This report documents the results of a simulation based calibration (SBC) run for OncoBayes2
. TODO
The calibration data presented here has been generated at and with the OncoBayes
git version as:
## Created: 2020-02-11 12:02:23 UTC
## git hash: a9d8c5adc623815556a35a069fa5573a5dd0d25c
## MD5: c0ea3d87a4e045ba4eec23064260fea6
The MD5 hash of the calibration data file presented here must match the above listed MD5:
## calibration.rds
## "c0ea3d87a4e045ba4eec23064260fea6"
Simulation based calibration (SBC) is a necessary condition which must be met for any Bayesian analysis with proper priors. The details are presented in Talts, et. al (see https://arxiv.org/abs/1804.06788).
Self-consistency of any Bayesian analysis with a proper prior:
\[ p(\theta) = \iint \mbox{d}\tilde{y} \, \mbox{d}\tilde{\theta} \, p(\theta|\tilde{y}) \, p(\tilde{y}|\tilde{\theta}) \, p(\tilde{\theta}) \] \[ \Leftrightarrow p(\theta) = \iint \mbox{d}\tilde{y} \, \mbox{d}\tilde{\theta} \, p(\theta,\tilde{y},\tilde{\theta}) \]
SBC procedure:
Repeat \(s=1, ..., S\) times:
Sample from the prior \[\tilde{\theta} \sim p(\theta)\]
Sample fake data \[\tilde{y} \sim p(y|\tilde{\theta})\]
Obtain \(L\) posterior samples \[\{\theta_1, ..., \theta_L\} \sim p(\tilde{\theta}|\tilde{y})\]
Calculate the rank \(r_s\) of the prior draw \(\tilde{\theta}\) wrt to the posterior sample \(\{\theta_1, ..., \theta_L\} \sim p(\tilde{\theta}|\tilde{y})\) which falls into the range \([0,L]\) out of the possible \(L+1\) ranks. The rank is calculated as \[r_s = \sum_{l=1}^L \mathbb{I}[ \theta_l < \tilde{\theta}]\]
The \(S\) ranks then form a uniform \(0-1\) density and the count in each bin has a binomial distribution with probability of \[p(r \in \mbox{Any Bin}) =\frac{(L+1)}{S}.\]
The fake data simulation function returns … TODO. Please refer to the sbc_tools.R
and make_reference_rankhist.R
R programs for the implementation details.
The reference runs are created with \(L=1023\) posterior draws for each replication and a total of \(S=10^4\) replications are run per case. For the evaluation here the results are reduced to \(B=L'+1=64\) bins to ensure a sufficiently large sample size per bin.
param | statistic | df | p.value |
---|---|---|---|
beta_group[A,I(log(drug_A/1)),intercept] | 21.203 | 31 | 0.906 |
beta_group[A,I(log(drug_A/1)),log_slope] | 47.488 | 31 | 0.029 |
beta_group[B,I(log(drug_A/1)),intercept] | 20.141 | 31 | 0.933 |
beta_group[B,I(log(drug_A/1)),log_slope] | 12.666 | 31 | 0.999 |
beta_group[C,I(log(drug_A/1)),intercept] | 40.621 | 31 | 0.116 |
beta_group[C,I(log(drug_A/1)),log_slope] | 29.440 | 31 | 0.546 |
mu_log_beta[I(log(drug_A/1)),intercept] | 24.154 | 31 | 0.804 |
mu_log_beta[I(log(drug_A/1)),log_slope] | 24.166 | 31 | 0.804 |
tau_log_beta[STRAT,I(log(drug_A/1)),intercept] | 27.219 | 31 | 0.661 |
