value. This means that, in a minimization problem, countries with
smaller cost values are stronger. In ICA, there are two types of evolutionary moves: a) evo-
lution within each empire, and, b) evolution among the empires. In the earlier, the colonies
within each empire start to move or be absorbed toward their relevant imperialist country in
a process called assimilation (Lin, Cho, and Chuan 2013). During this process, a colony may
reach a better position than its imperialist. In this case, the imperialist loses its rank and the
colony becomes the new imperialist. The assimilation improves searching around the better
current solutions and so enhances the exploitation of the algorithm.

The evolution among the empires is achieved by a process called imperialists competition.
In this process, the most powerful empires receive more chances to take possession of the
colonies of the weakest empires. The competition step in ICA improves the exploration of
the algorithm in a search for the global optimum. When an empire does not have any colony,
it will be eliminated. ICA continues until it satisfies the stopping rule conditions. For more
details, see Masoudi et al. (2017), Atashpaz-Gargari and Lucas (2007) and Hosseini and
Al Khaled (2014).

To apply ICA for an optimal design problem, the user should first provide an initial guess
about the number of support point k(≥ p). In practice, the user can start by p and increment
its value by one until the equivalence theorem confirms the optimality of the current best
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design, which is the country with the least cost value. In optimal design problems, the ELB
defined by (12) can be used to build a stopping rule condition for ICA. For example, the
algorithm can be stopped when the value of the ELB of the best current design is larger
than, say, 0.95. Clearly, finding ELB in each iteration increases the CPU time required by
the algorithm as another optimization problem has to be solved to find maximum of the
sensitivity function over χ. This is especially true for minimax and Bayesian type criteria,
because the sensitivity function for the earlier involves solving a bi-level nested optimization
problem and the latter requires approximating integrals. Therefore, we prefer to calculate the
ELB periodically, say, after every 100 iterations, instead of every iteration to save the CPU
time.

4. Implementation of Optimal Design Problems in ICAOD

Different functions are available to find optimal designs for nonlinear models in ICAOD: a)
locally(): Finds locally optimal designs, b) minimax(): Finds minimax optimal designs ,
c) bayes(): Finds Bayesian optimal designs and d) robust(): Finds optimum-on-average or
robust designs. Throughout this paper, we refer to them as “OD functions”. ICAOD uses the
S3 object oriented system and works with two objects of class ‘minimax’ and ‘bayes’. Each
class has its own plot, print and update method. The plot method is used to plot the
sensitivity function and also calculate the ELB for the output design. The update method
is for executing the algorithm for more number of iterations. For internal use, locally(),
minimax() and robust() create an object of class ‘minimax’, while bayes() works with an
object of class ‘bayes’. For more details, see ?minimax and ?bayes. By default, OD functions
are defined to determine D−optimal designs. In Section 6, we demonstrate how to specify
user-defined optimality criteria. In what follows, the OD functions are explained in detail.

4.1. Locally Optimal Designs

The locally() function finds locally optimal designs and its main arguments are:

locally(formula, predvars, parvars, family = gaussian(), fimfunc = NULL,

lx, ux, k, iter, ICA.control = list(), sens.control = list(),

crt_func = NULL, sens_func = NULL,

inipars)

The arguments in the first three lines of codes are common between the OD functions. Table 1
provides an overview of them. The arguments in the first line are required to construct the
FIM of the model; inipars is equivalent to θ0 in (4) and defines the vector of initial estimates
for the model parameters.

The ICAOD package includes a formula interface to specify the model of interest. For exam-
ple, assume the two-parameter logistic model defined by

f(x,θ) =
1

1 + exp(−b(x− a))
, (13)

where θ = (a, b) is the vector of model parameters and x is the model predictor. To define (13)
in ICAOD, we can set formula = ~1/(1 + exp(-b * (x-a))), predvars = "x", parvars
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Argument Description

formula A formula that is the symbolic description of the nonlinear model.
predvars A vector of characters that denote the model predictors in formula.
parvars A vector of characters that denote the model parameters in formula.
family The distribution of the model response and the link function. It is the

same as the one in glm(). The default link function is gaussian().
fimfunc (optional) The Fisher information matrix (R function). Required if

users wish to pass the FIM directly. It takes a function with arguments
x (a vector of design points), w (a vector of associated weights) and param

(a vector of model parameters). Only one of the formula and fimfunc

arguments must be given.

k The number of design points k.
lx A vector of the lower bounds for the model predictors (design space χ).
ux A vector of the upper bounds for the model predictors (design space χ).
x (optional) A vector of design points x. if given, only the optimal weights,

w, are sought after. Required when the design points are pre-specified.

ICA.control A list of ICA control parameters. By default, it will be created by
ICA.control(). For more details, see Masoudi et al. (2017).

iter The maximum number of iterations.

sens.control Control Parameters of the maximization algorithm, which finds the max-
imum of the sensitivity function (7), (10) and (8) over the design space
χ. The obtained maximum is used to calculate the ELB of a design. By
default, it will be created by sens.control().

crt_func (optional) A user-specified criterion (R function).
sens_func (optional) A user-specified sensitivity function (R function).

Table 1: Overview of the most important common arguments of the OD functions.

