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Abstract

We present a guide to the R package MLML2R. The package provides computational efficient
maximum likelihood estimates of DNA methylation and hydroxymethylation proportions when
data from the DNA processing methods bisulfite conversion (BS), oxidative bisulfite conversion
(ox-BS), and Tet-assisted bisulfite conversion (TAB) are available. Estimates can be obtained
when data from all the three methods are available or when any combination of only two of
them are available. The package does not depend on other R packages, allowing the user to
read and preprocess the data with any given software, to import the results into R in matrix
format, to obtain the maximum likelihood 5-hmC and 5-mC estimates and use them as input
for other packages traditionally used in genomic data analysis, such as minfi , sva and limma.
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1 Introduction

In a given CpG site from a single cell we will either have a C or a T after DNA processing
conversion methods, with a different interpretation for each of the available methods. This is a
binary outcome and we assume a Binomial model and use the maximum likelihood estimation
method to obtain the estimates for hydroxymethylation and methylation proportions.

T reads are referred to as converted cytosine and C reads are referred to as unconverted
cytosine. Conventionally, T counts are also referred to as unmethylated counts, and C counts
as methylated counts. In case of Infinium Methylation arrays, we have intensities representing
the methylated (M) and unmethylated (U) channels that are proportional to the number
of unconverted and converted cytosines (C and T, respectively). The most used summary
from these experiments is the proportion β = M

M+U , commonly referred to as beta-value,
which reflects the methylation level at a CpG site. Naively using the difference between betas
from BS and oxBS as an estimate of 5-hmC (hydroxymethylated cytosine), and the difference
between betas from BS and TAB as an estimate of 5-mC (methylated cytosine) can many
times provide negative proportions and instances where the sum of uC (unmodified cytosine),
5-mC and 5-hmC proportions is greater than one due.

MLML2R package allows the user to jointly estimate hydroxymethylation and methylation
consistently and efficiently.

The function MLML takes as input the data from the different methods and returns the estimated
proportion of methylation, hydroxymethylation and unmethylation for a given CpG site. Table
1 presents the arguments of the MLML and Table 2 lists the results returned by the function.

The function assumes that the order of the rows and columns in the input matrices are
consistent. In addition, all the input matrices must have the same dimension. Usually, rows
represent CpG loci and columns are the samples.

Table 1: MLML function and random variable notation

Arguments Description
G.matrix Unmethylated channel (Converted cytosines/ T counts) from

TAB-conversion (reflecting 5-C + 5-mC).
H.matrix Methylated channel (Unconverted cytosines/ C counts) from

TAB-conversion (reflecting True 5-hmC).
L.matrix Unmethylated channel (Converted cytosines/ T counts) from

oxBS-conversion (reflecting 5-C + 5-hmC).
M.matrix Methylated channel (Unconverted cytosines/ C counts) from

oxBS-conversion (reflecting True 5-mC).
T.matrix Methylated channel (Unconverted cytosines/ C counts) from

standard BS-conversion (reflecting 5-mC+5-hmC).
U.matrix Unmethylated channel (Converted cytosines/ T counts) from

standard BS-conversion (reflecting True 5-C).

Table 2: Results returned from the MLML function

Value Description
mC maximum likelihood estimate for the proportion of methylation
hmC maximum likelihood estimate for the proportion of hydroxymethylation
C maximum likelihood estimate for the proportion of unmethylation
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Value Description
methods the conversion methods used to produce the MLE

2 Worked examples

2.1 Publicly available array data: oxBS and BS methods

We will use the dataset from Field (2015), which consists of eight DNA samples from the
same DNA source treated with oxBS-BS and hybridized to the Infinium 450K array.

When data is obtained through Infinium Methylation arrays, we recommend the use of the
minfi package (Aryee et al. 2014), a well-established tool for reading, preprocessing and
analysing DNA methylation data from these platforms. Although our example relies on minfi
and other Bioconductor tools, MLML2R does not depend on any packages. Thus, the user
is free to read and preprocess the data using any software of preference and then import the
intensities (or T and C counts) for the methylated and unmethylated channel (or converted
and uncoverted cytosines) into R in matrix format.

To start this example we will need the following packages:

library(MLML2R)

library(minfi)

library(GEOquery)

library(IlluminaHumanMethylation450kmanifest)

It is usually best practice to start the analysis from the raw data, which in the case of the
450K array is a .IDAT file.

