PBSmodelling 2.64: User’s Guide

Jon T. Schnute, Alex Couture-Beil, Rowan Haigh, and A.R. Kronlund

Fisheries and Oceans Canada
Science Branch, Pacific Region
Pacific Biological Station

3190 Hammond Bay Road
Nanaimo, British Columbia
VOT 6N7

2011

User’s Guide Revised from
Canadian Technical Report of
Fisheries and Aquatic Sciences 2674 (2006)

Fisheries and Oceans Péches et Océans 1%l
Ikl Coc A Canada



© Her Majesty the Queen in Right of Canada, 2011

Revised from Cat. No. Fs97-6/2674E ISSN 0706-6457

Last update: Nov 21, 2011
Correct citation for this publication:
Schnute, J.T., Couture-Beil, A., Haigh, Bnd Kronlund, A.R. 2011. PBSmodelling 2.64: user’'s

guide revised from Canadian TechnicapBe of Fisheries and Aquatic Sciences
2674: viii + 191 p. Last updated Nov 21, 2011



TABLE OF CONTENTS

Y 0111 = Vo TP UUUPPPRRPTPRRR i
(= £= o TP PPPRTPP v
R [ 011 o To (1 T £ o o PP 1
2. GUI tools for model eXploration.............eeevuiiiiiiiiiiiiee e e e e e e e e e e e eees TN

2.1, EXAMPIE: LISSAJOUS CUINVES.....cutieuuiiiaieae e e e e e e e e eeeeeeettattatas e s s e e e e e e e e e e e e eeeessasbbanaaaaaaeeeaaaaaas

2.2, WINAOW desCription fillE.......ccce i e —————— 6

2.3, WINAOW SUPPOIT fUNCHIONS ...t e ettt e e e s e e e e e e e e e eeeeeesnenes 8

2.4, INEINAHALA .....coiiieeeee e 12..

3. Functions for data @XChaNQEe ........coooiiiiiiiiie e 14.........
4. Support functions for graphics and analySiS .........ccoeeeiiiiiiiiiiiiiiieerre e 15

4.1, GraphiCBILIItIES ......coiiieeeeieee e s 15...

4.2, DatamanagemMENT........uiiiiiiiiiieiie ettt B......... 1

4.3.  Function minimization and maximum likelinood................ccccoiiiiiiin 16

S o L0 Y U111 18..

5. Functions for pProjeCt MaNAgEMENT. ... ... ittt e e e e e e e e eaaas 18

o 00 N (0] = Tox o o110 1 19....

5.2. Project management ULIITIES ..........iiiii e 20
6. Support for lectures and WOrkSNOPS..........ccoo i 21
7. EXAMPIES ...t a e e e s ———— 26

7.1, RaNAONVANADIES. .......uuiiiiiiiiiiiiiie e 27.......

7.1.1. RanVars — Random VariableS..........ccccceiiiiiiiiiiiiiiiiiiiieeeeeeee e 27
7.1.2.  RanProp — Random ProportiONS..........coooioiiiiiiiiiiiiiie et e e e e e e e e 28
7.1.3.  SineNorm — SiNe NOMM@L.........oouiuuiiiiiiieie e 29
7.1.4. CalcVor - Calculate Voronoi tessellations.............ccccciiiieeeiiiiiiiiiciiie, 30
7.2, StatiStCABNAIYSES .....coeeeeeeeiecce e 31l.....
7.2.1.  LINREQ — LINEAI rEQIESSION .....ccieiiiiiiiiiiiiiiaa e e e e e e e e e e e e eeeeeeetttbaa s e e e e e e e e aeeeeeeeesene 31
7.2.2.  MarkREC — MarK-TECOVEIY ....cciiiieeeeeeeeiee e s e e e e e e e e e e e e e e e e e e eaaes 32
7.2.3. CCA— CatCh-CUIve @analySiS..........ccoiiiiiiiiiiiiiiiiiee et 33
7.3, OthermppliCALIONS .......coiiiii e e e e e e eeens 34......
7.3.1. FISNRES — FISNEIY IESEIVE ...ccevviiiiiiie e e e e e e e e e 34
7.3.2.  FISNTOWS — FISNEIY TOWS......uuiiiiiiiiiiiiiiiiieie e 35
] (=] (=] o S
Appendix A. Widget deSCHPLIONS.........cuuuiiieiiiii e e e ee e e e e e e e e e e e e eeeeeneraaaaas 38.......

LAY T T o PP 38

T 1 PP 39

(@4 01T o] QPSP 40

D72 = PP 41

[ 0] o)1 ] SR UPUTTRT 43

e 11 OO 44

L] o U U PP PPPPPPTPTTN 46

[ 111 (0 Y25 USSR 47

g E=To [PPSR PP TSP 48

o [0 o L= PP PPPPPPPPPPPTPPPR 49



1= 3 PP OUUPRPPPPUPPRPRTPRR 51
7= o PP 53
Y =T 01U 1L (=T o PP PP 53
NN [01 = oo o QOO PP 54
T PP TR 56
L] o] = ox PSSR 57
e 010 =51 o= | TR 59
= 1o [ TP PPPPPPPPUPP PR 61
S 1T [P PPPRPURPPURRRRR 62
1Y [0 =] o 11T PPPPPPRRP 63
I 0] 1] o0 QoSSR 64
JLIE= o =TT TP PTTPPPPP 65
I PP P PP PPPT 66
Y4 =03 (o PP PTPPPIN 68
Appendix B. Talk desCription fllES .......coooi i e e eeeeeeees 70
SEAIKS ... SAAIKS .. 70
RS TeT ol 1 [0] D A7 =T o (o] DO PPPPPPUPUTTN 71
S () (S (= (PP PPPPPPPTR 71
<FIlE> ... US> ———— 72
o000 [ (oo o [>T PPPPPPPPPRPPPPR 72
Appendix C. BuildingPBSmodelling and other packages............cccooevivviiiiiiiiiiiciiicee e 74
C.1. Installing required SOfIWAIE........ccoiiiii i ens 4.
Appendix D.PBSmodelling functions and data.................ooovvviiiiiiiiiiiiiie e, 85
D.1. Objects ifPBSMOAEIING  ....eeiiiii i e e e e 85
D.2.PBSMOdelling  MANUAL ........ccoiiiiiiiiie e 88
LIST OF TABLES
Table 1.  LiSS@jous ProjJeCt filES ......uuuiiiiiiiiiiiiiiiei e s D
Table 2. R source cogdth GUI definition StriNgS .........oovvviviiiiiiiiiii e 9
Table 3. Datafile in PBS fOrMAL..........coiiiiiiiii i 13....
Table 4. Talk description filgwisstalk. Xxml ... 24
Table C1. C representations Of R dat@ tyPeS.........uuuuuiiiiiiiiiiiiiiiieee e 81
Table C2..C() eXample IMPBSIIY .....ovuiiiiiiiiiie e e e e e e e e e e e 82
Table C3..Call()  example adapted frORPBSIIY .........ooooiiiiiiiiiiiiiii e 83
LIST OF FIGURES
Figure 1. Tangled relationships ang computer model components...........cccoeeeeeeiiiciiiiiinnnnee. 2
Figure 2. GUI organization @omputer model COMpPONENtS ...........coovvviiiiiiiiiiiiie e, 2
FIQUre 3. LiSSAJOUS GUI....ccciiiiiiiiiiiiiiite ettt e e e e e e e e e e e e e e e e e e e e annnaes 5
Figure 4. LiSSAJOUS Qraph.......cooeiiiiiiiiiiiii e e e e e e e e e e e et a e e aaaaaaees 5
Figure 5. GUI generated IpyesentTalk  from swisstalk.xml . 25
Figure 6. RanVars GUI and density PlOt............ouuuuiiiiiiiiiiii e e e e e eeaaaanens 27
Figure 7. RanProp GUI and pairs plot for DiriChlet ..o 28
Figure 8. SINENOIM GUI @Nd PIOL.......ueiieee e e e e e e eees 29

Figure 9. CalcVor GUI and tessellation Plot...........ccooeiiiiiiiieeiiece e 30



Figure 10LinReg GUI and regreSSion PlOt........ oo

Figure 11 MarkRec GUI and density PIOS......cccoeeeie i 32
Figure 12 CCAGUI and parameter Pairs PlOL.........cccouuiiiiiiiiiiiiiiie e
Figure 13FishRes GUI and population time SErES ..........uuuuruiiiiiiiie e 34
Figure 14FishTows GUI and simulated tow tracks............ooevviiiiiiiiiiiiiie e 35
ABSTRACT

Schnute, J.T., Couture-Beil, A., Haigh, Bnd Kronlund, A.R. 2011. PBSmodelling 2.64: user’'s
guide revised from Canadian TechnicapBe of Fisheries and Aquatic Sciences
2674: viii + 191 p. Last updated Nov 21, 2011.

