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Abstract

A new Poisson subordinated distribution is proposed to capture
major leptokurtic features in log-return time series of financial data.
This distribution is intuitive, easy to calculate, and converge quickly.
It fits well to the historical daily log-return distributions of currencies,
commodities, Treasury yields, VIX, and, most difficult of all, DJIA.
It serves as a viable alternative to the more sophisticated truncated
stable distribution.
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1 Introduction

The method of mixing Gaussian distributions of varying variances to produce
a leptokurtic distribution has been known since 1970’s (Praetz, P.D., 1972).
However, up to today, there is no well-defined mixture distribution that is
easy to work with when studying the highly leptokurtic distribution of daily
log-return data from the financial market. For instance, many stock indices
and commodity time series have kurtosis of more than 10. One can easily
collect 90-year history of the daily log-returns of DJIA1, which has kurtosis of
more than 20. There is no good distribution other than the stable distribution

1For instance, download from http://finance.yahoo.com/
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to describe such fat-tail data. But due to the infinite moments, the tails of
the stable distribution have to be truncated.

In this paper, a Poisson subordinated distribution is proposed to fill the
gap. It is easy to calculate; the summation converges quickly; analytic for-
mula exists for all moments. Hopefully with these nice features, it is a good
tool for the financial professionals to describe the kind of data they need to
manipulate everyday.

I will use the acronym ”PSD” for the Poisson subordinated distribution
in this paper. The formula developed in this paper have been validated by
GNU Maxima and R. Calculations and charts are generated by a library I
wrote in R in both the double precision and MPFR (Multiple Precision Float
Reliable).

2 The Development of PSD

2.1 Basic Notations

First of all, the basic notations are defined in this section. Additional inves-
tigations about the distribution will be elaborated in Section 2.2.

The normal distribution is

N(x; μ, σ2) =
1

√
2πσ

e
−(x−μ)2

2σ2 (1)

ΦN (x; μ, σ2) =
1

2
[1 + erf(

x − μ
√

2σ
)] (2)

where μ is the mean and σ is the volatility. In order to introduce skewness
into PSD, we will use the skew normal distribution 2 with no shift, which is
defined as

SN(x; σ2, a) = 2 N(x; 0, σ2) ΦN(a x; 0, σ2). (3)

In Appendix B, I will present an alternative method of introducing skewness
using shifted normal distribution. Mathematically it is simpler than skew
normal distribution. The form of moments is very similar. But it has slightly
less capability of generating skewness when the tails are close to normal. The
reader can consult the Appendix and the companion R library.

2http://en.wikipedia.org/wiki/Skew normal distribution
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The Poisson distribution is

Q(k, λ) = e−λ λk

k!
, (4)

where λ is the expected number of occurrences during the given interval and
k is the number of occurrences of an event. Think of k as the magnitude of
”earthquakes” in the financial market. It is obvious that

∞∑

k=0

Q(k, λ) = 1. (5)

The subordination works as following. For a given financial time series,
e.g., the daily log-returns of DJIA, we assume there is a unit volatility σ
associated with it. Everyday we throw the dice 3 according to the Poisson
distribution and get k with a certain probability Q(k, λ). On that day, the
actual volatility is determined by the scaling formula:

σk = σ (k + 1)α(1 + γ)k (6)

where α and γ are two scaling factors that amplify the unit volatility to the
actual volatility. Both α and γ tend to be between 0 and 1. The actual
volatility is fed into the skew normal distribution subordinatee (Equation 3)
to produce the random move for that day. The skewness factor is denoted as
β, which tends to be a small fraction between −

√
2/π and

√
2/π (0.798).4

Therefore, the probability distribution function (PDF) of the combined pro-
cess is

P (x; σ, α, γ, β, λ) =
∞∑

k=0

Q(k, λ)SN(x; σ2
k,

β
√

2/π − β2
) (7)

where we can attribute the PDF as the sum of all k-th terms:

P (x; σ, α, γ, β, λ) =
∞∑

k=0

P (k)(x; σ, α, γ, β, λ) (8)

P (k)(x; σ, α, γ, β, λ) = Q(k, λ)SN(x; σ2
k,

β
√

2/π − β2
). (9)

3This naive picture can’t explain the conditional heteroscedasticity, which will require
more sophisticated modeling within the Poisson distribution framework, or integrating
PSD with the GARCH model.