The raw files are deposited in GEO and can be downloaded by using the getGEOSuppFiles.
There are two files for each replicate, since the 450k array is a two-color array. The .IDAT

files are downloaded in compressed format and need to be uncompressed before they are read
by the read.metharray.exp function.

getGEOSuppFiles("GSE63179")

untar("GSE63179/GSE63179_RAW.tar", exdir = "GSE63179/idat")

list.files("GSE63179/idat", pattern = "idat")

files <- list.files("GSE63179/idat", pattern = "idat.gz$", full = TRUE)

sapply(files, gunzip, overwrite = TRUE)

The .IDAT files can now be read:

rgSet <- read.metharray.exp("GSE63179/idat")

To access phenotype data we use the pData function. The phenotype data is not yet available
from the rgSet.

pData(rgSet)
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In this example the phenotype is not really relevant, since we have only one sample: male, 25
years old. What we do need is the information about the conversion method used in each
replicate: BS or oxBS. We will access this information automatically from GEO:

if (!file.exists("GSE63179/GSE63179_series_matrix.txt.gz"))

download.file(

"https://ftp.ncbi.nlm.nih.gov/geo/series/GSE63nnn/GSE63179/matrix/GSE63179_series_matrix.txt.gz",

"GSE63179/GSE63179_series_matrix.txt.gz")

geoMat <- getGEO(filename="GSE63179/GSE63179_series_matrix.txt.gz",getGPL=FALSE)

pD.all <- pData(geoMat)

#Another option

#geoMat <- getGEO("GSE63179")

#pD.all <- pData(geoMat[[1]])

pD <- pD.all[, c("title", "geo_accession", "characteristics_ch1.1",

"characteristics_ch1.2","characteristics_ch1.3")]

pD

This phenotype data needs to be merged into the methylation data. The following commands
guarantee we have the same replicate identifier in both datasets before merging.

sampleNames(rgSet) <- sapply(sampleNames(rgSet),function(x)

strsplit(x,"_")[[1]][1])

rownames(pD) <- pD$geo_accession

pD <- pD[sampleNames(rgSet),]

pData(rgSet) <- as(pD,"DataFrame")

rgSet

The rgSet is an object from RGChannelSet class used for two color data (green and red
channels). The input in the MLML function are matrices with methylated and unmethylated
information from each conversion method. We can use the MethylSet class, which contains
the methylated and unmethylated signals. The most basic way to construct a MethylSet is
using the function preprocessRaw. Here we chose the function preprocessNoob (Triche et al.
2013) for background correction, dye bias normalization and construction of the MethylSet.

MSet.noob<- preprocessNoob(rgSet)

After the preprocessed steps we can use MLML from the MLML2R package.

The BS replicates are in columns 1, 3, 5, and 6 (information from pD$title). The remaining
columns are from the oxBS treated replicates.

MethylatedBS <- getMeth(MSet.noob)[,c(1,3,5,6)]

UnMethylatedBS <- getUnmeth(MSet.noob)[,c(1,3,5,6)]

MethylatedOxBS <- getMeth(MSet.noob)[,c(7,8,2,4)]

UnMethylatedOxBS <- getUnmeth(MSet.noob)[,c(7,8,2,4)]

When only two methods are available, the default option of MLML function returns the exact
constrained maximum likelihood estimates using the the pool-adjacent-violators algorithm
(PAVA) (Ayer et al. 1955).
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results_exact <- MLML(T.matrix = MethylatedBS , U.matrix = UnMethylatedBS,

L.matrix = UnMethylatedOxBS, M.matrix = MethylatedOxBS)

Maximum likelihood estimate via EM-algorithm approach (Qu et al. 2013) is obtained with
the option iterative=TRUE. In this case, the default (or user specified) tol is considered in
the iterative method.

results_em <- MLML(T.matrix = MethylatedBS , U.matrix = UnMethylatedBS,

L.matrix = UnMethylatedOxBS, M.matrix = MethylatedOxBS,

iterative = TRUE)

The estimates are very similar for both methods:

all.equal(results_exact$hmC,results_em$hmC,scale=1)
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Figure 1: Estimated proportions of hydroxymethylation, methylation and unmethylation for the
CpGs in the dataset using the MLML function with default options

2.2 Publicly available array data: TAB and BS methods

We will use the dataset from Thienpont et al. (2016), which consists of 24 DNA samples
treated with TAB-BS and hybridized to the Infinium 450K array from newly diagnosed and
untreated non-small-cell lung cancer patients (12 normoxic and 12 hypoxic tumours). The
dataset is deposited under GEO accession number GSE71398.