= c("a", "b") and family = "binomial" (or family = binomial()). Alternatively, one
may pass the FIM of (13) as an R function via the argument fimfunc directly. In this
option, the arguments of the defined function must be a) x: is a vector of (x1, ...,xk) in (2),
b) w: is a vector of (w1, ..., wk) in (2), and c) param: is a vector of θ in (13). The output is
the FIM of (13) evaluated at the given x, w and param as a matrix.

The argument sens.control is a list of control parameters for nloptr() available in the
nloptr package (Johnson 2014). This function is used here to solve maxx∈χ c(x, ξ) for com-
puting the ELB (12). When not given, it will be created automatically by the function
sens.control. We recommend not to change its default values as they have been success-
fully tested for a large number of problems.

The crt_func and sens_func arguments are used to find a user-defined optimal designs,
which are described in Section 6.

4.2. Minimax Optimal Designs

The minimax() function finds minimax optimal designs and its main arguments are:

minimax(formula, predvars, parvars, family = gaussian(), fimfunc = NULL,
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lx, ux, k, iter, ICA.control = list(), sens.control = list(),

crt_func = NULL, sens_func = NULL,

lp, up, n.grid = 0,

sens.minimax.control = list(), crt.minimax.control = list())

The first three lines of codes are similar to the ones in locally() and the rest of the arguments
are used to evaluate the minimax criterion (5) and its sensitivity function (10) at a given
design. Table 2 presents an overview of the arguments specifically available in minimax().

In ICAOD, the parameter space Θ are either continuous or discrete. Note that, the lower
bound and upper bound of Θ are specified via the arguments lp and up, respectively. When
Θ is continuous, ICAOD uses nloptr() to solve the inner maximization problem in (5) over Θ
at a given design. The default optimization algorithm from nloptr() is the DIRECT-L algo-
rithm, which is a deterministic search algorithm based on the systematic division of the search
domain into smaller and smaller hyperrectangles (Gablonsky and Kelley 2001). For our appli-
cations, the most influential tuning parameter of nloptr() is the maximum number of func-
tion evaluations denoted by maxeval (its default value is 1000) via the crt.minimax.control

argument. The parameter space may also be discretized. In this option, the total number of
grid points is equal to n.grid^p. When specified, ICA evaluates the criterion at these grid
points to solve the maximization problem over Θ.

4.3. Bayesian Optimal Designs

The bayes() function finds Bayesian optimal designs and its main arguments are:

bayes(formula, predvars, parvars, family = gaussian(), fimfunc = NULL,

lx, ux, k, iter, ICA.control = list(), sens.control = list(),

crt_func = NULL, sens_func = NULL,

prior, crt.bayes.control = list(), sens.bayes.control = list())

The first three lines of codes are similar to the ones in locally() and the rest of the arguments
are used to approximate the integrals in (6) and (8) at a given design. Table 2 presents an
overview of the arguments specifically available in bayes().

By default, ICAOD uses the hcubature() function from the cubature package (Johnson 2013;
Narasimhan and Johnson 2017) to approximate the integrals. Th function hcubature() in-
cludes an adaptive multidimensional integration method over hypercubes known as hcubature
algorithm (Berntsen, Espelid, and Genz 1991; Genz and Malik 1980). For our applications,
the most important tuning parameters of the hcubature algorithm are the maximum number
of integrand evaluations maxEval (its default value is 50000) and a user-specified tolerance
tol (its default value is 1e-5). This algorithm stops either when the integral error estimate
is less than the integral estimate multiplied by its value or when the it reaches the specified
maximum number of function evaluations maxEval, whichever happens earlier. When the
prior distribution is less diffuse, it is sometimes more efficient to reduce the value of maxEval

to increase the speed of the hcubature algorithm.The control parameters of the hcubature()

function can be regulated via the argument crt.bayes.control.

Alternatively, ICAOD also offers the Gauss-Legendre and the Gauss-Hermite formulas to
approximate the integrals. These methods are implemented in ICA using the mvQuad package
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Argument function Description

lp minimax() A vector of lower bounds for θ.
up A vector of upper bounds for θ.
n.grid (optional) When have a positive value, the

parameters space Θ will be discretized, where
the number of grid points will be equal to
n.grid^p (defaults to 0).

crt.minimax.control A list of control parameters of the func-
tion nloptr(), which is used to maximize
the optimality criterion at a given design
over Θ. By default, it will be created by
crt.minimax.control().

sens.minimax.control A list of control parameters to find the an-
swering set (9), which is required to ob-
tain the sensitivity function and calculate
the ELB. By default, it will be created by
sens.minimax.control(). For more details,
see ?sens.minimax.control.

prior bayes() An object of class ‘cprior’ that contains
the necessary information about the prior
distribution for the unknown parameters
θ. For popular prior distributions, it can
be created via the uniform(), normal(),
skewnormal(), student() functions. For
more details, see ?bayes.

crt.bayes.control A list of control parameters to approxi-
mate the integrals in (6), using either the
hcubature() function (an adaptive mul-
tidimensional integration method over hy-
percubes) or the Gaussian quadrature for-
mulas implemented by the mvQuad pack-
age. By default, it will be created by
crt.bayes.control().

sens.bayes.control A list of control parameters required to ap-
proximate the integrals in (8). It is very sim-
ilar to crt.bayes.control() and by default
will be created by crt.bayes.control().

prob robust() A vector of the probability measure associ-
ated with each vector of initial estimates for
the unknown parameters θ.

parset A matrix where each of its row is a vector of
the initial estimates for θ.

