
PAFit: Nonparametric Estimation of Preferential Attachment and
Node Fitness in Temporal Complex Networks

Package Vignette

Thong Pham, Paul Sheridan and Hidetoshi Shimodaira

September 7, 2016

1 Introduction
This tutorial demonstrates the use of the R package PAFit which implements the PAFit method in Refs. 1,2.
This method estimates the preferential attachment (PA) function Ak in isolation [1], or estimate the PA
function Ak and node fitness ηi jointly [2,3]. PAFit are written mainly in C++ by using the package Rcpp [4,5].
It employs OpenMP for simple parallel processing. This makes the package applicable to large datasets. If
you use this package in your projects, please run citation("PAFit") for citation information.

First we introduce the underlying generative network model in Section 2. In Section 3 we show how to
estimate the PA function in isolation. The joint estimation of PA and node fitness is discussed in Section 4.
Section 5 discusses some miscellaneous utilities in PAFit, including how to generate a wide range of temporal
networks.

2 The General Temporal model
In PAFit, the growth process of the network is assumed to follow the General Temporal (GT) model, which
is a generative network model for both undirected and directed networks. Here we only show the definition
of the directed version. More details can be found in Ref. [3]. In the directed GT model, a node vi with
degree k and fitness ηi receives a new edge with probability proportional to the product of Ak and ηi:

P (node vi receives a new edge) ∝ Ak × ηi, (1)

This model includes a wide range of existing generative network models as special cases (Tab. 1). Note
that both PA function Ak and node fitness ηi are assumed to be time-invariant.

Generative Network Model PA Function Fitness Reference
GT model Free Free Pham et al. [1, 2]
Callaway et al. (i.e. ER model with growth) Ak = 1 ηi = 1 Callaway et al. [6]
BA model Ak = k ηi = 1 Barabási and Albert [7]
Extended BA model Ak = kα ηi = 1 Krapivsky et al. [8]
Krapivsky et al. Free ηi = 1 Krapivsky et al. [9]
Caldarelli model Ak = 1 Free Caldarelli et al. [10]
BB model Ak = k Free Bianconi and Barabási [11]
Extended BB model Ak = kα Free Not previously considered.

Table 1: Some existing network models that are included as special cases of the GT model.

1

3 Estimating the PA function in isolation
Estimating the PA function in isolation, i.e. assuming that ηi = 1 for all i, is an important problem in its
own right [2]. Here we show how to use PAFit to estimate the PA function from a simulated network. The
network is contained in the file “data1.txt” which can be found in the folder inst\simdata of the package.

First we read the file into the R environment:

library("PAFit")
data1 <- read.table(system.file("simdata",file = "data1.txt",package ="PAFit"))

The format of the data is a matrix where each row contains information of one edge in the form of
(from_node, to_node, time_stamp). from_node and to_node are the ids of the source node and des-
tination node, respectively. time_stamp is the arrival time of the node. It is assumed that both ids are
integer starting from 0. time_stamp can be either numeric or string. The only assumption is that a
smaller time_stamp represents an earlier arrival time.

The simulated network has total number of nodes N = 1000, and the number of new edges at each
time-step m = 5. The true PA function used is Ak = k.

We then use the function GetStatistics to get all summary statistics needed in estimation of Ak:

stats1 <- GetStatistics(data1, only_PA = TRUE)

One can explore stats1 to view various summary statistics. Note that the option only_PA = TRUE will
ignore statistics that not needed for the estimation of PA in isolation. This will help us save a lot of memory
when the network is big.

Next we can estimate the PA function by:

result1 <- PAFit(stats1, only_PA = TRUE)

We can access the estimated attachment function Âk via result$k and result$A. Note that PAFit can
also estimate the confidence intervals of Âk. One can access the upper ends and the lower ends of these
confidence intervals via result$upper_A and result$lower_A. These confidence intervals are calculated as
two standard deviations from the estimated Âk. The variances of Âk (square of standard deviations) are
stored in result$var_A.

One can plot the estimated PA function together with the true function:

plot(result1,stats1)
alpha <- 1
true_A <- pmax(result1$center_k^alpha,1)
lines(result1$center_k + 1,true_A, col = "red", lwd = 2)

Note that in the case of power-law PA function Ak = kα like in this example, one can also access the
estimated α via result1$alpha.