4The form of β√
2/π−β2

is so chosen that the first moment is proportional to β σ.
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In some applications such as tail index and numeric computation, the
closed form of dP (x)/dx could also be of importance:

dP

dx
(x; σ, α, γ, β, λ) = −

∞∑

k=0

P (k)(x; σ, α, γ, β, λ)

(
x

σ2
k

)

+ Q(k, λ)

√
2

π

1
√

2/π − β2

(
β

σk

)

SN(

√
2

π

x
√

2/π − β2
; σ2

k, 0). (10)

In a similar fashion, the cumulative distribution function (CDF), Φ(x) =∫ x

−∞ P (x)dx, is

Φ(x; σ, α, γ, β, λ) =
∞∑

k=0

Q(k, λ) [
1

2
+

1

2
erf(

x

σk

√
2
) − 2 T (

x

σk

,
β

√
2/π − β2

)]

(11)
where T (h, a) is Owen’s T function.

As a starter, we can easily check the value of the PDF at x = 0:

P (0; σ, α, γ, β, λ) =
1

√
2 π σ

e−λ

∞∑

k=0

λk

(k + 1)α k! (γ + 1)k
(12)

This summation can be calculated numerically; therefore, is valuable in val-
idating numerical implementation. Using the L notation of Equation 55, we
have:

P (0; σ, α, γ, β, λ) =
1

√
2 π σ

e−
λ γ
γ+1 L−α

(
λ

γ + 1

)

(13)

Furthermore, when β = 0, P (0; σ, α, γ, 0, λ) describes the peak value of PDF
of a symmetric PSD. This is our first encounter of the Lihn function LN(x).
More details can be found in Section 6.

2.2 Some Properties and Investigations

In this subsection, we will discuss several obvious properties of PSD, mainly
about the PDF in Equation 7. The reader can obtain some intuitions about
this distribution through these exercises.
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2.2.1 Reduced to a Normal Distribution

The distribution is reduced to a normal distribution when α = γ = β = 0
since σk is simplified to σ:

P (x; σ, 0, 0, 0, λ) = N(x; 0, σ2). (14)

This provides us a good starting point with respect to the Central Limit
Theorem.

2.2.2 λ = 1

When λ = 1, Q(k, λ) is simplified to 1/k!. This allows us to remove some of
the noises in the subsequent analytic solutions. This is what will be used in
all numerical calculations throughout this paper unless mentioned else.

2.2.3 Symmetric When β = 0

When β = 0, the distribution is symmetric. When we study the properties of
PSD other than skewness, it is easier to gain intuition under such condition
since we have one less variable to worry about. Figure 1 demonstrates the
various shapes of symmetric distribution and how the shapes of PDF change
with increasing α and γ in the range of typical financial applications (with
λ = 1, β = 0). When γ = 0, α alone generates moderately leptokurtic tails.
When a positive γ is present, the kurtosis starts to rise rapidly. More numeric
results will be presented later when kurtosis is studied in greater details.

When α is in the range of 0.66 to 0.86 and γ is zero, PSD produces Pareto-
like tails, by which we mean the log PDF is linear when x is large. However,
numeric simulation shows that only a particular α (˜0.62) produces a precise
Pareto-tail condition. More numeric results will be presented later.

2.2.4 Asymmetric When β 6= 0

When β is not zero, the distribution is skewed. All the odd moments are
not zero when β is not zero. The mean of PSD is shifted in proportion to β,
μ1 ∝ β. The skewness is positive when β > 0 and negative when β < 0. The
skewness can be quite large for some β’s as demonstrated in Figure 2.
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kurtosis can become very large.
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2.2.5 The Structure of σk

We now take a look at the structure of σk. This is the core of the PSD
that determines the shape of the distribution. The relation between σk and
k is determined by the choices of α and γ in (k + 1)α(1 + γ)k. The former
(α) allows log σk to scale at the rate of log(k + 1) while the later (γ) lin-
early with k. Therefore, α generates moderate tails while γ generates very
prominent tails. Figure 3 is an illustration of the log contribution of the
k-th item of PDF(x) when α = 0.7, γ = 0.3. The contour shows the level of
log(P (k)(x; σ, α, γ, β, λ)) in Equation 7. The Poisson sum converges quickly
within 20 terms even for a very heavy tail. This allows very efficient numeric
computation of PSD, which has been implemented in R.