We will need the following packages:

library(MLML2R)

library(minfi)

library(GEOquery)

library(IlluminaHumanMethylation450kmanifest)

library(wateRmelon)

Obtaining the data:

getGEOSuppFiles("GSE71398")

untar("GSE71398/GSE71398_RAW.tar", exdir = "GSE71398/idat")

list.files("GSE71398/idat", pattern = "idat")

files <- list.files("GSE71398/idat", pattern = "idat.gz$", full = TRUE)

sapply(files, gunzip, overwrite = TRUE)
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Reading the .IDAT files:

rgSet <- read.metharray.exp("GSE71398/idat")

The phenotype data is not yet available from the rgSet.

pData(rgSet)

We need to correctly identify the 24 DNA samples: 12 normoxic and 12 hypoxic non-small-cell
lung cancer. We also need the information about the conversion method used in each replicate:
BS or TAB. We will access this information automatically from GEO:

if (!file.exists("GSE71398/GSE71398_series_matrix.txt.gz"))

download.file(

"https://ftp.ncbi.nlm.nih.gov/geo/series/GSE71nnn/GSE71398/matrix/GSE71398_series_matrix.txt.gz",

"GSE71398/GSE71398_series_matrix.txt.gz")

geoMat <- getGEO(filename="GSE71398/GSE71398_series_matrix.txt.gz",getGPL=FALSE)

pD.all <- pData(geoMat)

#Another option

#geoMat <- getGEO("GSE71398")

#pD.all <- pData(geoMat[[1]])

pD <- pD.all[, c("title", "geo_accession", "source_name_ch1",

"tabchip or bschip:ch1","hypoxia status:ch1",

"tumor name:ch1","batch:ch1","platform_id")]

pD$method <- pD$`tabchip or bschip:ch1`

pD$group <- pD$`hypoxia status:ch1`

pD$sample <- pD$`tumor name:ch1`

pD$batch <- pD$`batch:ch1`

This phenotype data needs to be merged into the methylation data. The following commands
guarantee we have the same replicate identifier in both datasets before merging.

sampleNames(rgSet) <- sapply(sampleNames(rgSet),function(x)

strsplit(x,"_")[[1]][1])

rownames(pD) <- as.character(pD$geo_accession)

pD <- pD[sampleNames(rgSet),]

pData(rgSet) <- as(pD,"DataFrame")

rgSet

The input in the MLML function accepts as input a MethylSet, which contains the methylated
and unmethylated signals. We chose the function preprocessNoob (Triche et al. 2013) for
background correction, dye-bias normalization and construction of the MethylSet. In addition,
the function BMIQ (Teschendorff et al. 2012) from the package wateRmelon (Pidsley et al.
2013) was used for probe-type bias correction. A discussion of this preprocessing procedure is
presented by Liu and Siegmund (2016).

## Noob

MSet.noob<- preprocessNoob(rgSet)

BSindex <- which(pD$method=="BSchip")
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TABindex <- which(pD$method=="TABchip")

## BMIQ

anno <- getAnnotation(MSet.noob)

beta.b <- getBeta(MSet.noob, type = "Illumina")

design.v <- as.vector(anno$Type)

design.v[design.v == "I"] = 1

design.v[design.v == "II"] = 2

design.v <- as.numeric(design.v)

coln = colnames(beta.b)

beta.noob.bmiq <- BMIQ(beta.b, design.v = design.v,sampleID = 1:48)

beta_BS <- beta.noob.bmiq$nbeta[,BSindex]

beta_TAB <- beta.noob.bmiq$nbeta[,TABindex]

# Total Signal = methylated + unmethylated

TotalBS <- getMeth(MSet.noob[,BSindex]) + getUnmeth(MSet.noob[,BSindex])

TotalTAB <- getMeth(MSet.noob[,TABindex]) + getUnmeth(MSet.noob[,TABindex])

MethylatedBS <- beta_BS*TotalBS

UnMethylatedBS <- (1-beta_BS)*TotalBS

MethylatedTAB <- beta_TAB*TotalTAB

UnMethylatedTAB <- (1-beta_TAB)*TotalTAB

We can now use MLML from the MLML2R package.

One needs to carefully check if the columns across the different input matrices represent the
same sample. In this example, all matrices have the samples consistently represented in the
columns: sample 1 in the first column, sample 2 in the second, and so forth.