This report describes the R pack&gSmodelling , which contains software to facilitate the
design, testing, and operation of computer models. The ifitB®&refer to the Pacific

Biological Station, a major fisheries laboratory Canada’s Pacific coast in Nanaimo, British
Columbia. Initially designed for fisheries scietgighis package has broad potential application
in many scientific fieldsPBSmodelling focuses particularly on tools that make it easy to
construct and edit a customized graphical ugerface (GUI) approprta for a particular
problem. Although our package depends heaviltherR interface to Tcl/Tk, a user does not
need to know Tcl/Tk. In addition to GUI design tod8Smodelling provides utilities to
manage projects with multiple files, write lectutkat use R interactively, support data exchange
among model components, conduct sakeed statistical analysesnd produce graphs useful in
fisheries modelling and data analysis. Exaspimplement classical ideas from fishery
literature, as well as our own published pap&he examples also provide templates for
designing customized analysesngsother R packages, suchRBSmapping, PBSddesolve ,
odesolve , andBRugs. Users interested in building new packages carPB8smodelling

and a simpler enclosed packd®f@Stry as prototypes. An appexdiescribes this process
completely, including the use @f code for efficient calculation.



—iv -

Preface

After working with fishery models for more than 30 years, I've used a great variety of
computer software and hardware. Currentlg, filee distribution of RR Development Core
Team 2011a) provides an excellent platformsioftware development in an environment
designed to support multiple computers and dpeyaystems. Furthermore, an associated
network of contributed paekjes on the Comprehensive R Archive Network (CRAN:
http://cran.r-project.orgigives access to a wealth of algoms from many users in various
fields. This disciplined system allows userseltke authors of this package, to distribute
software that extends the utility of R in new directions.

Previously I've used software in BagiSchnute 1982), Fortran (Mittertreiner and
Schnute 1985), Pascal, C, and C++ to implement ighgasblished papers. Usually this software
goes stale in time, due to minimal documé&atg changing operating systems, the lack of
portable libraries, and many ottfactors. Because R includesieh library of statistical
software that operates on multiple platformgy, colleagues and | can now distribute software
that actually works when other people tryTihe user community includes us, because we often
find that we can’t remember haw operate our own software after a few weeks or months, let
alone years. Although writing a go&dpackage requires considerable effort, the result often
pays off in portability, commmication, and long term usage.

PBSmodelling tries to accomplish several godtst, it anticipates the need for
model exploration with a graphical useterface, a so-called GUI (pronounced gooey). We
make this easy by encapsulating key featur@dtTk into convenient tools fully documented
here. A user need not learnl/Tk to use this package. Erything required appears in
Appendix A. You might want tgtart by running the functiaestWidgets() . Co-author
Rowan Haigh likes the subtitle: “modelgj the world with gooey substances.”

Second, we want to demonstrate interestinglyses related to our work in fishery
management and other fields. The functionExamples() illustrates some of these, as
described further in Sectiah The code for all of them apgres in the R library directory
PBSmodelling\examples . We demonstrate the power of other R packages, sitBRwags
(to perform Bayesian posterisample with the applicatioWinBUGS, odesolve (to solve
differential equations numericallypBSddesolve (to solve delay differential equations), and
PBSmapping (to draw maps and perform spatial analyses).

Third, PBSmodelling serves as a prototype for building a new R package, as
summarized in Appendix B. We illusteatwo methods of calling C cod€( and.Call ), and
discuss many other technical isstencountered while buildirtgis package. The functions
compileC andloadC (added in 2008) give direct supp@wr dynamically adding C functions
to the working R environment.

Finally, to use R effectively, we’ve found ibrevenient to devisa number of “helper”
functions that facilitate daxchange, graphics, function minization, and other analyses. We
include these here for the bemeff our users, who may chooseignore them. We hope that



PBSmodelling inspires interest in interactive modétat demonstrate applications in many
fields.

As with our earlier packageBSmapping, Rowan and | employed a bright student who
could learn quickly and implement creative iddas Jim Uhl (Computing Science) and Dr. Lev
Idels (Mathematics), both from Malaspina Univgrollege (MUC) heren Nanaimo, drew my
attention to the student Alex Couture-Beil, wias strong credentials looth fields. Rowan and
| gave him a few initial specifications, and he quickly got ahead of us by extending our ideas in
new and useful directions. This process tw#d in 2008, when we employed Anisa Egeli,
another bright student from MUC. The current versioRBSEmodelling represents the result
of an evolutionary process, as we experiraéntith design concepts that would support our
modelling goals. Users familiar with the earhersions (starting with 0.60, posted on CRAN in
August, 2006) may need to revise their code slightly to make it work with this version.

Since 1998, | have maintained a formehtionship with the Computing Science
Department at MUC (now named Vancouvernsl&@niversity — VIU), where | find kindred
spirits in developing projects like this one. rpaularly want to thank Dr. Jim Uhl for his
suggestions and support on this project. Conversaivith Dr. Peter Walsh have also stimulated
my interest in the theory angglication of computing science.

Fishery management depends on models avigheat range of complexity, starting from
some fairly simple ideas. Unfortunately frons@ing perspective, “indusal strength” models
can’t run exclusively in R. Ajorithms with high computatioheequirements don’t run fast
enough in R for practical applicah, due to interpretive codad other technical limitations.
Examples irPBSmodelling often illustrate ideas at thexgdle end of the spectrum, although
the package can certainly be used to manatpereat software designed deal with greater
complexity. The current version assists usemsriting C code that can dramatically speed
model performance.

Scientifically, 1 like to work from both endsf the spectrum. The behaviour of a complex
model sometimes mimics a much simpler modad, ih helps to become well versed in some of
the simpler cases. | appreciate the motto of Gamestoryteller and humorist Stuart McLean,
who hosts a CBC radio broadcdse Vinyl Cafe (http://www.cbc.ca/vinylcaf¢/ “We may not
be big, but we're small.”

Jon Schnute, December 2006; revised October 2008.



—Vi—

Update for Version 2.50

Our colleagues Rob Kronlund, Sean Caxd daclyn Cleary used this package
extensively for research on Management Strateggluation. Their experiences led them to
suggest a number of significant improvertge We thank Rob for providing written
specifications and financial resources to iempént their ideas. PBSmodelling now includes new
widgets @roplist , table , spinbox ,include ), bug fixes, and other improvements that
give users even greater comtover GUIs designed for exploig and demonstrating analyses
with R. Alex Couture-Beil, who now pursues graduate studies at Simon Fraser University, added
the new programming code that cobitrties to this ginificant upgrade.

This update also includes greatly enhangadions of our funatins to support project
development (Section 5) and irdetive lectures (Section 6). Ocolleague Andrew Edwards at
PBS assisted this work with funding that allowes] once again, to engager intrepid graduate
student Alex. Our code now includes modes# of S4 classes, such as the R8&options
class (Section 5.1). Furthermovee now use XML scripts in thialk description files that enable
users to give dynamic presentations aboutyseslin R (Section 6). Users who employed our
functionpresentTalk  in the past will need to revise théescription files to operate with this
update.

The scope of our R packages has grown censlady over the last few years. Thanks to
prodding from Alex, we now use Google Codéoveges for all our projects. The web site
http://code.googleom/p/pbs-softwargirovides further informadin. In particular, this update
supports our new package PBSadimitp(//code.google.com/p/pbs-admbiit allows R users to
tap into an open source packapat can handle “indtrgal strength” assessment problems. We
have a version that should soon be ready for posting on CRAN.

Jon Schnute, October 2009



— Vil —

Update for Version 2.60

Open source software often benefiteagly from unanticipated suggestions and
participation by the user community. John Cbans (2008, p. 10), who designed the S language
that underlies R, describes tipsenomenon as “a cause forehigratitude and not a little
amazement.” Eric Raymond (2000), speakimgrfthis own experience with open source
projects, puts it this way: “Treaty your users as co-developeryasir least-hassleute to rapid
code improvement and effective debugging.” TieiRaymond’s sixth lesson in a series of
fundamental observations. The tenth is: “If yaatryour beta-testers as if they're your most
valuable resource, they will respond by becoming your most valuable resource.”

In the previous update for version 2.5@péntioned my long-time friend, colleague, and
co-author Rob Kronlund. | was delighted by hiterest in applying PBSmodelling to evaluate
fishery management strategies (Kronlund e2@1L.0). He quickly identified problems and helped
design extensions that have greatly benethedcurrent version. In addition to many small
changes and bug fixes, it includes three new widgetebook , image , andprogressbar
Very significantly, the newmotebook widget implements tabbed windows, in which distinct
tabs correspond to different aspects of the.@Wls can help organize material for user
interaction, and it potentig reduces the requiresize of a GUI so that can fit on the small
screens now popular on ultraportable computers.