4 Joint estimation of the attachment function and node fitness
Here we show how to estimate the PA function and node fitness simultaneously from a simulated network.
The network is stored in data2.txt, while the true node fitnesses are stored in true-fitness.txt in the
folder inst\simdata. As described in Ref. 3, PAFit requires the setting of the regularization parameter r
of Ak and the regularization parameter s of ηi.

4.1 When regularization parameters are known
Here we assume that we know the regularization parameters for PAFit. Since the simulated network is
generated with a non-log-linear PA function Ak = 3(logmax(k, 1))3 +1, we set a small value 0.1 for r. Node
fitnesses are sampled from a gamma distribution with mean 1 and variance 1/s∗ = 1/5. Hence we set the
regularization parameter s = s∗ = 5. The following scripts estimate PA and node fitness simultaneously:

2

library("PAFit")
data2 <- read.table(system.file("simdata",file = "data2.txt",package ="PAFit"))
stats2 <- GetStatistics(data2, G = 50)
result2 <- PAFit(stats2, r = 0.1, s = 5)

We can plot the estimated attachment function and node fitnesses as follows.

plot(result2, stats2, plot = "A")
alpha <- 3
beta <- 3
true_A <- sapply(result2$center_k,function(x) alpha*(log(max(x,1)))^beta + 1)
lines(result2$center_k + 1,true_A,lwd = 2, col = "red")
User needs to open a new plotting device here
loading the true fitnesses
true_fitness <- as.vector(as.matrix(read.table(system.file("simdata",file = "true-fitness.txt",
package ="PAFit"))))
plot(result2, stats2, true = true_fitness, plot = "true_f", high_deg = 5)

4.2 When regularization parameters are unknown
In real-world situations, we do not know the optimal pairs of r and s, so we have to perform a cross-
validation(CV)-like approach to choose r and s [3].

First we create the data for CV:

library("PAFit")
data2 <- read.table(system.file("simdata",file = "data2.txt",package ="PAFit"))
CV_data <- CreateDataCV(data2)

Then we set the grid of (r, s) and perform CV:

r <- c(0.01,0.05,0.1,0.2,0.5,1)
s <- c(0.1,2,3,4,5,6,7,8)
This could take a while

CV_result <- performCV(CV_data, r = r, s = s, only_PAFit = TRUE)

#####################################
#opimal s
CV_result$s_optimal
#optimal_r
CV_result$r_optimal

Finally after finding the optimum pair of (r, s), we use this pair with the full data to obtain the final
estimation of PA and fitness.

stats2 <- GetStatistics(data2, G = 50)
result3 <- PAFit(stats2,r = CV_result$r_optimal, s = CV_result$s_optimal)
plot(result3, stats2, plot = "A", high_deg = 1)
alpha <- 3
beta <- 3
true_A <- sapply(result3$center_k[-1],function(x) alpha*(log(max(x,1)))^beta + 1)
lines(result3$center_k[-1] + 1,true_A,lwd = 2, col = "red")
User needs to open a new plotting device here
loading the true fitnesses
true_fitness <- as.vector(as.matrix(read.table(system.file("simdata",file = "true-fitness.txt",
package ="PAFit"))))
plot(result3, stats2, true = true_fitness, plot = "true_f", high_deg = 5)

3

5 Miscellaneous

5.1 Generating simulated networks
PAFit includes the function GenerateNet to generate networks from many important network models (Ta-
ble 1). For example, the following script generates a network in which Ak = k, ηi ∼ Gamma(1, 1), total
number of nodes N = 1000, and number of new edges introduced at each time step is m = 5:

#mode = 1: A_k = k^alpha with alpha = 1 , eta_i from Gamma(1,1)
data1 <- GenerateNet(N = 1000, m = 5, alpha = 1, shape = 1, rate = 1,mode = 1)

The object data1 is a list with components data1$graph and data1$fitness. data1$graph is a 3-column
matrix where information about the edges is stored in each row. data1$fitness stores the true fitness value
of each node. One then can use data1$graph as the input of GetStatistics.

If either shape or rate is 0, then node fitness is fixed at 1:

#mode = 1: A_k = k^alpha with alpha = 1 , eta_i = 1
data1 <- GenerateNet(N = 1000, m = 5, alpha = 1, shape = 0,mode = 1)

One can also generate networks from the attachment function Ak = min(k, sat_at)α with α = 1 and
sat_at = 100 by specifying mode = 2.