3 The Statistics

The moment generating function G(t) =
∫∞
−∞ etx P (x) dx is

G(t; σ, α, γ, β, λ) = 2
∞∑

k=0

Q(k, λ)eσ2
kt2/2 ΦN (

√
π

2
β t σk; 0, 1) (15)

by which the n-th moment is

μn =
dn

dtn
G(t)|t=0. (16)

Similarly, the characteristic function C(t) = G(it) is

C(t; σ, α, γ, β, λ) = 2
∞∑

k=0

Q(k, λ)e−σ2
kt2/2 ΦN(i

√
π

2
β t σk; 0, 1). (17)

The separation between real and imaginary parts in C(t) is quite clear since

ΦN (i

√
π

2
β t σk; 0, 1) =

1

2
+

i

2
erfi(

√
π β t σk

2
), (18)

where erfi(x) is the imaginary error function.
It is interesting to note that if P (x) represents the log-capital distribution

of market constituents, then G(t) is the mean market capitalization of the
market, which should always exist in PSD.
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0.3. The contour shows the level of log(P (k)(x; σ, α, γ, β, λ)) in Equation 7.
The Poisson sum converges quickly within 20 terms even for a very heavy
tail. This allows very efficient numeric computation of PSD, which has been
implemented in R.
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We shall attempt to carry out analytic solutions for the first 4 moments.
We are especially interested in the closed form of skewness and kurtosis,
if possible. It should be pointed out before we proceed that (a) the odd
moments are non-zero only when β 6= 0; (b) the n-th moment is proportional
to (σk)

n.

3.1 The Mean

The first moment, the mean, is

μ1 = β σ e−λ

∞∑

k=0

(k + 1)αλk(1 + γ)k

k!
(19)

which is predominantly generated by the presence of β. Equation 19 has
known analytic solutions when α is a positive integer or zero. Using the
notation of Equation 55, we have:

μ1 = β σ eλγ Lα(λ(1 + γ)). (20)

The reader may want to cross-reference Section 6 for more details on the
LN (x) notation.

3.2 The Variance

The second moment is

μ2 = σ2 e−λ

∞∑

k=0

(k + 1)2αλk(γ + 1)2k

k!
. (21)

Equation 21 has known analytic solutions when 2α is a positive integer or
zero. For instance, in the typical range of α between 0 and 1, the closed form
is available when α = 0.5. Using the LN(x) notation, we have:

μ2 = σ2 eλγ(γ+2) L2α(λ(γ + 1)2). (22)

This leads to the formula of variance

var = μ2 − μ2
1 = σ2 eλγ(γ+2) L2α(λ(γ + 1)2)

− β2 σ2 e2λγ Lα(λ(1 + γ))2. (23)
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To illustrate the relation between the unity volatility (σ) and the actual
volatility (σact = var1/2), we studied the simplified case where β = 0 and
λ = 1. Now

σact

σ
= eγ( γ

2
+1) L2α((γ + 1)2)

1
2 . (24)

Figure 4 shows the contour plot of the actual volatility ratio, Equation 24.
We can examine the ratio of σact/σ with several standard parameter sets.
When α = 1, γ = 0.25, the ratio is 3.8. Majority of the contribution comes
from the L2α term since the exponential term is not much more than one
with a small γ.

