Introduction to IFAA

IFAA is a novel approach to make inference on the association of covariates with the absolute abundance
(AA) of microbiome in an ecosystem. It can be also directly applied to relative abundance (RA) data to make
inference on AA because the ratio of two RA is equal ratio of their AA. This algorithm can estimate and
test the associations of interest while adjusting for potential confounders. High-dimensional covariates are
handled with regularization. The estimates of this method have easy interpretation like a typical regression
analysis. This algorithm can find optimal reference taxa/OTU/ASV and control FDR by permutation.

To model the association, the following equation is used:
log(VE)VE > 0= 8%+ XTp" + WAk + Zb +€f, k=1,..,K+1,
where
o YVF is the AA of taxa k in subject i in the entire ecosystem.
e X, is the covariate matrix.
e W, is the confounder matrix.

e Z; is the design matrix for random effects.

o (3% is the regression coefficients that will be estimated and tested with the IFAA() function.

The challenge in microbiome analysis is that we can not oberve Y*. What is observed is its small proportion:
Y = C; V¥ where C; is an unknown number between 0 and 1 that denote the observed proportion. The
IFAA method can handle this challenge by identifying and employing reference taxa.

Package installation

To install, type the following command in R console:

install.packages("IFAA", repos = "http://cran.us.r-project.org")

The package could be also installed from GitHub using the following code:

require(devtools)
devtools: :install_github("gitlzg/IFAA")

Input and Output for IFAA() function

The IFAA(Q) function is the main function. The User Inputs are:

e MicrobData: Microbiome data matrix containing microbiome abundance with each row per sample
and each column per taxon/OTU/ASV. It should contain an "id" variable to correspond to the "id"
variable in the covariates data: CovData. This argument can also take file directory path. For example,
MicrobData="C://...//microbiomeData.tsv".

CovData: Covariates data matrix containing covariates and confounders with each row per sample and
each column per variable. It should also contain an "id" variable to correspond to the "id" variable
in the microbiome data: MicrobData. This argument can also take file directory path. For example,
CovData="C://...//covariatesData.tsv".

linkIDname: Variable name of the "id" variable in both MicrobData and CovData. The two data sets
will be merged by this "id" variable.

testCov: Covariates that are of primary interest for testing and estimating the associations. It corre-
sponds to X; in the equation. Default is NULL which means all covariates are testCov.

ctrlCov: Potential confounders that will be adjusted in the model. It corresponds to W; in the equa-
tion. Default is NULL which means all covariates except those in testCov are adjusted as confounders.

testMany: This takes logical value TRUE or FALSE. If TRUE, the testCov will contain all the variables
in CovData provided testCov is set to be NULL. The default value is TRUE which does not do anything
if testCov is not NULL.

ctrlMany: This takes logical value TRUE or FALSE. If TRUE, all variables except testCov are considered
as control covariates provided ctrlCov is set to be NULL. The default value is FALSE.

nRef: The number of randomly picked reference taxa used in phase 1. Default number is 40.
nPermu: The number of permutation used in phase 1. Default number is 40.

xlpermut: This takes a logical value TRUE or FALSE. If true, it will permute the variables in testCov.
If false, it will use residual-permutation proposed by Freedman and Lane (1983). Default is “TRUE”.

refTaxa: A vector of taxa names. These are reference taxa specified by the user to be used in phase
1. If the number of reference taxa is less than ‘nRef’, the algorithm will randomly pick extra reference
taxa to make up ‘nRef’. The default is NULL since the algorithm will pick reference taxa randomly.

reguMethod: regularization approach used in phase 1 of the algorithm. Default is "mcp". Other
methods are under development.

fwerRate: The family wise error rate for identifying taxa/OTU/ASV associated with testCov in phase
1. Default is 0.25.

sequentialRun: This takes a logical value TRUE or FALSE. Default is FALSE. This argument could be
useful for debug.

paraJobs: If sequentialRun is FALSE, this specifies the number of parallel jobs that will be registered
to run the algorithm. If specified as NULL, it will automatically detect the cores to decide the number
of parallel jobs. Default is NULL. It is safe to have 4 gb memory per job. It may be needed to reduce
the number of jobs if memory is limited.

standardize: This takes a logical value TRUE or FALSE. If TRUE, all design matrix X in phase 1 and
phase 2 will be standardized in the analyses. Default is FALSE.

nRefMaxForEsti: The maximum number of reference taxa used in phase 2. The default is 1.

bootB: Number of bootstrap samples for obtaining confidence interval of estimates in phase 2. The
default is 500.

bootLassoAlpha: The significance level in phase 2. Default is 0.05.

refReadsThresh: The threshold of non-zero sequencing reads for choosing the reference taxon in phase
2. The default is 0.2 which means at least 20% non-zero sequencing reads.

e SDThresh: The threshold of standard deviations of sequencing reads for choosing the reference taxon
in phase 2. The default is 0.5 which means the standard deviation of sequencing reads should be at
least 0.5.

e balanceCut: The threshold of non-zero sequencing reads in each group of a binary variable for choosing
the reference taxon in phase 2. The default number is 0.2 which means at least 20% sequencing reads
are non-zero in each group.

o seed: Random seed for reproducibility. Default is 1.
The output of TFAA() function is a list. The estimation results can extracted as the following:

e analysisResults$estByCovList: A list containing estimating results for all the variables in testCov.
See details.