When only two methods are available, the default option of MLML function returns the exact
constrained maximum likelihood estimates using the the pool-adjacent-violators algorithm
(PAVA) (Ayer et al. 1955).

results_exact <- MLML(T.matrix = MethylatedBS , U.matrix = UnMethylatedBS,

G.matrix = UnMethylatedTAB, H.matrix = MethylatedTAB)

Maximum likelihood estimate via EM-algorithm approach (Qu et al. 2013) is obtained with
the option iterative=TRUE. In this case, the default (or user specified) tol is considered in
the iterative method.

results_em <- MLML(T.matrix = MethylatedBS , U.matrix = UnMethylatedBS,

G.matrix = UnMethylatedTAB, H.matrix = MethylatedTAB,

iterative = TRUE)

The estimates for 5-hmC proportions are very similar for both methods:

all.equal(results_exact$hmC,results_em$hmC,scale=1)

The estimates for 5-mC proportions are very similar for both methods:
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all.equal(results_exact$mC,results_em$mC,scale=1)
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Figure 2: Estimated proportions of hydroxymethylation, methylation and unmethylation for the
CpGs in the dataset using the MLML function with default options

2.3 Simulated data

To illustrate the package when all the three methods are available or when any combination
of only two of them are available, we will simulate a dataset.

We will use a sample of the estimates of 5-mC, 5-hmC and uC of the previous oxBS+BS
example as the true proportions, as shown in Figure 3.

Two replicate samples with 1000 CpGs will be simulated. For CpG i in sample j:

Ti,j ∼ Binomial(n = ci,j , p = pm + ph)

Mi,j ∼ Binomial(n = ci,j , p = pm)

Hi,j ∼ Binomial(n = ci,j , p = ph)

Ui,j = ci,j − Ti,j

Li,j = ci,j −Mi,j

Gi,j = ci,j −Hi,j

where the random variables are defined in Table 1, and ci,j represents the coverage for CpG i
in sample j.

The following code produce the simulated data:

set.seed(112017)

index <- sample(1:dim(results_exact$mC)[1],1000,replace=FALSE) # 1000 CpGs

Coverage <- round(MethylatedBS+UnMethylatedBS)[index,1:2] # considering 2 samples

temp1 <- data.frame(n=as.vector(Coverage),

p_m=c(results_exact$mC[index,1],

results_exact$mC[index,1]),

p_h=c(results_exact$hmC[index,1],

results_exact$hmC[index,1]))
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MethylatedBS_temp <- c()

for (i in 1:dim(temp1)[1])

{

MethylatedBS_temp[i] <- rbinom(n=1, size=temp1$n[i],

prob=(temp1$p_m[i]+temp1$p_h[i]))

}

UnMethylatedBS_sim2 <- matrix(Coverage - MethylatedBS_temp,ncol=2)

MethylatedBS_sim2 <- matrix(MethylatedBS_temp,ncol=2)

MethylatedOxBS_temp <- c()

for (i in 1:dim(temp1)[1])

{

MethylatedOxBS_temp[i] <- rbinom(n=1, size=temp1$n[i], prob=temp1$p_m[i])

}

UnMethylatedOxBS_sim2 <- matrix(Coverage - MethylatedOxBS_temp,ncol=2)

MethylatedOxBS_sim2 <- matrix(MethylatedOxBS_temp,ncol=2)

MethylatedTAB_temp <- c()

for (i in 1:dim(temp1)[1])

{

MethylatedTAB_temp[i] <- rbinom(n=1, size=temp1$n[i], prob=temp1$p_h[i])

}

UnMethylatedTAB_sim2 <- matrix(Coverage - MethylatedTAB_temp,ncol=2)

MethylatedTAB_sim2 <- matrix(MethylatedTAB_temp,ncol=2)

true_parameters_sim2 <- data.frame(p_m=results_exact$mC[index,1],

p_h=results_exact$hmC[index,1])

true_parameters_sim2$p_u <- 1-true_parameters_sim2$p_m-true_parameters_sim2$p_h
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Figure 3: True proportions of hydroxymethylation, methylation and unmethylation for the CpGs
used to generate the datasets
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2.3.1 BS and oxBS methods

When only two methods are available, the default option returns the exact constrained
maximum likelihood estimates using the the pool-adjacent-violators algorithm (PAVA) (Ayer
et al. 1955).

library(MLML2R)

results_exactBO1 <- MLML(T.matrix = MethylatedBS_sim2 ,

U.matrix = UnMethylatedBS_sim2,

L.matrix = UnMethylatedOxBS_sim2,

M.matrix = MethylatedOxBS_sim2)