#mode = 2: A_k = min(k,sat_at)^alpha with alpha = 1, sat_at = 100; eta_i from Gamma(1,1)
data2 <- GenerateNet(N = 1000, m = 5, alpha = 1, sat_at = 100, shape = 1, rate = 1, mode = 2)

Finally, the following script generates a network where the attachment function is Ak = α logβ(k) + 1 with
α = 3 and β = 2.

#mode = 3: A_k = A_k = alpha*log^beta(k) + 1 with alpha = 3, beta = 2 ; eta_i from Gamma(1,1)
data3 <- GenerateNet(N = 1000, m = 5, alpha = 3,beta = 2, shape = 1, rate = 1,, mode = 3)

Instead of fixing the number of new edges at each step m at m = 5, it might be more realistic to let m be
a Poisson random variable, whose realized value varies at each time-step. This can be archived by specifying
prob_m = TRUE. In this case, if the option increase is FALSE then the mean of this Poisson distribution is
fixed at m, otherwise the mean itself will grow with the current size of the network. In the latter case, if log
= TRUE, the mean will grow logarithmically with the current size, otherwise it will grow linearly.

5.2 Binning
Binning is an important pre-processing step of grouping together the statistics of k into bins. It is very
useful in stabilizing the estimation of the PA Ak. PAFit employs logarithmic binning. Binning is performed
when the statistics are summarized by the function GetStatistics. We specify Binning = TRUE and then
specify the number of bins G.

data <- GenerateNet(N = 1000, m = 5, alpha = 1, shape = 0, mode = 1)

#no binning
stats_nobin <- GetStatistics(data$graph, Binning = FALSE)
result_nobin <- PAFit(stats_nobin,only_PA = TRUE)

#Number of bins is G = 50
stats_bin <- GetStatistics(data$graph, Binning = TRUE, G = 50)
result_bin <- PAFit(stats_bin,only_PA = TRUE)

plot(result_nobin, stats_nobin)
plot(result_bin,stats_bin)

4

References
[1] Thong Pham, Paul Sheridan, and Hidetoshi Shimodaira. Nonparametric Estimation of the Preferential

Attachment Function in Complex Networks: Evidence of Deviations from Log Linearity, pages 141–153.
Springer International Publishing, Cham, 2016.

[2] Thong Pham, Paul Sheridan, and Hidetoshi Shimodaira. PAFit: A statistical method for measuring
preferential attachment in temporal complex networks. PLOS ONE, (9):e0137796, 9 2015.

[3] Thong Pham, Paul Sheridan, and Hidetoshi Shimodaira. Joint estimation of preferential attachment
and node fitness in growing complex networks. Scientific Reports, 6:32558, 2016.

[4] Dirk Eddelbuettel and Romain Francois. Rcpp: Seamless r and c++ integration. Journal of Statistical
Software, 40(8), 2011.

[5] Dirk Eddelbuettel. Seamless R and C++ Integration with Rcpp. Springer, New York, NY, USA, 2013.

[6] Duncan S. Callaway, John E. Hopcroft, Jon M. Kleinberg, M. E. J. Newman, and Steven H. Strogatz.
Are randomly grown graphs really random? Phys. Rev. E, 64:041902, Sep 2001.

[7] R Albert and AL Barabási. Emergence of scaling in random networks. Science, 286:509–512, October
1999.

[8] P. L. Krapivsky, S. Redner, and F. Leyvraz. Connectivity of growing random networks. Phys. Rev.
Lett., 85:4629–4632, Nov 2000.

[9] PL Krapivsky, GJ Rodgers, and S Redner. Organization of growing networks. Physical Review E, page
066123, 2001.

[10] G. Caldarelli, A. Capocci, P. De Los Rios, and M. A. Muñoz. Scale-free networks from varying vertex
intrinsic fitness. Phys. Rev. Lett., 89:258702, Dec 2002.

[11] G Bianconni and AL Barabási. Competition and multiscaling in evolving networks. Europhys. Lett.,
54:436, 2001.

5

	Introduction
	The General Temporal model
	Estimating the PA function in isolation
	Joint estimation of the attachment function and node fitness
	When regularization parameters are known
	When regularization parameters are unknown

	Miscellaneous
	Generating simulated networks
	Binning