The covariates data including testCov and ctrlCov can be extracted in the output:

e covariatesData: A dataset containing covariates and confounders used in the analyses

Examples

The example datasets dataM and dataC are included in the package. They could be accessed by:
library(IFAA)

data(dataM)

dim(dataM)

#> [1] 20 60

dataM[1:5, 1:8]

#> 1d rawCountl rawCount2 rawCount3 rawCounts rawCountb rawCounté rawCount7

#> 1 1 0 0 0 0 0 & 0
#> 2 2 0 0 0 0 0 0 0
3 3 0 0 0 0 0 214 0
w4 4 0 0 0 0 0 2 0
5 5 0 0 0 0 0 40 0
data(dataC)

dim(dataC)

#> [1] 20 6

dataC[1:5,]

#> id v4 vl v5 v2 v3

#> 1 1 1 1.653901 4 1 NA

#> 2 2 2 0.362706 5 2 2

#> 3 3 1 1.496269 NA 5 2

4 4 11.755541 5 3 3

#> 5 5 1 1.035714 5 7 NA

Both the microbiome data dataM and the covariates data dataC contain 20 samples (i.e., 20 rows).

e dataM contains 60 taxa with absolute abundances and these are gut microbiome.

e dataC contains 5 covariates.

Next we analyze the data to test the association between microbiome and the two variables "vi" and "v2"
while adjusting for the variable "v3".

results <- IFAA(MicrobData = dataM,
CovData = dataC,
linkIDname = "id",
testCov = c("v1", "v2"),
ctrlCov = c("v3"),
nRef = 3,
nPermu =
paraJobs 2,
fwerRate = 0.25)

#> There are 41 tazra without any sequencing reads and

#> excluded from the analysts

#> Data dimensions (after removing missing data <f any):

#> 13 samples

#> 18 taxa/0TU/ASV

#> 2 testCov wvartiables in the analysis

#> These are the testCov wariables:

#> vl, v2

#> 1 ctrlCov wvartiables in the analysis

#> These are the ctriCov variables:

#> w3

#> 0 binary covartates in the analysis

#> 54.27 percent of microbiome sequencing reads are zero

#> Start Phase 1 association tdentification

#> start phase la

#> 2 parallel jobs are registered for analyzing 3 reference taxa in Phase la

#> 50 percent of phase la analysis has been done

#> 100 percent of phase la analysis has been done

#> Phase 1la done and took 0.117 minutes

#> mazximum memory used after phase la: 5717681 Mb

#> start to run permutation

#> 2 parallel jobs are registered for the permutation analysts in Phase 1b

#> 20 percent of phase 1b analysis has been done.

#> 40 percent of phase 1b analysis has been done.

#> 60 percent of phase 1b analysis has been done.

#> 80 percent of phase 1b analysis has been done.

#> 100 percent of phase 1b analysis has been done.

#> mazimum memory used after permutation: 5941444 Mb

#> Permutation analysis done and took 0.326 minutes

#> Phase 1 Assoctatton identification is done and used 0.46 minutes

#> Start Phase 2 parameter estimation

#> Final Reference Taza are: rawCount47

#> Start estimation for the 1th final reference tazon: rawCount47

#> 2 parallel jobs are registered for bootstrapping in Phase 2.

#> 100 percent of the estimation analsis for the final reference tazon rawCount47 have been done.

#> Estimation done for the 1th final reference tazon: rawCount47 and it took 0.1 minutes

#> Phase 2 parameter estimation done and took 0.1 minutes.

#> The entire analysis took 0.56 minutes

3,

In this example, we are only interested in testing the association with "vi" and "v2" which is why
testCov=c("v1,"v2"). The variable "v3" is adjusted as a potential confounder in the analyses. For the
sake of speed in this hypothetical example, we set small numbers for nRef=4, nPermu=4 and bootB=5. These

are just for illustration purpose here and are too small for a formal analysis to generate valid results.