It is also interesting to estimate how quick the finite integral of moments
converges to theoretical value. Since the following integral is well known:

∫ x

−x

x2 e−x2/2 dx =
√

2π erf

(
x
√

2

)

− 2 x e−x2/2, (25)

we can study the convergence of variance in a reasonably elegant form with
σ = 1, β = 0, that is, when the distribution is symmetric and the unity
volatility is one. Let’s define

δμ2(x; α, γ, λ) = μ2(σ = 1, β = 0) −
∫ x

−x

x2 P (x; 1, α, γ, 0, λ) dx (26)

which is (the notation L̂(k)
α is defined in Equation 56)

δμ2(x; α, γ, λ) = eλγ(γ+2)

∞∑

k=0

L̂(k)
2 α(λ (γ + 1)2) [1 − erf

(
f(k)(x; α, γ)

)
]

+

√
2

π
x eλγ

∞∑

k=0

L̂(k)
α (λ (γ + 1)) e−f(k)(x;α,γ)2

where f(k)(x; α, γ) =
x
√

2
(k + 1)−α (γ + 1)−k. (27)

The ratio δμ2(x)/μ2 describes the error of computing the variance by
finite integral from −x to x. As α and γ get bigger, the tails are more
prominent, therefore, the error gets larger. The integral needs to extend to
large multiple, e.g. 1000, of the unity volatility to yield high precision. This
demonstrates how difficult it is to estimate tail risk with finite range of data.
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3.3 General Form of the N-th Moment

As we work through the first few moments, we begin to see a pattern emerg-
ing. The N -th moment has the general form of:

μN = gN(β) σN e−λ

∞∑

k=0

(k + 1)N α λk (γ + 1)N k

k!
(28)

= gN(β) σN eλ((γ+1)N−1) LNα(λ(γ + 1)N). (29)

where gN (β) is an N -th order polynomial of β. gN(β) can be symbolically 5

calculated from dn

dtn
G(t)|t=0 by setting α = γ = 0, σ = λ = 1. Below listed

gN (β) for the first six moments:

g1(β) = β , (30)

g2(β) = 1 , (31)

g3(β) = 3β −
π

2
β3 , (32)

g4(β) = 3 , (33)

g5(β) = 15β − 5π β3 +
3π2

4
β5 , (34)

g6(β) = 15 . (35)

3.4 The Skewness

The third moment is studied here in the context of skewness. Skewness in
terms of raw moments is quite complicated:

skewness =
μ3 − 3μ1μ2 + 2μ3

1

(μ2 − μ2
1)

3/2
. (36)

However, we can study a special case, {α = 1, γ = 0, λ = 1} to reveal the
general structure of the skewness. The skewness is reduced to:

skewness(β) =
15 β − 7.562 β3

(5 − 4 β2)3/2
(37)

5For instance, my symbolic program is written in GNU Maxima.
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which is a monotonically increasing function of β when |β| < 1. This range
of β covers most use cases in real world. 6

Figure 5 shows the contour plot of skewness when α 6= 0, γ = 0. The
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Figure 5: Skewness Contour when γ = 0. Notice that the presence of α
enhances the skewness.

center of zero skewness is at where the normal distribution is. The presence
of α enhances the skewness. When γ is not zero, the center of zero skewness
will be shifted.

6The skewness of SN is 0.429 β3

(1−β2)
3
2
. Note that the Skew Normal distribution approaches

maximum skewness as β approaches
√

2/π (0.798).
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3.5 The Kurtosis

The fourth moment is studied here in the context of excess kurtosis when
β = 0. This simplified version will give us better intuition.

kurt =

(
μ4

μ2
2

)

β=0

− 3 =
3 eλ

∑∞
k=0

(k+1)4 α λk (γ+1)4 k

k!(∑∞
k=0

(k+1)2 α λk (γ+1)2 k

k!

)2 − 3 (38)

Using the LN (x) notation, we have:

kurt =
3 eλ γ2 (γ+2)2 L4α(λ (γ + 1)4)

L2α(λ(γ + 1)2)2 − 3. (39)

When studying financial data, the kurtosis plays an important role since
most of the log-return time series are highly leptokurtic if the data is avail-
able for long history (say, greater than 30 years). One of the basic criteria
concerning any probability distribution candidate suitable for financial appli-
cations is whether the distribution is capable of handling very high kurtosis.
For instance, in the analysis of daily log-returns of DJIA and commodities,
the excess kurtosis can go as high as 10-20. Distributions with Pareto tails
usually have excess kurtosis of less than 3.0. In the skew lognormal cascade
distribution that I have studied before (Lihn 2008), it is extremely compli-
cated to generate high kurtosis while being able to fit variance well. PSD is
far superior to the skew lognormal cascade distribution in this regard. Let’s
take a look at the kurtosis generating capability of PSD.