We are delighted and grateful to weleaRob as a coauthor of PBSmodelling. He has
certainly become a valuable resource, althoughnidt sure we always gave him the quality
treatment suggested by Eric Raymond.

Jon Schnute, March 2010

Note: Version 2.60 fixes an unfortunate bug in gnel widget. In earlier versions, the
argumentsirow andncol were reversed whesyrow=FALSE . We realized that we had
programmed around this bug in our previous windi@scription files. Gnsequently, after the
bug was fixed, we needed to make changes to ey&ty widget withbyrow=FALSE . (These
were relatively uncommon.) We encourage usérgrsion 2.60 to chedkeir own historical
description files for this potential problem.

P.S.We now maintain developmesites for a suite of PBS software packages on Google Code:
http://code.googleom/p/pbs-softwareincluding one foPBSmodelling Some of these appear
on CRAN while others remain too specialiseddeneral appeal. The latter packages, however,
contain interesting and complex functionatityat individuals are welcome to explore.




— Vi -

Page left blank intentionally



1. Introduction

This report describes software to facilittte design, testingnd operation of computer
models. The packageBSmodelling s distributed as a freely available package for the
popular statistical program R (R Deopinent Core Team 2011a). The initiRBSrefer to the
Pacific Biological Station, a major fisheries labimry on Canada’s Pacific coast in Nanaimo,
British Columbia. Previously, we produced the R packkig8mapping (Schnute et al. 2004),
which draws maps and performs various spafi@rations. Although both packages (which can
run separately or together) include examplessegieto fishery models and data analysis, they
have broad potential applicati in many scientific fields.

Computer models allow us to speculate aleality, based on mathematical assumptions
and available data. The full implications of adabusually require numerous runs with varying
parameter values, data sets, and hypothesesst@mized graphical user interface (or GUI,
pronounced “gooey”) facilitatehis exploratory procesPBSmodelling focuses particularly
on tools that make it easy to construct and e@iUaappropriate for a pacular problem. Some
users may wish to use this package only fat purpose. Other users ynaant to explore the
examples included, which demonstrate applicatairikelihood inferenceBayesian analysis,
differential equations, computatial geometry, and other modeechnologies. In constructing
these examples, we take advantage of the diyarfsalgorithms available in other R packages.

In addition to GUI design tool®BSmodelling provides utilitieso support data
exchange among model components, conduct sprtiaditatistical analyseand produce graphs
useful in fisheries modelling and data analySsamples implement classical ideas from fishery
literature, as well as our own published pap&he examples also provide templates for
designing customized analyses usingRheackages discussed here. In f_RBSmodelling
provides a (very incomplete) guitiethe variety of analyses ggible with the R framework. We
anticipate many revisions, as we find time to include more examples.

PBSmodelling depends heavily on Peter Dalgdian(2001, 2002) R interface to the
Tcl/Tk package (Ousterhout 1994).i§lcombines a scripting languafjecl) with an associated
GUI toolkit (7). We simplify GUI design with the aiof a “window descption file” that
specifies the layout of all GUI agponents and their relationshigtlvvariables in R. We support
only a subset of the possibilitiagailable in Tcl/Tk, but we customize them in ways intended
specifically for model design and erpation (Appendix A). A user d#BSmodelling does
not need to know Tcl/Tk.

Computer models typicallyvolve a variety of compomgs, such as code, data,
documentation, and a user interface. Figure 1 iliss$ the tangled relatiships that sometimes
accompany computer model desig@Smodelling allows the GUI to become a device for
organizing components, as wellrasining and testing softwaEigure 2). The project might
involve other applications, as well as R itselfatidition to its interacte role, the GUI becomes
an archival tool that reminds the developer ltmmponents, functions, and data tie together.
Consequently, it facilitates the pexs of restarting a project at @uke date, when details of the
design may have been forgotten.



R
GUI Code Data
Files Other
Applications
Documentation

Figure 1. Tangled relationships among computer model components.

R
Code Data
GUI
Files Applications
Documentation

Figure 2. Computer model components organizéth a graphical us interface (GUI).

In PBSmodelling , project design normally begins wishtext file that describes the
GUI. Additional files may contain code for R@other applications, which sometimes require
languages other than R. For example, tH&RRigs package (to perform Bayesian inference
using Gibbs sampling) requires &efwith the intendedtatistical model, witen in the language
of a separate prograwinBUGS. In other contexts, a user mightite C code to get acceptable
performance from model components that regextensive computer calculations. This code
might be compiled as a separate programnielil directly into a customized R package.



—-3-

Section2 of this report describes the process@figning a GUI to operate a computer
model. Components can share dataugh text files in a speciakd “PBS format” presented in
Section3. These correspond naturallyligt  objects within R. Sectiof describes additional
tools for customized graphiesid data analysis. Sectidhsind6 discuss tools developed in 2008
for managing projects (like C code development) @ariting lectures that use R interactively. In
Section7, we highlight briefly some of the examples in our initial release, although we expect
the list to expand in future véosis. This guide explains themtext and general purpose of all
functions inPBSmodelling . Consult the help files for complete technical details.

Appendix A gives the complete syntfox all visual components (calleddgets)
available for writing a window description fite construct a cusinized GUI. Appendix B
provides syntax detail for talk description §iléAppendix C describes the process of building
PBSmodelling in a Windows environment. A simple enclosed packg8try gives a
prototype for building any R package, inclogithe use of C code to speed calculations.
Appendix D shows the help fdancluded with the package.

TousePBSmodelling , run R and install the package from the R GUI (click
“Packages”, “Install package(s), select a mirror, and chooB&8Smodelling from the list of
packages). Windows users can also obtain progpiate compressed file from the authors of
this report or directly from the CRAN web shi#p://cran.r-project.org/

The R GUI normally runs as a Multiple Bament Interface (MDI), in which child
windows like the R console andaghics screens alppear within the GUI itself and a menu
item can be used to tile the sub-windoWwsafortunately, in this configuration, windows
generated by Tcl/Tk sometimes disappear myatsly when an application runs. They can be
recovered by clicking the appropriateg” icon on the taskbar. Yocan avoid this problem by
using the Single Document Interface (SDI)wihich the operating system manages all R
windows (console, graphics, Tcl/T&tc.) independently on the dégi. Set this configuration by
running the R GUI, choosing the menu ite(Eslit)y and (GUI Preferences and then selecting

and saving the SDI option.l&rnatively, go to the maast configuration fileRconsole in the
\etc subdirectory of the R insllation, and use a textigat to select the optioMDI = no .

2. GUI tools for model exploration

The practical task of writing appropriatede for the R Tcl/Tk package can sometimes
become daunting, particularly if the GUI window requires extensive design and change. For a
restricted set ofk components (calledidgets), PBSmodelling makes it much easier to
design and use GUIs for exploring models irARiser needs to supptwo key parts of a
GUI-driven analysis:

e awindow description file (an ordinary text file) that contgtely specifies the desired layout
of widgets and their relationship withinctions and variables in R, and

e R code that defines relevaninctions, variables, and data.

This section begins with an example to illustithie main ideas, and then gives complete details
for constructing window description filéisat can be used to generate GUIs.



2.1. Example: Lissajous curves

A Lissajous curvetttp://mathworld.wolfram.com/LissajousCurve.hfpmiamed after one
of its inventors Jules-Antoine Lissajous, represents the dynamics of the system

x=sin(2zmt), y= sin[Z (t+¢ )], (1)

where timet varies from 0 to 1. During this time interval, the variablesdy go throughm and

n sinusoidal oscillations, spectively. The constamt, which lies between 0 and 1, represents a
cycle fraction of phase shift yrelative tox. We want to design a GUI that allows us to explore
this model by plotting Lissajous curvesus. x) for various choices of the parametensr{ ¢, ., )
We also want to vary the number of time stepsid choose a plot thateg#ther lines or points.

Table 1. Two text files associated with the 45ajous Curve” project. The first gives a
description of the GUI window used to manaige graphics. The second contains R code to
draw a Lissajous curve.