Table 2: Overview of the arguments that are used to evaluate minimax, Bayesian and robust
(optimum-on-average) optimality criteria at a given design.
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(Weiser 2016) and can be requested via the argument crt.bayes.control. For more details,
see ?mvQuad::createNIGrid().

4.4. Robust or Optimum-On-Average Designs

The robust() function finds optimum-on-average or robust designs and its main arguments
are:

robust(formula, predvars, parvars, family = gaussian(), fimfunc = NULL,

lx, ux, k, iter, ICA.control = list(), sens.control = list(),

crt_func = NULL, sens_func = NULL,

prob, parset)

The first three lines of codes are similar to the ones in locally() and the rest of the arguments
are used to evaluate the optimum-on-average criterion at a given design. Table 2 presents an
overview of the arguments specifically available in robust().

5. Examples

In this section, we provide two examples to show the functionality of the ICAOD package
to determine optimal designs. In the first example, we find locally and minimax D−optimal
designs for a logistic model with applications in educational testing. In the second example,
we specify Bayesian and robust optimal designs for the sigmoid Emax model with applications
in dose-response studies.

5.1. Logistic Model with A Single Predictor

The logistic model is very popular for modeling binary outcomes. For example, consider an
educational research that studies the effect of hours of practice on the mastery of a math-
ematical task. Let Y be a binary response variable that takes the value 1 if a subject has
mastered the task and 0 otherwise. The logistic model is defined by

f(x,θ) = P (Y = 1) =
exp(β0 + β1x)

1 + exp(β0 + β1x)
, (14)

where x is the hours of practice and θ = (β0, β1)T . Assume that for each subject up to six
hours of practice are possible, i.e., x ∈ χ = [0, 6]. If the purpose of the study is to estimate
the model parameters accurately, an appropriate criterion is the D−optimality. The design
questions here are a) what is the best number of levels of x to apply in the study, b) what
are these levels and c) how many subjects should be assigned to each level? For example, a
researcher may choose a uniform design that includes an equal number of subjects who have
practiced for 0, 1, 2, 3, 4, 5, 6 hours. We denote this design by

ξuni =

{

0 1 2 3 4 5 6
1/7 1/7 1/7 1/7 1/7 1/7 1/7

}

. (15)

The FIM of model (14) depends on the unknown parameters through ∂f(x,θ)
∂βj

, j = 0, 1. Follow-

ing Berger and Wong (2005), let θ0 = (−4, 1.3333)T be the best initial guess for θ available
from, say, a similar study. In ICAOD, the locally D−optimal design is found by
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R> library("ICAOD")

R> log1 <- locally(formula = ~exp(b0 + b1 * x)/(1 + exp(b0 + b1 * x)),

+ predvars = "x", parvars = c("b0", "b1"),

+ family = "binomial", lx = 0, ux = 6, iter = 40, k = 2,

+ inipars = c(-4, 1.3333), ICA.control = list(rseed = 1))

R> print(log1)

***********************************************************************

ICA iter: 40

Points1 Points2

1.84249 4.15765

Weights1 Weights2

0.500 0.500

Criterion value: 3.568679

Convergence: Maximum_Iteration

CPU time: 3.159 seconds!

***********************************************************************

Throughout this paper, the rseed argument is used to guarantee the reproducibility of the
results. The algorithm stopped at iteration number 40 because it reached the maximum
number of iterations (iter = 40). Here, the design provided by the output assigns equal
weights to x1 = 1.84249 and 4.15765. This mean that, half of the subjects should be assigned
to practice nearly less than 2 hours and the other half should practice a little bit more than
4 hours. The D−criterion (4) evaluated at this design is equal to 3.5686. The plot of the
sensitivity function of the design provided by the output and the value of the ELB is obtained
by

R> plot(log1)

***********************************************************************

Maximum of the sensitivity function is 8.543706e-07

Efficiency lower bound (ELB) is 0.9999996

Verification required 0.269 seconds!

***********************************************************************

Figure 1 (a) displays the plot of the sensitivity function (7) of the design provided by the
output on the design space [0, 6]. Based on the equivalence theorem, this design is optimal
because the sensitivity function is equal or less than zero on [0, 6] and (roughly) equal to zero
at 1.84249 and 4.15765 (see the red points). The value of the ELB is nearly 1, which also
indicates the optimality of this design.

It is interesting to assess the performance of the uniform design ξuni with respect to the
locally D−optimal design obtained above. Using (11), we can calculate the D−efficiency of
ξuni relative to the locally D−optimal design by

R> leff(formula = ~exp(b0 + b1 * x)/(1 + exp(b0 + b1 * x)),

+ predvars = "x", parvars = c("b0", "b1"),

+ family = "binomial", inipars = c(-4, 1.3333),
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Figure 1: Plots of the sensitivity functions of the designs generated by the locally() function
for the logistic model over χ = [0, 6] when θ = θ0 = (−4, 1.3333)T .

+ x1 = c(0:6), w1 = rep(1/7, 7),

+ x2 = log2$evol[[20]]$x, w2 = log2$evol[[20]]$w)

[1] 0.7778723

The value of the relative D−efficiency indicates that ξuni requires about 100(1/0.777 − 1) =
29% more number of subjects to have the same D−efficiency as the D−optimal design when
θ = θ0. Therefore, having subjects to practice, say, less than 1 hours or more than 5 hours
will not increase the efficiency of the parameter estimates very much.