tau_log_beta[STRAT,I(log(drug_A/1)),log_slope] | 50.835 | 31 | 0.014 |
param | statistic | df | p.value |
---|---|---|---|
beta_group[A,I(log(drug_A/1)),intercept] | 28.352 | 31 | 0.603 |
beta_group[A,I(log(drug_A/1)),log_slope] | 28.992 | 31 | 0.570 |
beta_group[A,I(log(drug_B/1)),intercept] | 37.728 | 31 | 0.189 |
beta_group[A,I(log(drug_B/1)),log_slope] | 37.715 | 31 | 0.189 |
beta_group[B,I(log(drug_A/1)),intercept] | 33.222 | 31 | 0.359 |
beta_group[B,I(log(drug_A/1)),log_slope] | 17.267 | 31 | 0.978 |
beta_group[B,I(log(drug_B/1)),intercept] | 29.050 | 31 | 0.567 |
beta_group[B,I(log(drug_B/1)),log_slope] | 47.040 | 31 | 0.032 |
beta_group[C,I(log(drug_A/1)),intercept] | 30.278 | 31 | 0.503 |
beta_group[C,I(log(drug_A/1)),log_slope] | 42.950 | 31 | 0.075 |
beta_group[C,I(log(drug_B/1)),intercept] | 34.080 | 31 | 0.322 |
beta_group[C,I(log(drug_B/1)),log_slope] | 43.891 | 31 | 0.062 |
eta_group[A,I(drug_A/1 * drug_B/1)] | 17.107 | 31 | 0.979 |
eta_group[B,I(drug_A/1 * drug_B/1)] | 28.275 | 31 | 0.607 |
eta_group[C,I(drug_A/1 * drug_B/1)] | 22.528 | 31 | 0.866 |
mu_eta[I(drug_A/1 * drug_B/1)] | 43.405 | 31 | 0.069 |
mu_log_beta[I(log(drug_A/1)),intercept] | 52.269 | 31 | 0.010 |
mu_log_beta[I(log(drug_A/1)),log_slope] | 36.096 | 31 | 0.242 |
mu_log_beta[I(log(drug_B/1)),intercept] | 35.130 | 31 | 0.279 |
mu_log_beta[I(log(drug_B/1)),log_slope] | 46.720 | 31 | 0.035 |
tau_eta[STRAT,I(drug_A/1 * drug_B/1)] | 19.776 | 31 | 0.940 |
tau_log_beta[STRAT,I(log(drug_A/1)),intercept] | 30.867 | 31 | 0.473 |
tau_log_beta[STRAT,I(log(drug_A/1)),log_slope] | 24.288 | 31 | 0.799 |
tau_log_beta[STRAT,I(log(drug_B/1)),intercept] | 33.811 | 31 | 0.333 |
tau_log_beta[STRAT,I(log(drug_B/1)),log_slope] | 25.146 | 31 | 0.761 |
param | statistic | df | p.value |
---|---|---|---|
beta_group[A,I(log(drug_A/1)),intercept] | 31.917 | 31 | 0.421 |
beta_group[A,I(log(drug_A/1)),log_slope] | 25.971 | 31 | 0.723 |
beta_group[A,I(log(drug_B/1)),intercept] | 32.128 | 31 | 0.411 |
beta_group[A,I(log(drug_B/1)),log_slope] | 36.032 | 31 | 0.245 |
beta_group[B,I(log(drug_A/1)),intercept] | 38.477 | 31 | 0.167 |
beta_group[B,I(log(drug_A/1)),log_slope] | 25.107 | 31 | 0.763 |
beta_group[B,I(log(drug_B/1)),intercept] | 19.942 | 31 | 0.937 |
beta_group[B,I(log(drug_B/1)),log_slope] | 33.363 | 31 | 0.353 |
beta_group[C,I(log(drug_A/1)),intercept] | 21.811 | 31 | 0.889 |
beta_group[C,I(log(drug_A/1)),log_slope] | 33.114 | 31 | 0.364 |
beta_group[C,I(log(drug_B/1)),intercept] | 28.653 | 31 | 0.587 |
beta_group[C,I(log(drug_B/1)),log_slope] | 26.573 | 31 | 0.693 |
eta_group[A,I(drug_A/1 * drug_B/1)] | 34.918 | 31 | 0.287 |
eta_group[B,I(drug_A/1 * drug_B/1)] | 35.616 | 31 | 0.260 |
eta_group[C,I(drug_A/1 * drug_B/1)] | 36.480 | 31 | 0.229 |