File 1: Li ssaj ousCur ve. t xt

window title="Lissajous Curve"
vector length=4 names="m n phi k" \

labels="x cycles''y cycles''y phase' points" \

values="2 3 0 1000"
radio name=ptype text=lines value="I" mode=character
radio name=ptype text=points value="p" mode=character
button text=Plot function=drawLiss

File 2: Li ssaj ousCurve.r

drawlLiss <- function() {
getWinVal(scope="L");
tt <- 2*pi*(0:Kk)/k;
X <- sin(2*pi*m*tt); y <- sin(2*pi*(n*tt+phi));
plot(x,y,type=ptype);
invisible(NULL); }

This analysis can be accomplished withiheode and window desption file shown in
Table 1. Assume that these two files residthe current workig directory and that
PBSmodelling has been installed in R. Start an Rssen from this directory, and type the
following three lines of coda the R command window:

> require(PBSmodelling)
> source("LissajousCurve.r")
> createWin("LissajousCurve.txt")

The first line assures thBBSmodelling is loaded, the second defines the function
drawLiss for drawing Lissajous curves, and the third creates a window that can be used to
draw curves corresponding any choice of parameters. Figu8 shows the resulting GUI



—5—

window interface. When thé Plobutton is clicked, the curve in Figure 4 appears in the R
graphics window. This correspondstbh@ default parameter values:

m=2,n=3,¢= 0,k = 1000 (2)

The GUI allows different Lissajouggures to be drawn easily.r8ply change parameter values
in any of the four entry boxes, and click Plot

£Bl - 10| x|
W cycles Y cycles y phaze pointz
|2 3 [i {1000
% lines
 points
N
Figure 3. GUI generated by the description filsssajousCurve.txt in Table 1. It

contains five widgets: the windotitled “Lissajous Curve”, aector of four entries, two
linked radio buttons{{ines) and{points ), and a(Plot) button.

1.0

0.5

-0.5

-1.0

T T T T T
-1.0 -0.5 0.0 05 1.0

X

Figure 4. Default graph for the “Lissajous Curvpfoject, obtained by clicking the Pjobutton

in Figure 3. The variable goes througiwo cycles while thg variable goes through 3
cycles. A line graph is drawn throu@tD00 points generatday the algorithm (1).



—-6—

The window description filéTable 1) specifies window titled “Lissajous Curve” with
avector of four entries. These correspondjtaantities with the R variable nanmsn, phi |,
andk. The corresponding window (Figure 3) wathntain four entry boxes that allow these
guantities to be changed. A label for each quaetitphasizes its conceptual role: the number of
cycles forx ory, the phase shift for, and the number of points ped. Initial values correspond
to those listed in (2). The backslash ¢haracter indicates that a widget description (in this case,
avector ) continues on the meline. A pair ofradio  buttons, both corresponding to an R
variable namegtype , allow selection between “lines” dripoints” when drawing the plot.

The graph (Figure 4) is actiyadrawn (i.e., the R functiodrawLiss is called) when the user
presses autton that contains the text “Plot”. In, we use the symial$ to designate a
button or keystroke, such as the PRlbttton or the radio buttons lineand{ points. These

symbols are not to be confused wiidk description file tags €>) used later (Sectio®).

The file of R code (Table 1) implements the algorithm (1) for complktpants on a
Lissajous curve. The functiatrawLiss has no arguments, but gets values of the R variables
m n, phi , k, andptype from the GUI window via a call to tHeBSmodelling function
getWinVal . The argumendcope="L" implies that these variables have local scope within
this function only. (Another choicgcope="G" would give the variables global scope by
writing them to the usés global environmentGlobalEnv )

2.2. Window description file

A window description file currdty supports the following widgets:

window — an entire new window;

grid — a rectangular block for placing widgets;

menu— a menu grouping;

menuitem — an item in a menu;

button - a button linked to an R function thanhs a particular angdis and generates a
desired output, perhaps including graphics;

check —a check box used to turn a variabeor off, with corresponding valug®RUEor
FALSE

7. data — an aligned set of entry fields for allaponents of a data frame, where columns can

have different modes;

aokrwnNE

o

8. droplist  — an entry widget with drop down list of values;
9. entry - afield in which a scalar variabfeumber or string) can be altered,;
10. history  — a device for archiving parameter values corresponding to different model

choices, so that a “slide show” otémesting choices can be preserved;

11. image - a graphical widget that displays a GIF image file;

12. include - a pseudo widget which embeds a specified window deserifggowithin the
current window description file;

13. label - atext label;

14. matrix — an aligned set of entry fieldisr all components of a matrix;



—7-

15. notebook - a widget comprised of pages that casdlected by tabs, where each page is
visible when the corr@anding tab is selected;

16. null — a blank widget that can occupy an empty space in a grid;

17. object - an aligned set of entry fields defthby an existing R-object (vector, matrix, or
data frame);

18. progressbar  — a progress indicator widget;

19. radio - one of a set of mutually exclusivali@buttons for makin@ particular choice;

20. slide - aslide bar that sets the value of a variable;

21. slideplus  — an extended slide bar that alsspiiys a minimum, maximum, and current
value;

22. spinbox — an entry widget for a numeric valuéhin a given range which can be changed
with the up and down arrows;

23. table — a spreadsheet widget with scrollbars for large tabular data;

24. text — an entry box that supports multiple lines of text;

25. vector — an aligned set of entry fieldisr all components of a vector.

The description file is an dinary text file that specifiesach widget on a separate line.
However, any one widget description can spauitiple lines by using a backslash character (
to indicate the end of an incomplete line. For example, the single line:

label text="Hello World!"
is equivalent to:
label \

text="Hello World!"

Meaningful indentation is highlrecommended, but not compuigoThe three-line description
of avector widget in Table 1 illustrates a readable style.

Each widget has named arguments tbatrol its behaviour, analogous to the named
arguments of a function in R. Some (requiradjuments must be specified in the widget
description. Others (noequired) can take defamalues. All widgets havetgpe argument
equal to one of the 25 names above, although the typed can be omitted in the description
file. Appendix A gives an alphabetiist of all these widgets, alongitiv detailed descriptions of
all arguments. As in calls to R functions, argument names can be omitted as long as they
conform to the order specified in the detailedgét descriptions given below. Nevertheless, we
recommend that all argument namespecified, except possibly the natype , which is
always the first argument for each widget. Unlike R functions, where commas separate
arguments, the arguments in a widgetagtion are separated by white space.

In a description file, all argument values are treated initially as strings. In addition to
specifying a line break, the backslash can be tsadlicate five speciaharacters: single quote
\', double quot&" , tab\t , newline\n , and backslash . If an argument value does not
include spaces or special characters, theneguariound the string are not required. Otherwise,
double quotes must be used to delineate theevaflan argument. Some arguments can take a
NULL argument value; quotes areesdgdo differentiate betweenNLL object, and the text value



-8-—

"NULL" . Single quotes indicate strings nestéthin strings. For example, theector in
Table 1 has four labels spked by the string argument

labels="'x cycles''y cycles''y phase' points"

A hash mark#) that is not within a string begimscomment, where everything on a line
after the hash mark is ignored. As mentioned above, an isolated backslash (not part of a special
character) indicates continuationto the next line. A break caven occur in the middle of a
string, such as the long label

label text="This long label with spaces \
spans two lines in the description file"

In this case, leading spacedlie second line are ignored, toe meaningful formatting in the
description file. Intentional spas in a long string should appgmaior to thebackslash on the
first line.

Althoughthetype argument (likevector ) for a widget can never be abbreviated,
other arguments follow the convention used with named arguments in R function calls. For a
given widget type, the availabdgguments can be abbreviatad,long as the abbreviations
uniquely identify each argument. For example wbetor in Table 1 could be specified as:

vector len=4 nam="m n phi k" \
lab=""x cycles''y cycles''y phase’ points" \
val="2 3 0 1000"

Unlike variable names in R, widget names and their arguments are not case sensitive.
Some users may prefer to write @gibe variables in upper case oitlvan initial capital letter.
For example, the names WINDOW, VECTORADIO, and BUTTON could be used to
emphasize the widgets in Table 1.

2.3. Window support functions

PBSmodelling includes functions designedd¢onnect R code with GUI windows.
Everywindow has aname argument (with defauliame=window ), and windows with
different names can coexist. Window names msstonly letters and numbers; they cannot
contain a period (dot) or any other punctuatMnen running a program with multiple windows,
only one window will be current (i.e., selectedtbg user) at any particular time. Normally, a
user selects a window by dliag on it, but the functiofocusWin allows program control of
the window currently in focus.hus, activity in one window might hesed to shift the focus to
another.

The functioncreateWin uses a description file generate one or more windows,
where each window has a distinct name (pertiapslefault) taken from the file. If a window
with the specified name alreadyists, it will be closed befoithe new window is opened. When
designing and testing a GUI, this feature enstinat a new version automatically replaces the
previous one. The functiacloseWin , which takes a vector of window names, closes all
windows named in the vector. With no argumedizseWin()  closes all windows that are
currently open.



AlthoughcreateWin normally builds a GUI from a description file, it will also accept
a vector of strings equivaletd such a file. Thus, a file & source code cadefine a GUI
directly, without the need for a separate desanipfile. illustrates how this can be done in a
simple case. To see the character vectors equivalent to a given description file (say,
winDesc.txt ), type the R command:

scan("winDesc.txt",what=character(),sep="\n")
In particular, if the description file includes a backslastdouble quote character, the
corresponding R string msurepresent it a8 or\" , respectively. Despite this alternative of

embedding window descriptions in R source filgs,recommend writing separate files to define
GUIs, except perhaps for very simple models.