The value of the ELB may also be used to construct a stopping rule condition for ICA. This
feature is activated via the ICA.control argument in all OD functions similar to what follows.

R> log2 <- locally(formula = ~exp(b0 + b1 * x)/(1 + exp(b0 + b1 * x)),

+ predvars = "x", parvars = c("b0", "b1"),

+ family = "binomial", lx = 0, ux = 6, iter = 40, k = 2,

+ inipars = c(-4, 1.3333),

+ ICA.control = list(rseed = 1,

+ checkfreq = 20,

+ stop_rule = "equivalence",

+ stoptol = .99))

R> print(log2)

***********************************************************************

ICA iter: 20

Points1 Points2

1.84420 4.15857

Weights1 Weights2
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0.500 0.500

Criterion value: 3.56868

Convergence: equivalence

CPU time: 2.053 seconds!

***********************************************************************

***********************************************************************

Maximum of the sensitivity function is 8.070843e-05

Efficiency lower bound (ELB) is 0.9999596

Verification required 0.367 seconds!

***********************************************************************

We set stop_rule = "equivalence" to activate the stopping rule that is based on the equiv-
alence theorem. In this case, ICA starts to calculate the ELB for the best design every
checkfreq = 20 iterations and it stops whenever the value of the ELB is larger than stoptol

= .99. In this example, ICA stopped at the first check run because the value of ELB is
0.999(> stoptol). Note that, we requested to calculate the ELB after every 20 iterations,
instead of every iteration, to prevent a significant increase in the CPU time. This equivalence-
based stopping rule is also available in other OD functions. However, we note that, optimality
verification for Bayesian or minimax type criteria is more complicated and may slow down
the ICA.

ICAOD can also handle a situation where the design points are pre-specified, but their optimal
associated weights are of interest. For example, assume that the experimental resources only
allow a pre-specified hours of practice, say, x1 = 1, x2 = 2, x3 = 3 hours. In all OD functions,
the design points can be specified similarly via the argument x (a vector of design points):

R> log3 <- locally(formula = ~exp(b0 + b1 * x)/(1 + exp(b0 + b1 * x)),

+ predvars = "x", parvars = c("b0", "b1"),

+ family = "binomial", lx = 0, ux = 6, iter = 40,

+ x = c(1, 2, 3),

+ inipars = c(-4, 1.3333),

+ ICA.control = list(rseed = 1, checkfreq = Inf))

R> print(log3)

***********************************************************************

ICA iter: 40

Weights: 0.500 0.000 0.500

Criterion value: 4.187342

Convergence: Maximum_Iteration

CPU time: 3.3 seconds!

***********************************************************************

***********************************************************************

Maximum of the sensitivity function is 2.558775

Efficiency lower bound (ELB) is 0.4387144

Verification required 0.305 seconds!

***********************************************************************
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The results show that no weight should be assigned to the subjects with 2 hours of practice.
This means that, the responses from subjects with 2 hours of practice will not increase the
efficiency of estimation very much. Hence, this level may be eliminated to save more resources.

The value of the ELB and the plot of the sensitivity function in Figure 1 (b) clearly show
that the obtained design is not globally optimal. This comes as no surprise because the given
design points in x do not belong to the support of the optimal design when θ = θ0. Note
that, checkfreq = Inf requests a plot method for the design provided by the output so
that plot() is not required anymore. For space consideration, we use this option in the rest
of this paper.

Locally optimal designs usually lose their efficiency when the parameter estimates are far
from their true unknown values. Moreover, in practice, it is more realistic to assume that the
parameters belong to a parameter space, rather than fixing their values at some points. For
example, let θ = (β0, β1)T belongs to Θ = [βL

0 , β
U
0 ] × [βL

1 , β
U
1 ], where βL

0 = −6, βU
0 = −2,

βL
1 = .5 and βU

1 = 2. As a conservative strategy, a minimax D−optimal design minimizes the
maximum inefficiency over Θ. To find the minimax D−optimal design for our design setting,
we first set k = 2 to find the minimax D−optimal design within the class of two-point designs:

R> log4 <- minimax(formula = ~exp(b0 + b1 * x)/(1 + exp(b0 + b1 * x)),

+ predvars = "x", parvars = c("b0", "b1"),

+ family = "binomial",

+ lx = 0, ux = 6, lp = c(-6, .5), up = c(-2, 2),

+ iter = 200, k = 2,

+ ICA.control = list(rseed = 1,

+ checkfreq = 50,

+ stop_rule = "equivalence",

+ stoptol = .99),

+ crt.minimax.control = list(optslist = list(maxeval = 200)))

R> print(log4)

***********************************************************************

ICA iter: 200

Points1 Points2

0.76347 4.89579

Weights1 Weights2

0.500 0.500

Criterion value: 7.782754

Convergence: Maximum_Iteration

CPU time: 180.64 seconds!

***********************************************************************

***********************************************************************

Maximum of the sensitivity function is 21.94145

Efficiency lower bound (ELB) is 0.08353714

Verification required 0.623 seconds!

Adjust the value of 'n_seg' in 'sens.minimax.control' for higher speed.

***********************************************************************

To increase the CPU time, we reduced the value of maxeval from 1000 (default value) to 200.
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Figure 2: Plots of the sensitivity functions of the two- and three-point designs generated by
the minimax() function for the logistic regression model over χ = [0, 6] when Θ = [−6,−2] ×
[0.5, 2]. The plot (b) shows the nearly optimality of the three-point design.