Maximum likelihood estimate via EM-algorithm approach (Qu et al. 2013) is obtained with
the option iterative=TRUE. In this case, the default (or user specified) tol is considered in
the iterative method.

results_emBO1 <- MLML(T.matrix = MethylatedBS_sim2,

U.matrix = UnMethylatedBS_sim2,

L.matrix = UnMethylatedOxBS_sim2,

M.matrix = MethylatedOxBS_sim2,

iterative=TRUE)

When only two methods are available, we highly recommend the default option itera

tive=FALSE since the difference in the estimates obtained via EM and exact constrained is
very small, but the former requires more computational effort:

all.equal(results_emBO1$hmC,results_exactBO1$hmC,scale=1)

## [1] "Mean absolute difference: 9.581949e-05"

library(microbenchmark)

mbmBO1 = microbenchmark(

EXACT = MLML(T.matrix = MethylatedBS_sim2,

U.matrix = UnMethylatedBS_sim2,

L.matrix = UnMethylatedOxBS_sim2,

M.matrix = MethylatedOxBS_sim2),

EM = MLML(T.matrix = MethylatedBS_sim2,

U.matrix = UnMethylatedBS_sim2,

L.matrix = UnMethylatedOxBS_sim2,

M.matrix = MethylatedOxBS_sim2,

iterative=TRUE),

times=10)

mbmBO1

## Unit: microseconds

## expr min lq mean median uq max neval

## EXACT 396.795 454.014 587.6527 465.957 780.285 851.019 10

## EM 9832.073 17244.173 19374.3500 20012.908 22669.319 28501.225 10

Comparison between approximate exact constrained and true hydroxymethylation proportion
used in simulation:

all.equal(true_parameters_sim2$p_h,results_exactBO1$hmC[,1],scale=1)

## [1] "Mean absolute difference: 0.01165593"
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Comparison between EM-algorithm and true hydroxymethylation proportion used in simulation:

all.equal(true_parameters_sim2$p_h,results_emBO1$hmC[,1],scale=1)

## [1] "Mean absolute difference: 0.01011952"

2.3.2 BS and TAB methods

Using PAVA:

results_exactBT1 <- MLML(T.matrix = MethylatedBS_sim2,

U.matrix = UnMethylatedBS_sim2,

G.matrix = UnMethylatedTAB_sim2,

H.matrix = MethylatedTAB_sim2)

Using EM-algorithm:

results_emBT1 <- MLML(T.matrix = MethylatedBS_sim2,

U.matrix = UnMethylatedBS_sim2,

G.matrix = UnMethylatedTAB_sim2,

H.matrix = MethylatedTAB_sim2,

iterative=TRUE)

Comparison between PAVA and EM:

all.equal(results_emBT1$hmC,results_exactBT1$hmC,scale=1)

## [1] "Mean absolute difference: 7.675267e-07"

mbmBT1 = microbenchmark(

EXACT = MLML(T.matrix = MethylatedBS_sim2,

U.matrix = UnMethylatedBS_sim2,

G.matrix = UnMethylatedTAB_sim2,

H.matrix = MethylatedTAB_sim2),

EM = MLML(T.matrix = MethylatedBS_sim2,

U.matrix = UnMethylatedBS_sim2,

G.matrix = UnMethylatedTAB_sim2,

H.matrix = MethylatedTAB_sim2,

iterative=TRUE),

times=10)

mbmBT1

## Unit: microseconds

## expr min lq mean median uq max neval

## EXACT 384.878 395.342 599.2178 588.5855 763.112 891.025 10

## EM 11594.514 12177.907 18399.3665 17232.7860 24826.936 29204.313 10

Comparison between approximate exact constrained and true hydroxymethylation proportion
used in simulation:

all.equal(true_parameters_sim2$p_h,results_exactBT1$hmC[,1],scale=1)

## [1] "Mean absolute difference: 0.00644861"

Comparison between EM-algorithm and true hydroxymethylation proportion used in simulation:
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all.equal(true_parameters_sim2$p_h,results_emBT1$hmC[,1],scale=1)

## [1] "Mean absolute difference: 0.004719911"

2.3.3 oxBS and TAB methods

Using PAVA:

results_exactOT1 <- MLML(L.matrix = UnMethylatedOxBS_sim2,

M.matrix = MethylatedOxBS_sim2,

G.matrix = UnMethylatedTAB_sim2,

H.matrix = MethylatedTAB_sim2)

Using EM-algorithm:

results_emOT1 <- MLML(L.matrix = UnMethylatedOxBS_sim2,

M.matrix = MethylatedOxBS_sim2,

G.matrix = UnMethylatedTAB_sim2,

H.matrix = MethylatedTAB_sim2,

iterative=TRUE)