The final analysis results are stored in the list analysisResults$estByCovList:

results$analysisResults$estByCovList

#> $u2

#> Beta.LPR LowB95/CI.LPR UpB95/CI.LPR
#> rawCount29 0.05874244 0.012653235 0.09834572
#> rawCount42 0.04112836 -0.004739838 0.08098110

The results found the two taxa "rawCount29" and "rawCount42" associated with "v2". The regression
coefficients and their 95% confidence intervals are provided. These coefficients correspond to $* in the
model equation.

The interpretation is that

o Every unit increase in "v2" is associated with approximately 5.9% increase in the absolute abundance
of "rawCount29" and approximately 4.1% increase in the absolute abundance of "rawCount42" in the
entire gut ecosystem.

e There were no taxa associated with "v1" in the analysis.
All the analyzed covariates including testCov and ctrlCov are stored in the object: covariatesData:

results$covariatesData
#> id vl v2 v3

#>2 2 0.36270596 2 2
#>3 3 1.49626921 5 2
#> 4 4 1.75554095 3 3
#>6 6 1.64525227 4 4
#>8 8 -1.57781131 24 22
#>9 9 2.22581203 55 5
#> 10 10 0.71642615 98 67
#> 12 12 2.12230160 98 3
#> 14 14 1.99387922 93 4
#> 16 16 0.05417617 83 34

#> 18 18 -0.43426021 73 67
#> 19 19 1.46579846 68 566
#> 20 20 1.89625949 63 34

MZILN() function

The IFAA package also offers the MZILN() function to implement the Multivariate Zero-Inflated Logistic
Normal regression model for analyzing microbiome data. The regression model for MZILN() can be expressed
as follows:

k
log (%’H)M >0,V > 0=a% 4+ xTa" + €, k=1,..K,
A

where

o VFis the AA of taxa k in subject i in the entire ecosystem.
o VX1 s the reference taxon (specified by user).
o X is the covariate matrix for all covariates including confounders.

« aF is the regression coefficients that will be estimated and tested by the MZILN() function.

Input and Output for MZILN() function

The MZILN() function is to implement the Multivariate Zero-Inflated Logistic Normal model. It estimates
and tests the associations given a user-specified reference taxon/OTU/ASV, whereas the ‘IFAA()’ does
not require any user-specified reference taxa. If the user-specified taxon is independent of the covariates,
‘MZILN()’ should generate similar results as ‘TFAA()’. The User Inputs for ‘MZILN()’ are:

e MicrobData: Microbiome data matrix containing microbiome abundance with each row per sample
and each column per taxon/OTU/ASV. It should contain an "id" variable to correspond to the "id"
variable in the covariates data: CovData. This argument can also take file directory path. For example,
MicrobData="C://...//microbiomeData.tsv".

e CovData: Covariates data matrix containing covariates and confounders with each row per sample and
each column per variable. It should also contain an "id" variable to correspond to the "id" variable
in the microbiome data: MicrobData. This argument can also take file directory path. For example,
CovData=“C://... //covariatesData.tsv”.

e linkIDname: Variable name of the "id" variable in both MicrobData and CovData. The two data sets
will be merged by this "id" variable.

e allCov: All covariates of interest (including confounders) for estimating and testing their associations
with microbiome. Default is all covariates in covData are of interest.

o refTaxa: A vector of taxa names (or one taxon name) specified by the user and will be used as the
reference taxa.

e reguMethod: regularization approach used in phase 1 of the algorithm. Default is "mcp". Other
methods are under development.

e sequentialRun: This takes a logical value TRUE or FALSE. Default is TRUE for the MZILN function
since typically users should specify one or just a few reference taxa in refTaxa.

e paraJobs: If sequentialRun is FALSE, this specifies the number of parallel jobs that will be registered
to run the algorithm. If specified as NULL, it will automatically detect the cores to decide the number
of parallel jobs. Default is NULL. It is safe to have 4gb memory per job. It may be needed to reduce
the number of jobs if memory is limited.

e standardize: This takes a logical value TRUE or FALSE. If TRUE, all design matrix X in phase 1 and
phase 2 will be standardized in the analyses. Default is FALSE.

e bootB: Number of bootstrap samples for obtaining confidence interval of estimates in phase 2. The
default is 500.

e bootLassoAlpha: The significance level in phase 2. Default is 0.05.

e seed: Random seed for reproducibility. Default is 1.
The output of MZILN() function is a list. The estimation results can extracted as the following:

e analysisResults$estByCovList: A list containing estimating results for all reference taxa and all
the variables in allCov.