Figure 2 (a) displays the sensitivity plot of the design by provided by the output and it does
not verify the optimality of the two-point design. Therefore, we increment the value of k by
one and re-execute the above code:

R> log5 <- minimax(formula = ~exp(b0 + b1 * x)/(1 + exp(b0 + b1 * x)),

+ predvars = "x", parvars = c("b0", "b1"),

+ family = "binomial",

+ lx = 0, ux = 6, lp = c(-6, .5), up = c(-2, 2),

+ iter = 500, k = 3,

+ ICA.control = list(rseed = 1,

+ checkfreq = 50,

+ stop_rule = "equivalence",

+ stoptol = .99),

+ crt.minimax.control = list(optslist = list(maxeval = 200)))

R> print(log5)

***********************************************************************

ICA iter: 200

Points1 Points2 Points3

1.06581 2.20682 6.00000

Weights1 Weights2 Weights3

0.124 0.383 0.493

Criterion value: 6.736316

Convergence: equivalence

CPU time: 194.165 seconds!

***********************************************************************
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***********************************************************************

Maximum of the sensitivity function is 0.005312662

Efficiency lower bound (ELB) is 0.9973507

Verification required 1.516 seconds!

Adjust the value of 'n_seg' in 'sens.minimax.control' for higher speed.

***********************************************************************

Figure 2 (b) displays the plot of the sensitivity function of the three-point generated design
and it indicates its nearly optimality. The optimal design suggests subjects with nearly 1, 2
and 6 hours of practice, where roughly half of the subjects should be assigned to practice for
6 hours.

Similar to the locally D−optimal design, we can assess the minimax D−efficiency of ξuni with
respect to the minimax D−optimal design by

R> meff(formula = ~exp(b0 + b1 * x)/(1 + exp(b0 + b1 * x)),

+ predvars = "x", parvars = c("b0", "b1"),

+ family = "binomial",

+ lp = c(-6, .5), up = c(-2, 2),

+ x1 = c(0:6), w1 = rep(1/7, 7),

+ x2 = log5$evol[[200]]$x, w2 = log5$evol[[200]]$w)

[1] 0.74089

This value indicates that ξuni requires about 100(1/0.74089−1) = 35% more subjects to have
the same minimax D−efficiency as the minimax D−optimal design when Θ = [−6,−2] ×
[0.5, 2].

5.2. Sigmoid-Emax Model

The sigmoid Emax model is commonly used in pharmacokinetics/pharamacodynamics to
describe the S-shape dose-response relationship (see, e.g, Macdougall 2006; Thomas 2006).
This model is defined by

E(Y ) = f(x,θ) = β1 + (β2 − β1)
xβ4

xβ4 + ββ4

3

, (16)

where x is the dose level (in mg), x ∈ χ = (0, x0], x0 is user-selected and θ = (β1, β2, β3, β4)T ,
θ2 > β1, β3 > 0. All errors are assumed to be independent and normally distributed with
mean zero and constant variance. Here, β1 is the minimum mean response, β2 is the maximum
mean response, β3 is the ED50, i.e., the dose at which 50 percent of the maximum mean effect
is achieved, and β4 is the slope parameter.

In dose-response studies, optimal designs usually determine how many doses are required to
be tested, what are their levels, and how many subjects to allocate to each dose level. Let
χ = (0, 1000]mg. Similar to Dragalin, Hsuan, and Padmanabhan (2007) and Wang and Yang
(2014), we are interested in efficient estimation of θ and the D−optimality is an appropriate
design criterion for this purpose.
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Using some algebra, it is straightforward to show that the FIM of the sigmoid Emax model
depends on the unknown parameters θ. This parameter dependency must be dealt with
based on the type of information available on θ. For example, using information from a
pilot study, one may elicit a uniform prior distribution for θ and search for Bayesian optimal
designs. As an illustrative example, let β1 ∼ U(4, 8), β2 ∼ U(11, 15), β3 ∼ U(100, 130)
and β4 ∼ U(5, 9), and all the uniform prior distributions be independent. For simplicity,
we denote the independent uniform distributions for βi, i = 1, 2, 3, 4 by πΘ, where Θ =
[4, 8]× [11, 15]× [100, 130]× [5, 9] is the parameter space. This prior can be defined in ICAOD

by the uniform() function as follows.

R> prior1 <- uniform(lower = c(4, 11, 100, 5), upper = c(8, 15, 130, 9))

Here, the output is an object of class ‘cprior’, which can be passed to the argument prior

of the bayes() function.

To find the number of support points for the Bayesian D−optimal design, we repeated the
same incremental process as described in Section 5.1 for finding minimax optimal design.
This process is excluded here due to space consideration. The Bayesian D−optimal design
has 5 points in its support, which are found by

R> sig1 <- bayes(formula = ~b1 + (b2-b1) * x^b4/(x^b4 + b3^b4),

+ predvars = "x",

+ parvars = c("b1", "b2", "b3", "b4"),

+ lx = .001, ux = 1000, k = 5, iter = 400, prior = prior1,

+ ICA.control = list(rseed = 1, checkfreq = Inf))

R> print(sig1)

***********************************************************************

ICA iter: 400

Points1 Points2 Points3 Points4 Points5

0.17040 94.59828 113.69179 138.35282 999.99946

Weights1 Weights2 Weights3 Weights4 Weights5

0.243 0.194 0.116 0.203 0.244

Criterion value: 12.72082

Convergence: maxiter

CPU time: 391.99 seconds!