Comparison between PAVA and EM:

all.equal(results_emOT1$hmC,results_exactOT1$hmC,scale=1)

## [1] "Mean absolute difference: 2.019638e-07"

mbmOT1 = microbenchmark(

EXACT = MLML(L.matrix = UnMethylatedOxBS_sim2,

M.matrix = MethylatedOxBS_sim2,

G.matrix = UnMethylatedTAB_sim2,

H.matrix = MethylatedTAB_sim2),

EM = MLML(L.matrix = UnMethylatedOxBS_sim2,

M.matrix = MethylatedOxBS_sim2,

G.matrix = UnMethylatedTAB_sim2,

H.matrix = MethylatedTAB_sim2,

iterative=TRUE),

times=10)

mbmOT1

## Unit: microseconds

## expr min lq mean median uq max neval

## EXACT 294.374 299.284 324.2289 332.4865 337.784 345.544 10

## EM 4541.303 4579.738 5406.1426 4713.3425 4971.080 11543.428 10

Comparison between approximate exact constrained and true 5-hmC proportion used in
simulation:

all.equal(true_parameters_sim2$p_h,results_exactOT1$hmC[,1],scale=1)

## [1] "Mean absolute difference: 0.006451817"

Comparison between EM-algorithm and true 5-hmC proportion used in simulation:
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all.equal(true_parameters_sim2$p_h,results_emOT1$hmC[,1],scale=1)

## [1] "Mean absolute difference: 0.00645154"

2.3.4 BS, oxBS and TAB methods

When data from the three methods are available, the default otion in the MLML function returns
the constrained maximum likelihood estimates using an approximated solution for Lagrange
multipliers method.

results_exactBOT1 <- MLML(T.matrix = MethylatedBS_sim2,

U.matrix = UnMethylatedBS_sim2,

L.matrix = UnMethylatedOxBS_sim2,

M.matrix = MethylatedOxBS_sim2,

G.matrix = UnMethylatedTAB_sim2,

H.matrix = MethylatedTAB_sim2)

Maximum likelihood estimate via EM-algorithm approach (Qu et al. 2013) is obtained with
the option iterative=TRUE. In this case, the default (or user specified) tol is considered in
the iterative method.

results_emBOT1 <- MLML(T.matrix = MethylatedBS_sim2,

U.matrix = UnMethylatedBS_sim2,

L.matrix = UnMethylatedOxBS_sim2,

M.matrix = MethylatedOxBS_sim2,

G.matrix = UnMethylatedTAB_sim2,

H.matrix = MethylatedTAB_sim2,iterative=TRUE)

We recommend the default option iterative=FALSE since the difference in the estimates
obtained via EM and the approximate exact constrained is very small, but the former requires
more computational effort:

all.equal(results_emBOT1$hmC,results_exactBOT1$hmC,scale=1)

## [1] "Mean absolute difference: 1.627884e-06"

mbmBOT1 = microbenchmark(

EXACT = MLML(T.matrix = MethylatedBS_sim2,

U.matrix = UnMethylatedBS_sim2,

L.matrix = UnMethylatedOxBS_sim2,

M.matrix = MethylatedOxBS_sim2,

G.matrix = UnMethylatedTAB_sim2,

H.matrix = MethylatedTAB_sim2),

EM = MLML(T.matrix = MethylatedBS_sim2,

U.matrix = UnMethylatedBS_sim2,

L.matrix = UnMethylatedOxBS_sim2,

M.matrix = MethylatedOxBS_sim2,

G.matrix = UnMethylatedTAB_sim2,

H.matrix = MethylatedTAB_sim2,

iterative=TRUE),

times=10)

mbmBOT1
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## Unit: microseconds

## expr min lq mean median uq max neval

## EXACT 888.518 900.240 999.489 906.875 928.899 1785.873 10

## EM 1969.934 1977.063 3026.786 1998.977 2691.710 10449.809 10

Comparison between approximate exact constrained and true hydroxymethylation proportion
used in simulation:

all.equal(true_parameters_sim2$p_h,results_exactBOT1$hmC[,1],scale=1)

## [1] "Mean absolute difference: 0.005664222"

Comparison between EM-algorithm and true hydroxymethylation proportion used in simulation:

all.equal(true_parameters_sim2$p_h,results_emBOT1$hmC[,1],scale=1)

## [1] "Mean absolute difference: 0.004146021"
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