All covariates data can be extracted:

e covariatesData: A dataset containing covariates and confounders used in the analyses

Examples

We use the same example data The example dataset as that for illustrating the IFAA function. dataM and
dataC are included in the package. They could be accessed by:

data(dataM)

dim(dataM)

#> [1] 20 60

dataM[1:5, 1:8]

#> 1d rawCountl rawCount2 rawCount3 rawCount4 rawCountb rawCount6 rawCount7

#> 1 1 0 0 0 0 0 & 0
2 2 0 0 0 0 0 0 0
3 3 0 0 0 0 0 214 0
® 4 4 0 0 0 0 0 2 0
5 5 0 0 0 0 0 40 0
data(dataC)

dim(dataC)

#> [1] 20 6

dataC[1:5,]

#> id v4 vl v5 v2 v3

#> 1 1 1 1.653901 4 1 NA

#> 2 2 2 0.362706 5 2 2

#> 3 3 1 1.496269 NA 5 2

#> 4 4 11.755541 5 3 3

#> 5 5 1 1.035714 5 7 NA

Both the microbiome data dataM and the covariates data dataC contain 20 samples (i.e., 20 rows).

o dataM contains 60 taxa with absolute abundances and these are gut microbiome.

e dataC contains 5 covariates.

Next we analyze the data to test the association between microbiome and all the three variables "vi", "v2"
and "v3".

results <- MZILN(MicrobData = dataM,
CovData = dataC,
linkIDname = "id",
allCov = c("v1i","v2","v3"),
refTaxa=c("rawCount11"),

paraJobs = 2

)
#> There are 41 taxra without any sequencing reads and
#> excluded from the analysts

#> Data dimensions (after removing missing data <f any):
#> 13 samples

#> 18 taxa/0TU/ASV

#> 3 covariates in the analysis

#> These are the covariates:

#> vl, v2, v3

#> 0 binary covartiates in the analysis

#> 54.27 percent of microbiome sequencing reads are zero

#> start phase la

#> Loading required package: MASS

#> Loading required package: Matriz

#> 100 percent of phase la analystis has been done

#> Phase 1la done and took 0.068 minutes

#> Reference taxa are: rawCountll

#> 2 parallel jobs are registered for bootstrapping in Phase 2.

#> 100 percent of the estimation analsis for the final reference tazon rawCountll have been done.
#> Estimation done for the 1th reference tazon: rawCountll and it took 0.1 minutes

#> The entire analysis took 0.17 minutes

In this example, we are only interested in testing the associations with "v1", "v2" and ‘ “v3”’ which is why
allCov=c("v1,"v2", "v3").

The final analysis results are stored in the list results$analysisResults$estByRefTaxalist$rawCountll1$estByCovList:

results$analysisResults$estByRefTaxaList$rawCountl1$estByCovList
#> $v2

#> Beta.LPR LowB95/CI.LPR UpB95/,CI.LPR

#> rawCount29 0.03564777 -0.004670225 0.07552065

#> rawCount42 0.02596476 -0.013277107 0.06550157

#>
#> $u3
#> Beta.LPR LowB95J,CI.LPR UpBQ5ZCI.LPR

#> rawCount6 -0.0034798459 -0.01587403 0.005177811

#> rawCount29 -0.0041617854 =0.01547576 0.004301370
#> rawCount32 -0.0006508698 -0.01215754 0.009207140
#> rawCount42 -0.0089477238 -0.02114662 0.000116618
#> rawCount45 -0.0084549036 —0.02079809 0.001075871
#> rawCount47 -0.0035440880 —0.01644204 0.010463618

The results found the two taxa "rawCount29" and "rawCount42" associated with "v2", and a bunch of
other taxa assoicated with “‘v3’”. The regression coefficients and their 95% confidence intervals are provided.
These coefficients correspond to o* in the model equation, and can be interpreted as the associations between
the covariates and log-ratio of the significant taxa over the reference taxon.

The interpretation is that

o Every unit increase in "v2" is associated with approximately 3.6% increase in the abundance ratio
of "rawCount29" over ‘“rawCountl1”’ and approximately 2.6% increase in the abundance ratio of
"rawCount42" over ‘ “rawCount11”’ in the entire gut ecosystem. The interpretation is similar for the
associations with ‘ “v3”’

e There were no taxa associated with "v1i" in the analysis.

All the analyzed covariates are stored in the object: covariatesData:

results$covariatesData

#> 2d vl v2 3
#> 2 2 0.36270596 2 2
#> 3 3 1.49626921 5 2
#> 4 4 1.75554095 3 3
#> 6 6 1.64525227 4 4

#>
#>
#>
#>
#>
#>
#>
#>
#>

8

9

10
12
14
16
18
19
20

8 -1.57781131 24
9 2.22581203 55
10 0.71642615 98
12 2.12230160 98
14 1.99387922 93
16 0.05417617 83
18 -0.43426021 73
19 1.46579846 68
20 1.89625949 63

22

67

34
67
566

34

	Package installation
	Input and Output for IFAA() function
	Examples
	MZILN() function
	Input and Output for MZILN() function
	Examples