Table 2. A simple file of R source code with chamcstrings that defina GUI. No separate
window descriptionife is required.

File: Simple.r

# window description strings
winStr=c(
"window",
"entry name=n value=5",
"button function=myPlot text=\"Plot sinusoid\"");

# function to plot a sinusoid
myPlot <- function() {
getWinVal(scope="L");
X <- seq(0,500)*2*n*pi/500;
plot(x,sin(x),type="1"); };

# commands to create the window
require(PBSmodelling); createWin(winStr,astext=TRUE)

Internally,PBSmodelling converts a description file intoliat ~ object that is used to
generate the correspand GUI. The functiongompileDescription and
parseWinFile  give lists that correspond tescription files. Just aseateWin can act
directly on a character vectorcian also act on a suitably defined list, rather than a file. This
feature makes it possible to replace a descrififi®nvith R code that defines the corresponding
list, although we recommend agaittsis practice in most cases.

R programs need to share data with a GUI windBSmodelling provides seven
functions that deal with values of\Rriables named ia description file:

getWinval .............. returns values from the current window;

setWinval .............. sets values in the current window;

getWinAct .............. returns all actions (to a maximafrb0) invoked in the current window;
setWinAct .............. adds an action to the action vector for the current window;

getWinFun .............. returns the names of all R functicgferenced in the current window;



-10 -

clearWinval ......... clears global values assoethtvith the current window;
updateGUI .............. updates the currently active Guith values from R’s memory.

Some models make use of a single peter vector. In such cases the function
createVector  generates a GUI directly, withouktimeed for a corresponding description
file. We also offer a few “choosing” functionggetChoice andchooseWinVal - that
invoke a prompting GUI offering shg choices. The latter writéke choice to a variable in a
GUI specified by the user.

After usingcreateWin to produce a GUI, the functiogetWinVal and
getWinFun provide useful summaries of names dexdan the current project. Furthermore,
the functiongetWinAct provides a record of GUI actioteken by the user, starting with the
most recent and working backwards. By defaultattieon associated with a widget is its
type; for example autton has defaulaction=button . In general, however, the
description file could give a unique action nameach potential action, sbat the vector would
give an unambiguous record of user actions.

Alternatively, GUI widgets that suppdtnction  arguments can take the
PBSmodelling functiondoAction , which evaluates code specified as a string in the
widget'saction argument. This code string can be a simple expression or a multi-line set of
R-code. In essencdpAction allows the user to implemesubroutines by clicking a widget
(such as a button):

winStr=c("window title=\"doAction Demo\"",
"button text=\"See attached libraries\" function=doAction pady=10\
action=\"x=search();N=length(x);mess=paste(paste(pad0(1:N,2),x),
collapse="\n");resetGraph();addLabel(.2,.5,mess,adj=0)\"")
createWin(winStr,astext=TRUE)

Within the action string, subsiite double quotation marks ".with bactick characters "...", and
the functiondoAction  will replace them with interpretabtpiotation marks. In most cases (not
all), escaping the quotation mark...\" will also work.

The package provides a function caléstectFile for opening and saving files to
directories using a GUI menu. Earlier functioppomptOpenFile , promptSaveFile )
remain available, but shoulsk deprecated in favour sélectFile . Files opened using
programs external to R depend on file name extensions:

openFile .....ccccc..... opens a file using the defautigram for the file extension;
setPBSext .............. overrides the default program associated with an extension;
getPBSext .............. shows the overridden file extension and associated program.
clearPBSext ......... clears file extensions addeddsyPBSext .

If a widget invokes the functiompenFile , the associategiction should be the file
name. By definitionppenFile has the default argumegetWinAct()[1]



—11 -

On a Windows platform, the native R functisimell.exec (called byopenFile )
automatically chooses a default from the regidtor this reason, our distribution specifies an
empty list:

getPBSext() returnslist()
The default can, however, be overwritten bgafying explicit listcomponents, such as:

setPBSext(‘html’,
"c:/Program Files/Mozilla Firefox/firefox.exe" file://%f")

where%f denotes the file name in the string pagsetthe operating system. Unix platforms
typically lack such generic filesaociations, and thus require a usespecify defaults this way.

PBSmodelling includes aistory  widget designed to colleatteresting choices of
GUI variables so that they can be redisplayed later, rather like a slide show. This widget has
buttons to add and remove GUI settings fromdhrrent collection, to scroll backward and
forward, and to clear all entries from the colleati®ther buttons allow &re history files to be
saved or loaded. THestory  widget defines and uses the BBS.history  in the global
environment to store a saved history.

Normally, a user would invokelastory  widget simply by including a reference to it
in the description file. HowevePBSmodelling includes some support functions for
customized applications:

initHistory ... initializes data structures foolding a collectiorof history data;
addHistory ............ saves the current window settitagthe current history record;
rmHistory — .............. removes the current record from the history;

backHistory  ........ and

forwHistory  ......... move backward and forward between successive history records;
firstHistory —  ....... and

lastHistory  ......... move to the first and lastcords in the history;

jumpHistory  ......... moves to a specified record in the history;

exportHistory ....and

importHistory ....save and load histories from files;

clearHistory  ....... removes all records from the current collection.

The help file forinitHistory shows an example that uses these functions directly.

Since version 2.50, we have incorporated additional functionality for GUIs stemming
from experience using this package in multi-stalder workshops. In particular, a new widget
callednotebook now allows tabbed pages within one GUI, where each page can contain
whatever grid and widget combination the programmer wishes to present. This removes the
problem of having too many GUIs goreen when situations require multiple inputs and outputs.



- 12 —

Other new widgets include drop lists and spin bodesplist , spinbox ), scrollable
objects for data with dimensiotmo large to fit on screemljject ), a spreadsheet-like widget
that can display and editt@dan tabular formattéble ), an animated progress indicator
(progressbar ), and arimage widget to add illustrations, logos, and other visual cues (GIF
format only).

2.4. Internal data

PBSmodelling uses the hidden list variahlRBSmod in the global environment to
store current settings and internal imf@tion needed to communicate with thktk
interface. This variable is intended for exclusive us@B$modelling , and users should not
alter or delete it whil®BSmodelling is active. We include the material in this section for

advanced users and developersregted in further details abouetinternal data used to manage
GUI windows.

Thelist .PBSmod contains a named component for each open window, where the
component name matches the window name. Ré|lif a window is not named explicitly, it
receives the defauttame=window . In addition to window names?BSmod contains two
other named component&activeWin  and$.options . These names do not conflict with
the window names, because the latter cannot include(d dothe$.activeWin  component
stores the name of the window that hasst recently received user input. Theptions
component saves key values of intere®®B®&modelling , such as a componebpenfile
with information that links programs to file extensions for the funatipenFile . See
Section2.3 for further information.

Any named component d?PBSmod that does not start with dot stores information
related to the corresnding window. Each window usedist with the following named
components:

e widgetPtrs
A list containing widget pointers. Each compohkas a name that matches widget name.
Only widgets with aaame argument and a correspondiikg widget will appear in this list.

e widgets
A list containing information from the window degation file relevant to each widget. This
list includes every widget that hagame or names argument. Widgets without names will
never be referenced again after the window/lheen created; consequently, information
about them is not stored for later usage.

e tkwindow
A pointer to the window created lktoplevel()

e functions
A vector of all function names rafmnced in the window description.

e actions
A vector containingaction  strings corresponding the most receniser actions in the
window, up to a maximum of 5QThe internal constanimaxActionSize sets this upper
limit. See the filedefs.R in the distribution source code.)



—-13-—

Users can explore the contentsPBSmod with the R structure commarstt . For
example, from the R console, typmExamples()  and select the example “CalcVor”. Then
type the commanstr(.PBSmod,?2) to shows the list structure todepth of 2. This reveals
all the list components discussabove. Further details appégrexploring the structure to
depths 3, 4, or more. Noticesalhow the contents changedif$erent examples are selected.

ThefunctionsgetWinVal , setWinVal , getWinAct , setWinAct
getWinFun , getPBSext , andsetPBSext (discussed in Sectidh3) provide methods for
manipulating and retrieng variables stored i?BSmod. Use these, ratherah direct access, to
alter the internal data. Future design modificatiorBB&modelling might change the
architecture for storing the data componentsieiimethods functions will continue to have
their current effect.

Table 3. Sample data file foPBSmodelling . The functiorreadList  converts this file to a
list  object with six components: a scatar, a logical vectosy, two matrices$z, $a), and
two data framesdpl, $b2). The matrix$a is read by column, arth1=$b2 .