Figure 6 shows the contour plot of kurtosis for various α and γ, assuming
β = 0, λ = 1 for simplicity. With the illustrated range of α = 0 ∼ 1,
γ = 0 ∼ 0.5, PSD covers the kurtosis from zero up to 100. This flexibility
should make PSD useful for heavily leptokurtic data.

3.6 Tail Index

We now study the tail index in terms of the reciprocal of hazard function,
according to Gabaix 2009, Section 4.2. The tail index ξ is defined as

ξ = lim
x→∞

ξ(x), where ξ(x) =
d

dx

1 − Φ(x)

P (x)
. (40)
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ξ(x) can be simplified to a more computationally friendly form:

ξ(x) = −1 −
1 − Φ (x)

P (x)2

dP (x)

d x
. (41)

Since P (x), Φ(x), and d P (x)
dx

have concise summation formula to work with
(See Section 2.1), we can compute the tail index numerically. The challenge
here is that very high numeric precision can not be obtained without using
MPFR (multiple precision floating number) which is very time-consuming,
and the numeric error in the tails (|x| → ∞) is not easy to estimate.

Numeric simulation presented in Figure 7 indicates that ξ ∼ 0 when
α ∼ 0.7, γ = 0. When α and γ are both small, ξ is negative. When α
gets larger or when γ is positive, ξ is positive and finite. This puts this
distribution in the category of ”regular” in the extreme value theory (EVT).

3.7 Pareto Tail

Pareto distribution occupies a very special position in economics, physics,
and mathematics since it presents an environment of scale invariance. This
is illustrated by the elegant concept of 80/20 principle (See Gabaix 2009 for
examples).

When we look at both the distribution and the random variable in the
logarithm scale, Pareto distribution is no more than a straight line on the
chart 7 , that is,

lim
x→∞

d2

dx2
log P (x) = 0 (42)

which is equivalent to

lim
x→∞

Δ(x) =
1

P (x)

d2 P (x)

dx2
−

1

P (x)2

(
dP (x)

dx

)2

= 0 (43)

So now the study of Pareto tail is a matter of determining which α yields
Δ(x) → 0 for large x. Under the simplified condition of σ = 1, γ = 0, β =
0, λ = 1, we have:

Δ(x, α) =
x2 L̃−5 α(x, α) − L̃−3 α(x, α)

L̃−α(x, α)
− x2 L̃−3 α(x, α)

2

L̃−α(x, α)2
(44)

7Assume y is price return and x = log(y) is the log return. The Pareto-like PDF
expressed in y, P (y) = y−γ , is equivalent to the PDF expressed in x, P (x) = e(1−γ) x. It
is obvious that, log P (x) = (1 − γ) x, is a straight line in x; and d2

dx2 log P (x) = 0.
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Figure 7: Tail Index computed at P (x; α, γ) = e−20. The larger the index is,
the fatter the tails are. The result is consistent with the fact that α produces
moderate tails while γ produces prominent tails.
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where the L̃ notation is used:

L̃p(x, α) = e−1

∞∑

k=0

φ

(
x

(k + 1)α

)
(k + 1)p

k!
, (45)

and
√

2π φ(x) = e−
1
2

x2
. We can inspect the contour plot of Δ(x, α), as

shown in Figure 8, to see where the Pareto tail may be. Numeric simulation
indicates that the Pareto tail occurs at α ∼ 0.624. However, the high-
precision computation is quite challenging as the PDF becomes very small
(P (200) ∼= 10−132). Such small PDF won’t be observed in any real-world
data and is calculated simply for mathematical curiosity.

3.8 Value At Risk (VAR) Related Topics

In this section, we will investigate the topics related to Value at Risk (VAR).
When Φ(x) represents the CDF of the daily log-returns of a portfolio, the
1% daily VAR is

V AR = exp(Φ−1(0.01)). (46)

Therefore, the issue of calculating VAR in PSD is equivalent to finding
Φ−1(C). However, the fat tail tends to complicate the perceived risk. If the
tail probability is not estimated correctly, most likely VAR will be underesti-
mated. Figure 9 shows the contour of x where the CDF Φ(σact x; α, γ) = 0.01.
This demonstrates the change of 1% VAR relative to standard deviation
σact as α and/or γ increases. Figure 10 shows the contour of x where
Φ(σact x; α, γ) = 0.001. This demonstrates the changes of 0.1% VAR rel-
ative to standard deviation as α and γ increases.