mu_eta[I(drug_A/1 * drug_B/1)] | 28.307 | 31 | 0.605 |
mu_log_beta[I(log(drug_A/1)),intercept] | 36.480 | 31 | 0.229 |
mu_log_beta[I(log(drug_A/1)),log_slope] | 30.195 | 31 | 0.507 |
mu_log_beta[I(log(drug_B/1)),intercept] | 20.006 | 31 | 0.936 |
mu_log_beta[I(log(drug_B/1)),log_slope] | 33.043 | 31 | 0.368 |
tau_eta[STRAT,I(drug_A/1 * drug_B/1)] | 27.283 | 31 | 0.658 |
tau_log_beta[STRAT,I(log(drug_A/1)),intercept] | 17.690 | 31 | 0.973 |
tau_log_beta[STRAT,I(log(drug_A/1)),log_slope] | 31.565 | 31 | 0.438 |
tau_log_beta[STRAT,I(log(drug_B/1)),intercept] | 29.312 | 31 | 0.553 |
tau_log_beta[STRAT,I(log(drug_B/1)),log_slope] | 25.728 | 31 | 0.734 |
param | statistic | df | p.value |
---|---|---|---|
beta_group[A,I(log(drug_A/1)),intercept] | 24.160 | 31 | 0.804 |
beta_group[A,I(log(drug_A/1)),log_slope] | 20.141 | 31 | 0.933 |
beta_group[A,I(log(drug_B/1)),intercept] | 28.678 | 31 | 0.586 |
beta_group[A,I(log(drug_B/1)),log_slope] | 25.235 | 31 | 0.757 |
beta_group[A,I(log(drug_C/1)),intercept] | 25.139 | 31 | 0.761 |
beta_group[A,I(log(drug_C/1)),log_slope] | 41.638 | 31 | 0.096 |
beta_group[B,I(log(drug_A/1)),intercept] | 30.176 | 31 | 0.508 |
beta_group[B,I(log(drug_A/1)),log_slope] | 35.552 | 31 | 0.262 |
beta_group[B,I(log(drug_B/1)),intercept] | 32.090 | 31 | 0.412 |
beta_group[B,I(log(drug_B/1)),log_slope] | 28.461 | 31 | 0.597 |
beta_group[B,I(log(drug_C/1)),intercept] | 32.506 | 31 | 0.393 |
beta_group[B,I(log(drug_C/1)),log_slope] | 37.050 | 31 | 0.210 |
beta_group[C,I(log(drug_A/1)),intercept] | 36.531 | 31 | 0.227 |
beta_group[C,I(log(drug_A/1)),log_slope] | 17.152 | 31 | 0.979 |
beta_group[C,I(log(drug_B/1)),intercept] | 45.850 | 31 | 0.042 |
beta_group[C,I(log(drug_B/1)),log_slope] | 45.901 | 31 | 0.041 |
beta_group[C,I(log(drug_C/1)),intercept] | 47.507 | 31 | 0.029 |
beta_group[C,I(log(drug_C/1)),log_slope] | 22.496 | 31 | 0.867 |
eta_group[A,I(drug_A/1 * drug_B/1 * drug_C/1)] | 30.918 | 31 | 0.470 |
eta_group[A,I(drug_A/1 * drug_B/1)] | 19.091 | 31 | 0.953 |
eta_group[A,I(drug_A/1 * drug_C/1)] | 31.021 | 31 | 0.465 |
eta_group[A,I(drug_B/1 * drug_C/1)] | 39.590 | 31 | 0.139 |
eta_group[B,I(drug_A/1 * drug_B/1 * drug_C/1)] | 31.962 | 31 | 0.419 |
eta_group[B,I(drug_A/1 * drug_B/1)] | 17.882 | 31 | 0.971 |
eta_group[B,I(drug_A/1 * drug_C/1)] | 39.878 | 31 | 0.132 |
eta_group[B,I(drug_B/1 * drug_C/1)] | 34.099 | 31 | 0.321 |
eta_group[C,I(drug_A/1 * drug_B/1 * drug_C/1)] | 35.475 | 31 | 0.265 |
eta_group[C,I(drug_A/1 * drug_B/1)] | 26.880 | 31 | 0.678 |
eta_group[C,I(drug_A/1 * drug_C/1)] | 39.738 | 31 | 0.135 |
eta_group[C,I(drug_B/1 * drug_C/1)] | 27.104 | 31 | 0.667 |
mu_eta[I(drug_A/1 * drug_B/1 * drug_C/1)] | 27.264 | 31 | 0.659 |
mu_eta[I(drug_A/1 * drug_B/1)] | 40.115 | 31 | 0.126 |
mu_eta[I(drug_A/1 * drug_C/1)] | 25.568 | 31 | 0.742 |