$x
0

$y
T F TRUE FALSE

$z
11.112.213.314.4
15.516.6 17.7 1.88e+01

$a
$$matrix ncol=2 byrow=FALSE colnames="a b"
5123

$b1

$$data ncol=3 modes="numeric logical character" \
byrow=TRUE colnames="N L C"

5Taa

3 Fbb

8Tcc

10.5 F dd

$b2

$$data ncol=3 modes="numeric logical character" \
byrow=FALSE colnames="a b c"

53810.5

TFTF

aa bb cc dd




- 14 —

3. Functions for data exchange

Computer models usually require dat&hange between model components. For
example, as described above, the functgetsVinvVal andsetWinVal move data between
an R program and the GUI. Other applications, sisthose written separately in C, may have
the ability to write data to files that R can rebdcases like this, it would be convenient to have
variable names in the C code correspondattables with the same names in R.
PBSmodelling can facilitate this process with the functioeadList  andwriteList
which convert a text file to an Bt and vice-versa. Another functiempackList  creates
local or global variables with names that match the list components. Similarly a global or local
list can be populated with objects by name through the fungtiokList

Table 3 illustrates a data file in PBS format, legibledadList . The file contains
lines with an initial dollar sign (lik&x in Table 3) that specify a list component name in R,
followed by one or more lines of data. Data isesine separated by white space. A single item of
data corresponds to a scalar in R, multipenis on a single line correspond to a vector, and
multiple lines of data correspond to a matrix vitie number of columns determined by the first
line of data. Thus, in Table 3x is a scalardy is a vector of length 4, argk is a Z4 matrix.
The format also supports four possible data type definitions on a line precedi®d by

$$ vector mode=numeric names=
$3$ matrix mode=numeric ncol rownames="" colnames="" byrow=TRUE
$3$ data modes=numeric ncol rownames="" colnames byrow=TRUE

$$ array mode=numeric dim fromright=TRUE dimnames

Table 3 illustrates their use in specifyitg, $b1, and$b2. Matrices and data frames can be
read by row or column. This choice determittesorder of reading the data, and white space
(including line breaks) merelygiifies breaks between data iterAsray objects with three or
more dimensions can be read in two ways, with indices varying first from the right or from the
left. For example, data for an array indexedilp] are read by varying first with fixed]
andk if fromright=TRUE . Similarly,k varies first iffromright=FALSE

As in widget descriptions, arguments mayobatted in favour of their defaults, and the
$3$ line may be continued across multiple lines by using a backslash chardeteramatrix
the argumenncol is required. Similarly, data object (i.e., a data frame) must specitpl
and a vectocolnames of lengthncol . Also,modes must have length 1¢ghat all entries in
the data frame have the same mode) or lengbh . Anarray must have a completém
argument, a vector giving the number of dimensions for each index,cimhames argument,
which is a collapsed vector; the first elemerthes name of the first dimension, followed by each
index label in that dimension; each dims@n is appended to end of the vector.

As indicated earlieBSmodelling can use this specialized data format as a
convenient means of capturing data from otheg@ms. For example, to export data from an
external C program, write C code that generateata file in PB®rmat, where component
names in the file match the C variable names. Thad the resulting file into an R session with



—15—

the functionreadList , and usainpackList to produce local or global R variables. At this
point, both R and C share data with the saar@able names. This method works well with
programs written foAD Model Builder (http://otter-rsch.ca/admodel.hfpa package used
extensively in fishery research and other fieltases reverse automatidferentiation (AD;
Griewank 2000) for highly efficient caltation of maximum likelihood estimates.

To considerable extent, R has native supfaorreading and writig a variety of text
files, including the functionscan , cat , source , dump, dget , dput , read , write ,
read.table , andwrite.table . External programs sometimeslize R formats for their
input data. For example, the progra¥mBUGS (Speigelhalter et al., 2004), which implements
Bayesian inference using Gibbs sampling, uses data files written in a list format closely related to
the R syntax produced by tdeut function. If the filemyData.txt hasdput format, then
either of the two R commands

myData <- dget("myData.txt");
myData <- eval(parse("myData.txt"));

produces a correspondiRlist object namedyData .

We should, however, add a word of ttan here. When R saves array datdpuot
format, it converts the array tovactor by varying the indices from left to right. For example, a
matrix with indicedi,j] is saved as a vector in whichvaries for each fixegl. In effect, the
data are stored by column. This sometimes gawvesnnatural visual appearance. In English, the
eye reads naturally from left to right, then dowlatrices are normally displayed by row, with
column index varying for each fixed . WinBUGS, supported by the R packaB&ugs
(Thomas 2004), requires input data formatted in this visually meaningful way. More generally,
WinBUGS reads arrays by varying thadices from right to left. ThBRugs function
bugsData writes data in this format, but users must take special care in ré&hBYGS data
with thedget function.

4. Support functions for graphics and analysis

As mentioned in the preface, we have devse&umber of functions that make it easier
for us to work in R. Some of them, suchpéstBubbles , relate to techniques discussed in our
published work (e.g., Richards et al. 199¢hnute and Haigh 2007). Others just provide
convenient utilities. For examplestCol("red") shows all colours in the palette
colors()  that contain the stringed" . We also provide support for a few analytical
methods, such as function minimizationiseection gives a brief description of
PBSmodelling support functions. See the héilps for further information.

4.1. Graphics utilities

In many of the graphical functionsge utilize a PBSmodelling function called
evalCall . The functionality okvalCall is similar to that oflo.call  in thebase
package; however, we have geared our fondibwards rationalising arguments passed through



—-16 -

the dots (...) argument so that no conflicts oeatin formal arguments. This way the user can
override predefined arguments in functionsended within functions without the parent
function having to recognize all tllxeguments in the embedded function.

resetGraph ............ Reset various graphics parameters to defaultsinfntliv=c(1,1)
expandGraph ......... Set various graphics parametennéike graphs fill out available space.
drawBars ................ Draw a linear bar plot on the current graph.

genMatrix .............. Generate a test matrix for usplotBubbles

PIOtACF .......coevniees Plot autocorrelation bars (ACF) frardata frame, matrix, or vector.
[01[0] VAXSY o I Plot a graph with a presedkaspect ratio, preservirgm andylim .
plotBubbles ......... Construct a bubble plot for a matrix.

plotCsum ................ Plot cumulative sum of a vector, with value added.

plotDens ................ Plot density curves from aalframe, matrix, or vector.

plotFriedEggs ....Render a pairs plot as fried eggs &iigncontours) and beer (correlations).
.................................... (Code courtesy of Dr. Steve Marisheries Science Centre, UBC.)
plotTrace .............. Plot trace lines from a data frame, matrix, or vector.

addArrows .............. Call tharrows function using relatie (0:1) coordinates.

addLegend .............. Add a legend using relative (0:1) coordinates.

addLabel ................ Add a panel label using tala (0:1) coordinates.

pickCol ......ccevvenee Pick a colour from a complete palette and get the hexadecimal code.
testAlpha .............. Display various alpha transparency values.

testCol ..o Display named colours available based on a set of strings.

testLty  .ooooeeiiieeeen. Display line types available.

testbwd .....ccceviieeee Display line widths.

testPch ..., Display plotting symbols and backslash characters.

4.2. Data management

clearAll ..o, Function to clear all datethe global environment.

Pado .......oeeviiiiiiiiieenn. Pad numbers with leading zeroes (string).

ShOWO.....ccceeeeiiee Show decimal places including zeroes (string).

unpackList ............ Unpack the objects in a list and mtiaem available locally or globally.
VIEW ioiiiieeeeiiieeecceiiees View the firstrows of a data frame or matrix.

4.3. Function minimization and maximum likelihood

Three functions in thetat package support function minimization infim,
nlminb , andoptim . These tend to perform slowly compareith other software alternatives,
due partly to R’s interpretive function evalwati Nevertheless, for small problems they offer a
convenient means of analysis, based entirelyoaie evritten in R. Our examples illustrate some
of the possibilities. For large pra@mhs coded in other software, we still like to write independent



—17 -

code for a function in R, based only on thedel documentation. If both versions of the
software produce the same function values acsed values of the function arguments, then we
have greater confidence that werbaepresented our model corredtlcode. In that context, R
serves as a valuable debugging tool.

PBSmodelling provides a support functiaralcMin  that can use any method

~

available in thestat package to find the vect¢k,...,X ) of lengthn that minimizes the
functiony = f(x,...,x ). In practice, we usually apply this the negative log likelihood for a

statistical model, where the variablesare parameters. We define a new cfz¥ec , which

is a data frame with four columns:
e val —the actual value of parameter,

e min —a minimum allowable value ofI :
e max—a maximum allowable value oq‘; and

e active - alogical value that determines whator not the minimization algorithm should
vary the value of . If active=F , thenx remains unchanged at the valaze .