4 The Application To Financial Data

We will now apply this distribution to the log-return time series in exchange
rates, commodities, volatility index, stock market indices, over long history.
Long historical time series typically went through major events causing large
disruptions in prices. Such disruptions were reflected in fat tails and large
excess kurtosis (3-50). Tail events can devastate ignorant financial institu-
tions and individual investors who use wrong kind of distributions to analyze
risks. We will explore how to use this distribution to fit various sets of data,
get intuition on the range of parameters, and have a feel of how good the
distribution behaves in real world.
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Figure 9: The contour of x where the CDF Φ(σact x; α, γ) = 0.01. This
demonstrates the change of 1% VAR relative to standard deviation as α
and/or γ increases. Notice that the increase is about 30% (from 2.3 times
standard deviation to 2.9) which isn’t particularly drastic (compared to 0.1%
VAR). Also notice there are some fine structures when x gets above 2.8.
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Figure 10: The contour of x where Φ(σact x; α, γ) = 0.001. This demonstrates
the changes of 0.1% VAR relative to standard deviation as α and γ increases.
One should notice that the increase is more than 100% (from 3 to 7.7) which
is more drastic than the scenario of 1% VAR. The levels of the contour are
very predictable.
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4.1 Adding Location Parameter

When the PSD is applied to the real-world data, it is necessary to add the
location parameter μ to offset the center of the distribution:

P ′(x; μ, σ, α, γ, β, λ) = P (x − μ1 − μ; σ, α, γ, β, λ) (47)

Notice that μ1 is subtracted out of P ′(x) so that 〈x〉 =
∫

xP ′(x)dx = μ;
and when μ = 0, 〈x〉 = 0.

4.2 Regression Methodology

The optimx and spg packages in R are used to perform nonlinear program-
ming, which minimizes the diff function. The diff function is a least-mean-
square combination of the following deviations between PSD fit and data.

1. Deviation of variance

2. Deviation of skewness

3. Deviation of kurtosis

4. Deviation of peak PDF

5. Deviation of PDF, P (x) for x within 3 standard deviations

6. Deviation between QQ-plot and the 45◦ line

Each item can be given different weights to accommodate varying behaviors
of the underlying data. Sometimes fitting moments are as good as fitting QQ-
plot. But in other cases, one has to choose between better fits to kurtosis or
QQ-plot. In these circumstances, weights can be used to influence optmix.
Guards are provisioned in the program to confine α and γ between 0 and 1.

We will present the fits in a standard format of four charts: 1) PDF fit;
2) CDF fit; 3) log PDF fit; 4) QQ plot fit. The PDF and CFD fits show
how good the theoretical distribution describes the peak of the population.
The log PDF fit shows how good the distribution describes the tails. The
QQ plot fit describes the quantile-to-quantile comparison between the theo-
retical distribution and observed data, which provides a stringent test on the
theoretical distribution.
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4.3 Swiss Franc (SZD/USD)

The first financial data set we will examine is the daily log-returns of Swiss
Franc (SZD) to US dollar (USD) exchange rate from 1975 to 2008. The data
is slightly leptokurtic with excess kurtosis slightly less than 3.0. Figure 11
shows the PSD fit for SZD/USD exchange rate. The tails of log PDF are
very close to linear, therefore, the fit can be accomplished with zero γ. It is
very impressive that the QQ-plot follows the 45◦ line precisely.
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Figure 11: The daily log-returns of SZD/USD exchange rate from 1975 to
2008. The fit is overweight on fitting QQ-plot. The tails are fit very well
except the few farthest points.
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4.4 VIX: Volatility Index