***********************************************************************

***********************************************************************

Maximum of the sensitivity function is 0.0001633976

Efficiency lower bound (ELB) is 0.9999592

Verification required 33.871 seconds!

Adjust the control parameters in 'sens.bayes.control' for higher speed

***********************************************************************

Figure 3 (a) presents the plot of the sensitivity function of the five-point design provided by the
output and it verifies its optimality. In our example, the Bayesian D−optimal design suggests
five dose levels, with four of them located below 140mg and one located at the maximum.
Roughly 50% of the observations should be assigned to the lower and upper bound of the
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dose interval. Note that, the result can also be obtained in lesser CPU time if we adjust the
control parameters of the integral approximations via the argument crt.bayes.control. For
a discussion on these tuning parameters, see Masoudi, Holling, Duarte, and Wong (2019).

Using a non-optimal design may be inefficient even when its design points are sampled uni-
formly from the design space. As an illustrative example, assume a situation where a re-
searcher decides to work with an equally-weighted uniform design that has 11 points located
on 0.001, 100, 200, 300, ...., 1000. This design is not optimal when θ ∼ πΘ. The Bayesian
D−efficiency of the uniform design with respect to the obtained Bayesian D−optimal design
is calculated by

R> beff(formula = ~b1 + (b2-b1) * x ^b4/(x^b4 + b3^b4),

+ predvars = "x",

+ parvars = c("b1", "b2", "b3", "b4"),

+ prior = prior1,

+ x1 = c(.001,seq(100, 1000, by = 100)),

+ w1 = rep(1/11, 11),

+ x2 = sig1$evol[[400]]$x, w2 = sig1$evol[[400]]$w)

[1] 0.3063289

The non-optimal design may seem to have fairly chosen, but its Bayesian D−efficiency value
suggests that, roughly 226% more observations are needed to maintain the D−efficiency for
the non-optimal design in comparison to the Bayesian D−optimal design when θ ∼ πΘ. The
bayes() function is very flexible and can incorporate different prior distributions. For more
details, see Masoudi et al. (2019).

ICAOD can also find robust or optimum-on-average designs when the prior distributions
are discrete. As an illustrative example, assume Θ0 = {θ01,θ02,θ03,θ04,θ05} be a set of
five vectors of initial estimates for θ = (β1, β2, β3, β4), where θ01 = (4, 11, 100, 5), θ02 =
(5, 12, 110, 6), θ03 = (6, 13, 120, 7), θ04 = (8, 15, 130, 9) and θ05 = (12, 30, 160, 13). Let πΘ0

denotes a discrete uniform prior distribution that assigns the same probability to each vector
element of Θ0. The six-point optimum-on-average design is given by

R> parset1 <- matrix(c(4, 11, 100, 5,

+ 5, 12, 110, 6,

+ 6, 13, 120, 7,

+ 8, 15, 130, 9,

+ 12, 30, 160, 13),

+ nrow = 5, byrow = TRUE)

R> sig2 <- robust(formula = ~b1 + (b2-b1) * x ^b4/(x^b4 + b3^b4),

+ predvars = "x",

+ parvars = c("b1", "b2", "b3", "b4"),

+ lx = .001, ux = 1000, k = 6, iter = 400,

+ parset = parset1,

+ prob = rep(1/5, 5),

+ ICA.control = list(rseed = 1, checkfreq = Inf))

R> print(sig2)
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Figure 3: The plots of sensitivity functions of the generated designs for the sigmoid Emax
model over the design space [0.001, 1000]. The left panel displays the plot of the sensitivity
function of the design generated by the function bayes() when θ ∼ πΘ. The right panel
displays the plot of the sensitivity function of the design generated by the function robust()

when θ ∼ πΘ0
.

***********************************************************************

ICA iter: 400

Points1 Points2 Points3 Points4 Points5 Points6

0.73419 86.42749 112.72244 143.73056 170.57625 999.93217

Weights1 Weights2 Weights3 Weights4 Weights5 Weights6

0.200 0.132 0.155 0.186 0.098 0.229

Criterion value: 12.21398

Convergence: Maximum_Iteration

CPU time: 68.501 seconds!

***********************************************************************

***********************************************************************

Maximum of the sensitivity function is 0.0002345949

Efficiency lower bound (ELB) is 0.9999414

Verification required 1.462 seconds!

***********************************************************************

Figure 3 (b) displays the plot of the sensitivity function of the design provided by the output
and it verifies the optimality of the six-point design. Similar to the optimal design generated
by bayes(), the generated design here allocates most of its support points to the lower half
of the dose interval.
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6. User-Specified Optimality Criteria

ICAOD can also find optimal designs with respect to user-specified optimality criteria. In this
section, as an illustrative example, we find c−optimal designs for the two-parameter logistic
(2PL) model with applications in dose-response studies. The 2PL model is commonly used
in dose-response studies to model the relationship between the dose level of a drug and the
probability of a success, e.g, the probability that patients are cured. This model is defined
by

f(x,θ) = P (Y = 1) =
1

1 + exp(−b(x− a))
, (17)

where x is the dose level (predictor), θ = (a, b)T , b is the slope parameter and a is the dose
level at which the response probability is 0.5 (ED50). Throughout this paper, we denote the
dose level at which the response probability is equal to π by ED100π. For the 2PL model, it
can be shown that ED100π is equal to c(θ) = a + γb−1, where γ = log[π/(1 − π)] (see, for
example, Zhu and Wong 2001).