Internally,calcMin scales active variablego surrogate variabkein the range [0,1],
wherex ands are related by the inverse formu(&hnute and Richards 1995, p. 2072):

1 —cos(ms . 9| TS
X=X +(x —x)ﬁzx‘ +(x —X.)51n2—, (4.3a)
min max min 2 min max min 2
1 X +XxX. —2X 2 X— X
S= —acos|—x mn = —asin | |———mn (4.3b)
s — X m X =X
max min max min

All these formulas represent equivatiéorms of a one-to-one relationship— s, where
X <x<x and0<s<1.Readers may find the second versions of (4.3a) and (4.3b) more

mi

intuitive (with a familiar “arc sine square root” transformation in (4.3b)), but the code uses the
first versions for a possible improvement imgmutational efficiency by avoiding square and
square root functions. The minimization algamtlvorks entirely with surrogate variables,

which may have dimension smaller thaif some variables< are not active. The function

scalePar scales an objeatof classparVec xto a vectos of surrogates via the formula
(4.3b). SimilarlyrestorePar  recovers fromsvia (4.3a).

We also provide a convenient functi@i0that restricts a numeric variabl¢o a
positive value defined by



—-18—

T, T >E
2
GTO(x,a):EH[f] L 0<z<e. (4.3¢)
15
E, z<0
2

The notationGTO denotes “greater than zero”. THhisiction preserves the valueoiff x > ¢,

and for smaller valuesit is always true thaGTO(z,c) > %. The function (4.3c) also has a

continuous first derivative that makes sense locally on a small scale af. Sibés property
makes it useful for avoiding unrealistic numbeia thmight be negative or zero, particularly
when the minimization algorithm usdsrivatives of the objective function.

In summaryPBSmodelling has four functions that fditate function minimization.

calcMin  ......ccooeeeen. Calculate the minimumabtiser-defined function.

scalePar ............... Scale parameters to surrogates in the range [0,1].

restorePar ............ Restore actual parameters from surrogate values.

[ O T Restrict a numeric variable positive value (“Greater Than 0”).

4.4. Handy utilities

calcFib ...cccooeeiienn. Calculate Fibonacci numbers (included to illustrate the use of C code).
calcGM ... Calculate the geometric meta vector of numbers.

clearRcon .............. Clear the R console (cdtat executes ‘Ctrl L").

convSlashes ......... Convert pathway slashes from UNIX /" to DOS “\\'. format.

findPat ................... Find all strings that include atgng in a vector of patterns.

getYes .....ccoveviiinnns Prompt the user with a GUI to choose yes or no.

isWhat ..................... Identify an object by ithkass and attributes

PAUSE ...evviiieieeeeeeen Pause, typically between graphics displays.

showAlert .............. Display a message in an alert window.

ShOWAIQS ...cccceeennnn. Show the arguments for a specified widget in Appendix A.

showHelp ................ Display the Help Page for specifiadkages installed on user’s system.
showPacks .............. Show packages required, butinstalled on a user’s system.
testWidgets  ......... GUI to test all widgetssted in Appendix A.

VIEW ooiiiieeeeeieeeeeceeiens View the first/last/randeoniines of a (potentially large) object.
viewCode ................ View R code for all functions in aesgied package on the user’s system.

5. Functions for project management

A project to design and writsoftware typically involves keeping track of numerous
component files that contain matdrat various stages of progee Some contain input, such as



-19-—

source code, data, or documematiOthers contain various sesgof output, such as compiled
code, processed documents, graphsl, other analytic results. &palized software, such as C
compilers, text processors (like TeX), databasdiai| and R itself play a role in converting the
input to the output. Along the waytermediate files often get crealtthat ultimately need to be
removed to give a clean result. GUI toolS?PiBSmodelling can assist a user in managing such
projects.

For simplicity, we envisage a project asadlection of files in the current working
directory that typically share a common prefix bls#o have various possebéxtensions, such as
.c,.h,.0,.s0,.dll ,andexe .We provide a GUI that illusites a special case of project
management. It allows a user to create and derapC function, load it into R, run it, and
compare the results with a similar function ab@atirely in R. See the companion functions:

[o7= o [ @ Launch a GUI for compiling and loading C code.
compileC ................ Compile a C file into a shared library object.

5.1. Project options

Projects commonly involve speicifpaths and filenames assateid with applications and
binary libraries. To preserve infoation about these and other settifg8Smodelling
provides an S4 clagBSoptions for defining options, editing them in a GUI, and saving them
to a local file. Instances @BSoptions are independent of eaokher. We recommend that
users create a distineBSoptions object for each distinct project.

Internally, an object of clag@3BSoptions contains (1) the options themselves as a
(possibly empty) list, (2) a default file namewhich to save the options, and (3) a default prefix
for recognizing entries in a GUI that correspémaptions. For example, the following code
creates and displaysPBSoptions object callednyOpts:

> # Create myOpts
> myOpts <- new("PBSoptions" filename="myOpts.txt",
+ initial.options=list(a="a",b="b"),gui.prefix="PBSopt")

> # Display myOpts
> myOpts

filename: myOpts.txt
gui.prefix: PBSopt
Options:

$ a: chr"a"

$ b: chr "b"

More generally, theew command (via thanitialize method for class
PBSoptions ) first attempts to load previously saved values from thdilgleame . If the
attempt fails or any options are missingw assigns default options froimitial.options
Users should generally save the newly creB8options object in the global environment to
facilitate the retrieval and modifation of options from variousifictions in different scopes. For
more details on object indlization, consult th®BSoptions class documentation.



—-20-

The following functions allow users to rietve or modify the values stored in a
PBSoptions object:

([=1(0] o] ({0] 4 1S SR retrieve options from the object;

=1 (@] 0] 1[0] o T add or modify options in the object;
getOptionsPrefix ... retrieve the prefix that idifires widget variable names;
setOptionsPrefix ... modify the prefix value;

getOptionsFileName ....retrieve the default filename;

setOptionsFileName ....modify the default filename.

Potentially, options can exist at three leval&UI window, internal R memory, or a file.
They become active when they exist in internal memory as paRBSaptions object. In a
GUI window with numeous entry fields, thgui.prefix identifies those fields that
correspond to options. In the example above, wherprefix="PBSopt" , an entry field
with name=PBSoptCpath would correspond to the opti@path in aPBSoptions object.
This naming convention allows options todisplayed and modifiesh a GUI. The following
support functions allow a user to move options betwd@B%options object and GUIs or
files:

loadOptionsGUI  .............. load options from the object into a GUI;
saveOptionsGUI .............. save options from a GUI in the object;

loadOptions  ......cccceeieeennnn. load options from a file into the object;
saveOptions  .......cceeeeeeee. save options from the object into a file.

The structures and methods described abmalee it easy to prescribe options, modify
them in a GUI, and save their values in fildsiser typically developa project in a directory
where a particular file preserves the optibeveen R sessions. More generally, files with
distinct names can preserve distinct setgpdions. An R function caautomatically initialize
the project by creatingBSoptions objects from the aoesponding files.

From a technical perspectiveBSoptions objects have a single sliastance . This
contains a hidden environment that is createdlgect initialization anghreserved when objects
are copied. Effectively, the cladsfinition allows objects to be psed by reference, rather than
by value. The methods can manipulate the origibgct and avoid the need for returning a new
modifiedPBSoptions object.

5.2. Project management utilities

Sometimes projects have an association aithR package. For this reason, we include
functions that can open files and examples feaniR package installed on the user’'s computer:



- 21—

openPackageFile ............ Open a file from a package subdirectory
................................................ (deprecatedppseaFile );
openExamples ................... Open files from tlexamples subdirectory of a package.

As discussed above, a project typically inclidaultiple files with tle same prefix and a
potential set of suffixes. (A suffix doesn’t necesigdrave to be a file extension. For example,
you can use the prefiwo and the suffixbar.xxx  to match the fildoo-bar.xxx where
the extension isxxx .) We provide a utility to open thediles, provided that their extensions
have associated applications. We also allowea tesssearch the current working directory for
potential prefixes, or to browse for a workidigectory and find such prefixes. Furthermore, a
project can be “cleaned” by removing fileghwspecified suffixes. See the functions:

openProjFiles  ................ open files with a common prefix;

findPrefix — ..ccoooviiiii find a prefix based onmes of existing files;

findSuffix ... find suffix of system fdaevith specified prefix;

setwdGUI ..., browse for a working directory;

cleanProj ....cccocviivviiiennn. launch a GUI for project file deletion;

cleanWb ........oovvvvvviiiiiniinnnnn. launch a GUI to delete files from the current working directory.