Figure 12 is the fit for VIX from 1990 to 2011. The data is slightly leptokurtic
with excess kurtosis slightly less than 3.0. The tails of log PDF bend slightly
outward from linearity therefore requires a small γ to describe the shapes.
it is well known that the log-returns of VIX is positively skewed, that is,
volatility begets more volatility. This feature is described very well in the fit.
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Figure 12: Daily log-return of VIX (1990-2011).
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4.5 Gold

We will study gold prices from 1972 to 2009 as the representive of commodi-
ties and precious metals. Figure 13 is the fit of the log returns for gold. The
data is highly leptokurtic with excess kurtosis of more than 10. In this fit,
I’ve overweight the QQ-plot and underweight the kurtosis. The reason is
that, for highly leptokurtic data set, the observed kurtosis is just an indica-
tion of the range the kurtosis is in. Its exact value should not be taken too
seriously.
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Figure 13: Gold data fit (1972-2009). Overweight on fitting QQ-plot; under-
weight on kurtosis. The QQ-plot is fit very well, but the implied kurtosis
from the fit is twice that of the data.
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4.6 R10Y: 10-Year Treasury Yield

Figure 14 is the fit for R10Y from 1962 to 2011. The data is highly leptokurtic
with excess kurtosis of more than 10. Although its kurtosis is similar to that
of gold, its shape of distribution is subtly different. This causes the fit to drift
toward the high-end of α (∼ 1.0) and a smaller γ (∼ 0.2). This is different
from gold’s parameters of α ∼ 0.35 and γ ∼ 0.5.
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Figure 14: Daily log-return of 10-year Treasury yield (1962-2011).
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4.7 DJIA: Dow Jones Industrial Average

Figure 15 is the fit for DJIA daily log-returns from 1928 to 2011. This is
arguably one of the most difficult time series due to its very high kurtosis
of 24. However, one can see that PSD fit handles it very well except the
very far end of the tails in QQ-plot. The standard deviation, skewness, and
kurtosis are spot-on in the fit. This is a very good testimony of the PSD.

ooooooooooooooooooooooooooooooooo
o
o
o

o

o

o

o

oo

o

o

o

o

o

o
ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

−0.04 −0.02 0.00 0.02 0.04

0
10

20
30

40
50

PSD PDF

log(r)

P
D

F

o data
fit

o o ooo oo
o
o

o

oo
o
o

o
o
o

o

oooo
oooo
ooooo
o
ooo
oo
oo
oo
oo
oo
oo
ooooooo

o
oo
o
ooo
o
oooo
ooo
o
o
oooo
ooo
o

o
o
oo
oooo

oo
o

oooooo oo

−0.2 −0.1 0.0 0.1

−
6

−
4

−
2

0
2

4

PSD Log PDF

log(r)

lo
g(

P
D

F
)

psd fit:

location 0.002968

sigma 0.004625

alpha 0.2926

gamma 0.4827

beta −0.1540

−0.04 −0.02 0.00 0.02 0.04

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PSD CDF

log(r)

C
D

F

data

mean 0.000187

std 0.0116

skew −0.5977

kurt 24.8383

psd fit

mean 0.001499

std 0.0117

skew −0.5911

kurt 24.7589

oooooooooo
oo
oooo

oo
ooooo

oooo
ooooo

ooooo
oooo

oooo
oooo

oooo
oooo

oooo
oooo

ooooo
ooooo

oooo
oooo

oooooooo
oooooo

oooo
oooo

oooo
oo

−0.10 −0.05 0.00 0.05 0.10

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

PSD QQ−Plot

Observed Quantile

T
he

or
et

ic
al

 Q
ua

nt
ile

o qq data
45 degree
error

tail dropped:

left 4

right 2

Figure 15: Daily log-returns of DJIA (1928-2011). PSD handles the fit very
well except the very far end of the tails in QQ-plot. The standard deviation,
skewness, and kurtosis are spot-on in the fit.
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5 Summary

In this paper, I have shown a new kind of Poisson subordinated distribu-
tion. It is capable of fitting a wide range of leptokurtic financial data better
than most known distributions. PDF, CDF, statistical moments and tail in-
dex can be computed through summation of Poisson series, which converges
rapidly. It is very promising to be a useful statistical tool for the financial
professionals.