Sometimes the purpose of a study is to estimate a function of the unknown parameters,
say, ED100π, rather than estimating all the parameters simultaneously. For example, in
heart defibrillator design problems, estimating the ED95, or equivalently, estimating c(θ) =
a + log(0.95/(1 − 0.95))b−1 for the 2PL model is of interest (Clyde, Müller, and Parmigiani
1995). In this case, a reasonable optimality criterion is the one that minimizes the asymptotic
variance of the maximum likelihood (ML) estimator of c(θ), which is proportional to

ψc(ξ,θ) = ∇T c(θ)M−1(ξ,θ)∇c(θ), (18)

where ∇c(θ) is the gradient of c(θ) and M−1(ξ,θ) is the inverse of the FIM (see, e.g, Silvey
1980, page 4). For the 2PL model, ∇c(θ) = (1,−γb−2)T . In the optimal design literature,
ψc(ξ,θ) is referred to as c−optimality criterion and a design that minimizes ψc(ξ,θ) is called
c−optimal design. An equivalence theorem is also available for c−optimality: a design ξ∗

c

is c−optimal among all the designs on χ if and only if the following inequality holds for all
x ∈ χ,

cc(x, ξ∗

c ) = tr(B(θ)M−1(ξ,θ)M(ξx,θ)M−1(ξ,θ)) − ψc(ξ,θ) ≤ 0, (19)

with equality in (19) for all the support points of ξ∗

c (see, e.g, Chaloner and Larntz 1989).
Here, B(θ) = ∇T c(θ)∇c(θ) and ξx denotes a degenerate design that puts all its mass on x.

Similar to the D−optimality criterion, c−optimality also depends on the unknown parameters
and different types of optimal designs may be found, depending on how to deal with the
unknown parameters. As benchmark examples, in this section, we find locally and Bayesian
c−optimal designs for estimating the ED95 for the 2PL model when χ = [−1, 1]. These
examples are also available in Chaloner and Larntz (1989). Finding a minimax c−optimal or
a robust design is very similar and is excluded due to space consideration.

To use ICAOD for finding c−optimal designs, the user should first define the c−optimality
criterion and its sensitivity function as two separate functions in the R environment. Later,
these functions will be passed to bayes(), minimax(), locally() and robust() via the
crtfunc and sensfunc arguments, respectively. For example, given the 2PL model with
parameters parvars = c("a", "b"), the following lines of codes define (18) and (19) in the
R environment to be used in locally(), minimax() and robust().



22 ICAOD R Package

R> c_opt <-function(x, w, a, b, fimfunc){

+ gam <- log(.95/(1-.95))

+ M <- fimfunc(x = x, w = w, a = a, b = b)

+ c <- matrix(c(1, -gam * b^(-2)), nrow = 1)

+ B <- t(c) %*% c

+ sum(diag(B %*% solve(M)))

+ }

R> c_sens <- function(xi_x, x, w, a, b, fimfunc){

+ gam <- log(.95/(1-.95))

+ M <- fimfunc(x = x, w = w, a = a, b = b)

+ M_inv <- solve(M)

+ M_x <- fimfunc(x = xi_x, w = 1, a = a, b = b)

+ c <- matrix(c(1, -gam * b^(-2)), nrow = 1)

+ B <- t(c) %*% c

+ sum(diag(B %*% M_inv %*% M_x %*% M_inv)) - sum(diag(B %*% M_inv))

+ }

The arguments x, w are, respectively, the vector of design points and their associated weights
defined by (2). fimfunc() is a function with arguments x, w, a and b that returns the
evaluated FIM as a matrix and xi_x denotes a degenerate design, which has the same length
as the number of model predictors. The arguments a and b are model-specific and denote
the parameters of the model that is specified via parvars. A convenient feature of ICAOD

is that there is no need to compute the FIM of the model even for a user-specified optimality
criterion and the user can apply the internally-created FIM within the body of c_opt() and
c_sens() using fimfunc(). Note that, both of the c_opt() and c_sens() functions are
not vectorized with respect to a and b. This means that fimfunc() returns only a matrix,
and c_opt() and c_sens() return a value. This is a necessary structure required by the
locally(), minimax() and robust() functions. The following lines of codes provide the
locally c−optimal design for estimating the ED95 when θ = (0, 7).

R> twoPL1 <- locally(formula = ~1/(1 + exp(-b * (x-a))), predvars = "x",

+ parvars = c("a", "b"), family = "binomial",

+ lx = -1, ux = 1, inipars = c(0, 7),

+ iter = 100, k = 2,

+ crtfunc = c_opt, sensfunc = c_sens,

+ ICA.control = list(rseed = 1, checkfreq = Inf))

R> twoPL1

***********************************************************************

ICA iter: 100

Points1 Points2

-0.34277 0.34277

Weights1 Weights2

0.093 0.907

Criterion value: 0.4028266

Convergence: Maximum_Iteration
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Figure 4: Plots of the sensitivity functions of the generated c−optimal designs for estimating
the ED95 when x ∈ χ = [−1, 1]. The left panel (a) displays the sensitivity function of the
locally c−optimal design when θ = (0, 7). The right panel (b) displays the sensitivity function
of the Bayesian c−optimal design when a ∼ U(−0.3, 0.3) and b ∼ U(6, 8).