mu_eta[I(drug_B/1 * drug_C/1)] | 39.725 | 31 | 0.135 |
mu_log_beta[I(log(drug_A/1)),intercept] | 38.643 | 31 | 0.163 |
mu_log_beta[I(log(drug_A/1)),log_slope] | 37.690 | 31 | 0.190 |
mu_log_beta[I(log(drug_B/1)),intercept] | 21.862 | 31 | 0.887 |
mu_log_beta[I(log(drug_B/1)),log_slope] | 41.965 | 31 | 0.090 |
mu_log_beta[I(log(drug_C/1)),intercept] | 43.085 | 31 | 0.073 |
mu_log_beta[I(log(drug_C/1)),log_slope] | 29.024 | 31 | 0.568 |
tau_eta[STRAT,I(drug_A/1 * drug_B/1 * drug_C/1)] | 20.614 | 31 | 0.922 |
tau_eta[STRAT,I(drug_A/1 * drug_B/1)] | 28.026 | 31 | 0.620 |
tau_eta[STRAT,I(drug_A/1 * drug_C/1)] | 35.814 | 31 | 0.253 |
tau_eta[STRAT,I(drug_B/1 * drug_C/1)] | 25.082 | 31 | 0.764 |
tau_log_beta[STRAT,I(log(drug_A/1)),intercept] | 29.638 | 31 | 0.536 |
tau_log_beta[STRAT,I(log(drug_A/1)),log_slope] | 19.450 | 31 | 0.947 |
tau_log_beta[STRAT,I(log(drug_B/1)),intercept] | 22.189 | 31 | 0.877 |
tau_log_beta[STRAT,I(log(drug_B/1)),log_slope] | 23.494 | 31 | 0.831 |
tau_log_beta[STRAT,I(log(drug_C/1)),intercept] | 22.630 | 31 | 0.862 |
tau_log_beta[STRAT,I(log(drug_C/1)),log_slope] | 29.402 | 31 | 0.548 |
## R version 3.6.1 (2019-07-05)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.6 LTS
##
## Matrix products: default
## BLAS: /usr/lib/libblas/libblas.so.3.6.0
## LAPACK: /usr/lib/lapack/liblapack.so.3.6.0
##
## locale:
## [1] C
##
## attached base packages:
## [1] tools stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] mvtnorm_1.0-11 RBesT_1.4-0 tibble_2.1.3
## [4] rstan_2.19.2 StanHeaders_2.19.0 abind_1.4-5
## [7] Formula_1.2-3 checkmate_1.9.4 OncoBayes2_0.6-0
## [10] testthat_2.2.1 Rcpp_1.0.2 devtools_2.2.1
## [13] usethis_1.5.1 ggplot2_3.2.1 broom_0.5.2
## [16] tidyr_1.0.0 dplyr_0.8.3 assertthat_0.2.1
## [19] knitr_1.25 rmarkdown_1.16
##
## loaded via a namespace (and not attached):
## [1] lattice_0.20-38 prettyunits_1.0.2 ps_1.3.0
## [4] zeallot_0.1.0 rprojroot_1.3-2 digest_0.6.21
## [7] plyr_1.8.4 R6_2.4.0 ggridges_0.5.1
## [10] backports_1.1.5 stats4_3.6.1 evaluate_0.14
## [13] highr_0.8 pillar_1.4.2 rlang_0.4.0
## [16] lazyeval_0.2.2 rstudioapi_0.10 callr_3.3.2
## [19] labeling_0.3 desc_1.2.0 stringr_1.4.0
## [22] loo_2.1.0 munsell_0.5.0 compiler_3.6.1
## [25] xfun_0.10 pkgconfig_2.0.3 pkgbuild_1.0.6
## [28] rstantools_2.0.0 htmltools_0.4.0 tidyselect_0.2.5
## [31] gridExtra_2.3 codetools_0.2-16 matrixStats_0.55.0
## [34] crayon_1.3.4 withr_2.1.2 grid_3.6.1
## [37] nlme_3.1-141 gtable_0.3.0 lifecycle_0.1.0
## [40] magrittr_1.5 scales_1.0.0 cli_1.1.0
## [43] stringi_1.4.3 fs_1.3.1 remotes_2.1.0
## [46] ellipsis_0.3.0 generics_0.0.2 vctrs_0.2.0
## [49] glue_1.3.1 purrr_0.3.3 processx_3.4.1
## [52] pkgload_1.0.2 parallel_3.6.1 yaml_2.2.0
## [55] inline_0.3.15 colorspace_1.4-1 sessioninfo_1.1.1
## [58] bayesplot_1.7.0 memoise_1.1.0