6 Appendix A: Analytic Form of Certain Sums

The summations in the moments tend to follow a predictable format:

S(x,N) =
∞∑

k=0

(k + 1)N xk

k!
, x 6= 0. (48)

Since we have d
dx

x(k+1) = (k + 1) xk for k = 0..∞, it follows that

(k + 1)N xk = [
d

dx
x]N(xk) (49)

where the functional operator [ d
dx

x] is to first multiply its argument by x, then
differentiate the product by x. Therefore, we can eliminate the summation
in Equation 48 and arrive at:

S(x,N) = [
d

dx
x]N (ex) = LN(x) ex (50)

where the new function LN (x) is defined - which I call the Lihn function .
This allows us to derive the closed form of the summation through differen-
tiations – When N is a positive integer, LN (x) is an N -th order polynomial
of x. For instance, the first few solutions of LN (x) are

(x + 1) when N = 1, (51)

(x2 + 3x + 1) when N = 2, (52)

(x3 + 6x2 + 7x + 1) when N = 3, (53)

(x4 + 10x3 + 25x2 + 15x + 1) when N = 4. (54)

These analytic forms are valuable in verifying the correctness of numerical
implementations. Since we often set λ = 1 in this paper, the numeric value
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of LN (1) is of particular interest in our context, which is an integer series,
{2, 5, 15, 52, 203, 877, 4140, ...}.

On the other hand, by combining Equations 48 and 50, we come up with
the following equation:

LN (x) = e−x

∞∑

k=0

(k + 1)N xk

k!
(55)

which extends LN(x) to non-integer N (N ∈ R). In some places, it is also
convenient to define

L̂(k)
N (x) = e−x (k + 1)N xk

k!
. (56)

When N is a positive integer, we can reduce LN (x) to the N -th order
polynomial as shown above. When N is a negative integer, we can also
explore the analytic solutions (but only with limited success). Since we have
x−1

∫ x

0
xk = (k + 1)−1 xk for k = 0..∞, it follows that

(k + 1)N xk = [x−1

∫ x

0

]−N(xk) when N < 0 (57)

where the functional operator [x−1
∫ x

0
] is to first integrate its argument by x,

then divide the integration by x. Therefore, we can eliminate the summation
in Equation 48 and arrive at:

S(x,N) = [x−1

∫ x

0

]−N (ex) = LN(x) ex when N < 0 (58)

which we can attempt to derive closed form of the summation through in-
tegrations. N = −1 is easy to solve, which is L−1(x) = x−1(1 − e−x).
When N = −2, it becomes somewhat complicated - L−2(x) = (− log(x) −
γ(0,−x)) x−1 e−x, where γ(s, x) is the lower incomplete Gamma function.
It is hard to move to N = −3. However, it should be pointed out that
γ(1, x) = 1− e−x indicating LN<0(x) has a close relation to the mathematics
of incomplete Gamma function. But it is beyond the interest of this paper.

7 Appendix B: Alternative Method to Intro-

duce Skewness

In this appendix, an alternative way to incorporate skewness is explained.
Here we don’t use Skew Normal (SN) distribution. Instead, the skewness is

31



introduced by way of shifting the center of each normal distribution mixture,
N(x; βσk, σ

2
k). In doing so, the probability distribution function (PDF) of

the combined process is

P (x; σ, α, γ, β, λ) =
∞∑

k=0

Q(k, λ)N(x; βσk, σ
2
k) (59)

The moment generating function G(t) =
∫∞
−∞ etx P (x) dx is

G(t; σ, α, γ, β, λ) =
∞∑

k=0

Q(k, λ)eβσkt+σ2
kt2/2 (60)

The major difference is the form of the beta polynomials in the N -th mo-
ments, gN (β). Below listed are the beta polynomial gN(β) for the first six
moments:

g1(β) = β , (61)

g2(β) = 1 + β2 , (62)

g3(β) = 3β + β3 , (63)

g4(β) = 3 + 6β2 + β4 , (64)

g5(β) = 15β + +10 β3 + β5 , (65)

g6(β) = 15 + 45 β2 + 15 β4 + β6 . (66)

The first order of β is similar to that of SN. This means, for small beta, the
two methods of generating skewness are very similar.
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