CPU time: 5.173 seconds!

***********************************************************************

***********************************************************************

Maximum of the sensitivity function is 2.514716e-08

Efficiency lower bound (ELB) is 1

Verification required 0.504 seconds!

***********************************************************************

The obtained design suggests that nearly 90% of the observations should be assigned to
0.34277 and the rest should be allocated to −0.34277. Figure 4 (a) displays the plot of the
sensitivity function of the obtained design and it indicates its optimality. Using the given
c_opt() and c_sens() functions, we can similarly find minimax c−optimal or robust designs.
For illustrating example, see ?minimax and ?robust.

Finding Bayesian c−optimal design is very similar, except that each of (18) and (19) must
be a vectorized R function with respect to the model parameters a and b:

R> c_opt_vec <-function(x, w, a, b, fimfunc){

+ gam <- log(.95/(1-.95))

+ M <- fimfunc(x = x, w = w, a = a, b = b)

+ B <- sapply(1:length(M), FUN = function(i)

+ matrix(c(1, -gam * b[i]^(-2)), ncol= 1) %*%

+ matrix(c(1, -gam * b[i]^(-2)), nrow = 1), simplify = FALSE)

+ sapply(1:length(M), FUN = function(i)
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+ sum(diag(B[[i]] %*% solve(M[[i]]))))

+ }

R> c_sens_vec <- function(xi_x, x, w, a, b, fimfunc){

+ gam <- log(.95/(1-.95)) # LD .95

+ M <- fimfunc(x = x, w = w, a = a, b = b)

+ M_inv <- lapply(M , FUN = function(FIM) solve(FIM))

+ M_x <- fimfunc(x = xi_x, w = 1, a = a, b = b)

+ B <- sapply(1:length(M), FUN = function(i)

+ matrix(c(1, -gam * b[i]^(-2)), ncol= 1) %*%

+ matrix(c(1, -gam * b[i]^(-2)), nrow = 1), simplify = FALSE)

+ sapply(1:length(M), FUN = function(i)

+ sum(diag(B[[i]] %*% M_inv[[i]] %*% M_x[[i]] %*% M_inv[[i]])) -

+ sum(diag(B[[i]] %*% M_inv[[i]])))

+ }

In the c_opt_vec and c_sens_vec functions, the arguments a and b are now vectors of the
same (dynamic) length, and fimfunc() now returns a list of matrices with length equal to
length(a). Let a ∼ U(−0.3, 0.3) and b ∼ U(6, 8). Given c_opt_vec and c_sens_vec, the
Bayesian c−optimal design for estimating the ED95 is obtained by

R> twoPL2 <- bayes(formula = ~1/(1 + exp(-b * (x-a))), predvars = "x",

+ parvars = c("a", "b"), family = "binomial",

+ lx = -1, ux = 1,

+ prior = uniform(lower = c(-.3, 6), upper = c(.3, 8)),

+ iter = 100, k = 3,

+ crtfunc = c_opt_vec,

+ sensfunc = c_sens_vec,

+ ICA.control = list(rseed = 1, ncount = 60, checkfreq = Inf),

+ sens.bayes.control = list(cubature = list(maxEval = 100)))

R> print(twoPL2)

***********************************************************************

ICA iter: 100

Points1 Points2 Points3

-0.37216 0.02012 0.42577

Weights1 Weights2 Weights3

0.026 0.219 0.755

Criterion value: 0.6252608

Convergence: maxiter

CPU time: 117.193 seconds!

***********************************************************************

***********************************************************************

Maximum of the sensitivity function is 0.000523737

Efficiency lower bound (ELB) is 0.9997382

Verification required 2.12 seconds!

Adjust the control parameters in 'sens.bayes.control' for higher speed

***********************************************************************



Ehsan Masoudi, Heinz Holling, Weng Kee Wong 25

Figure 4 (b) displays the plot of the sensitivity function of the design provided by the output
and it verifies its optimality. Similar to the locally c−optimal design, this design puts more
than 97% of its weight on the positive support points.

7. Summary

ICAOD modifies a state-of-the-art metaheuristic algorithm called Imperialist Competitive
Algorithm to find different types of optimal designs for nonlinear models. We believe this
package is more self-contained and has more capability than the few available in the liter-
ature. In particular, ICAOD offers different design approaches for handling the parameter
dependency in the information matrix when the model is nonlinear. A useful feature of the
ICAOD package is that it can create the Fisher information matrices for a very general class
of nonlinear models automatically and also includes useful theory-based tools to assess prox-
imity of any design to the optimal design without knowing the latter. Using ICAOD, it is also
possible to find optimal designs for a user-specified optimality criterion, including hard-to-find
various types of minimax optimal designs for which the criterion is not differentiable.

Due to space consideration, we presented only a few examples in this paper to show the
functionality of the package. For additional applications, see Masoudi et al. (2017) and
Masoudi et al. (2019) . The help-documentation manual for the package contains further
details and illustrations. We hope that the generality and simplicity of the ICAOD package
will encourage researchers from different disciplines to explore optimal design ideas in their
work and enable them to implement a more informed design to realize maximum statistical
efficiency at minimal cost.

Computational details

The results in this paper were obtained using R 3.5.3 with the ICAOD 0.9.9 package. R itself
and all packages used are available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/.
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