6. Support for lectures and workshops

Speakers giving lectures and workshops aBoaften want their audience to experience
the consequences of running some R code. Participants sometimes find themselves scrambling to
copy code from the visual presentation, related sites, or files distributed by the speaker.
During this process, the actual poaftthe lecture can get lost. s shifts from R concepts to
typing, other mechanical isss, and a struggle to keepwijth the speaker’s activity.

PBSmodelling offers a potential solution to thisoblem that preserves an interactive
spirit while ensuring that partgants easily see the results frplanned segments of R code. We
encapsulate our approach in the two functions:

showRes.......cccceeenn.. display a string of R code ahdw results on the R console;
presentTalk ......... present a talk on the R consbigsed on a talk description file.

The first provides a minor tool that sonme¢is comes in handy. The second implements a
much more general idea. Just agiladow description file defines a GUI window, &alk
description file defines a talk that runs on the R calles A small GUI makes it easy to step
through the talk interactively, with easy moverntrward or backward. Planned results appear
on the R console, and yet the console remains available for additional spontaneous code entry.

The author of a talk writes a text file that contemplates a sequence of actions, such as
displaying text, running R code, and opening fileaudience members receive this file in
advance, they can readily follow every step oigithe talk by simple mouse clicks on the GUI.
The file also gives them an oppamity to review the concepts a convenient later time. We



— 22 —

anticipate R tutorials written as talk description files, and we may eventually add some to
PBSmodelling

For simplicity, our talk descriptiofles conform to the XML specifications
(http://en.wikipedia.org/wiki/XML), and the R package XML is required to read them. We
support the following five XML elements:

<talk> ... <ftalk> to delimit an entire talk;

<section> ... </section> to delimit a section within a talk;

<text> ... </text> to delimit text that should appear in the R console;
<file> ... </file> to delimit names of file that should be opened;
<code> ... </code> to delimit code that should run in the R console.

Consistent with the standard format, ea@mant has an initial tag in angle brackets,
intermediate material (indicated here.by ), and a final tag with a backslash charactgr (
prefixed to the initial tag. Each initial tagust be closed with a corresponding final tag.

Initial tags can include arguments, for whtble values must appear in double or single
guotes. Appendix B lists the complete syntaxdibfive tags. For example, the element

<code show="TRUE" print="TRUE" break="all"> plot(cars) </code>

would show the stringlot(cars) on the R console, pause (i.ee&k), generate the plot, print
any related output on the R console, and then pause again.

As illustrated in Table 1, a talk description file must contain exactly talk><
element as the root of a branching tree. Tiadkx can contain one or moresection>
branches. In turn, eaclsection> can contain any mixture of leaf nodetext> , <file>
or <code> . The<talk> and<section> elements play organizational roles, whereas the leaf
nodes correspond to concrete actionsitéxt> element specifies ordinary text, such as lecture
notes, that should appear in the R consolgfilk> element causes one or more files to open
at this point of the talk. For example, it mightdesirable to display @é¢ of R code or open a
PowerPoint file. A<code> element causes code to be displayed and run in the R console.
Appendix B gives complete syntaxtdis for talk description files.

Comments within a talk descriptidite follow the standard XML format:

<lem >

where... denotes the text of the comment. XML lias standard reserved characters as
shown in the list below, whe&serves as an escape character that allows these characters to be
interrupted as ordinary text.



—23-

Character Escapéddharacter Description

< &lt; Less-than character starts an element tag

> &gt; Greater-than character ends an element tag
& &amp; Ampersand is used for escaping characters
" gquot; Used for argument values in a leading tag

' &apos; Used for argument values in a leading tag

If <text> or<code> elements contain numerous characters that must be escaped, then the
syntax:

<I[CDATAL...]]>

allows any raw character data ( ) to be included.



24—

Table 4. A talk description fileswisstalk.xml designed for use with tHeBSmodelling
functionpresentTalk . This talk examines method dispatch for shenmary function
and illustrates how it applies to teeiss data set, which has cladata.frame

File: swi sst al k. xni

<!-- We will use xml comments. There must be only ONE document root. -->
<talk name="Swiss">

<!-- SECTION 1. summary method -->
<section name="Methods" button="TRUE">

<text break="T">

This short talk examines the "summary" method

and applies it to the "swiss" dataset.</text>.

<text break="T">

The talk itself comes from a talk description file.

The next step should open that file (swisstalk.xml),
provided that a program is associated with xml files. </text>

<file name="swisstalk" button="TRUE">swisstalk.xml</file>

<text break="F">
"summary" is a function (class function). </text>

<code break="print">

isWhat(summary) # iswhat() from PBSmodelling</code>
<text break="F">"summary" is generic:</text>

<code break="print">summary</code>

<text break="F">"summary" has many methods:</text>
<code break="print"> methods(summary)</code>

</section>

<l-- SECTION 2. The "swiss" data -->
<section name="Data" button="TRUE">

<text break="F"> "swiss" is a data frame (class data.frame):</text>
<code> isWhat(swiss)</code>

<text break="F"> You can read about the data here:</text>
<code> help(swiss) # open the help file</code>

<text break="F"> Apply "summary" to Swiss:</text>

<code break="print"> summary(swiss)</code>

<text break="F"> Print the first 3 records:</text>

<code break="print"> head(swiss,3)</code>

<text break="F"> Display the data with the "plot" method . . .</text>
<code print="F"> plot(swiss,gap=0)</code>

<text> THE END .. THANKS FOR WATCHING!</text>

</section>
</talk>




| swiss [=TF

Sections Files

section: IMethnds Rd slicle: |1 "’| 112

| Reskark | Mexk = | | Go =

swisskalk | Methods | Crata

Figure 5. The GUI generated pyresentTalk  from the talk description file in Table 4.

The “Swiss Talk” example iRBSmodelling allows a user to view the results from the
short talk description file in Table 4. The fisstction (named “Methods”)atts with a brief text
message in the R console. The next displays the description file itseWisstalk.xml ),
as an illustration of howresentTalk  works. Then the audience sees aspects of R’s
polymorphic functiorsummary. TheisWhat function (fromPBSmodelling ) shows its
properties, and theethods function reveals the diverse ways in whgthmmary has been
overloaded. The second section (named aDahows properties of the data frasweiss , as
well as the consequences of applysugnmary andplot to this object. The talk closes with a
classic message showing “THE END”.

The code elements supporteddsgsentTalk  give an author considerable scope for
introducing breaks and other features ithi® presentation. Furthermore, the retalk> block
in the description file producescorresponding GUI, similar togtone shown in Figure 5. This
enables the speaker to move stepwise througprésentation, via the “Go” button, analogous to
moving through slides in a conventional talktekfeach step, the R console remains open for
additional code written on the spur of the momé&urthermore, the menu items (“Sections”,
“Files”) allow for quick movemenamong sections, as well as s@or@ous opening of files. For
example, the speaker might choose to operchos# the same file several times during a
presentation. This can be programmed intaaledescription or dongpontaneously through
the “Files” menu.

In addition to the automatic menu items, a user can add buttons to the GUI that
accomplish similar purposes. For example, Figusbdws buttons that withove to the start of
the sections “Methods” and “Daitor open the “swisstalk” description file. The “Back” button
moves back to the previous slide, and individiliales can be selected a droplist widget. The
blue buttons allow movement among sections —vVPi@the previous section, “Restart” to the
start of the current sectioma@ “Next” to the next section.

Code executed during a talk presentation p@thyrchanges objects in the current global
environment. Although the GUI allows quickmps among slide and sems of talks, the
speaker needs to remain aware of objects curremthe global environment. For example, if the
first section of the talk createbjects needed by the second section, it makes no sense to skip to
the second before the first has done its work. In stases, it may help to start a talk or section



- 26—

with <code> clearAll() </code> to ensure that previous objects in the environment
don’t conflict with those now being created. e other hand, depending on the author’s intent,
this could be entirely the wrong thing to do.

In practice, a speaker would present hikartalk from a laptop connected to a digital
projector. In this context, it is almost essaitio choose large fonta the R console. When
writing a talk, it helps to view it with font sizesid R console dimensions chosen with the final
presentation in mind.

7. Examples

As mentioned in the Prefad@BSmodelling includes a variety of examples that
illustrate applications based on this and other packages. Generally, each example contains
documentation, R code, a window description filed (if required) other supporting files. All
relevant files appear in the R library direct®gSmodelling\Examples . An example
namedxxx typically has caesponding filesxxxDoc.txt  orxxxDoc.pdf  (documentation),
xxx.r (R code), anaxxWin.txt  (a window description). In the GUI for each example,
buttons labelle®ocs, R Code , andWindow open these fileprovided that suitable
programs have been associated with the file extensiohst xt , *. pdf , and*. r.In
particular, a suitable program (such as theoBat Reader) must liestalled for reading.pdf
files, and you may need to associate a text file editor’with On some systems, it may be
necessary to use the functisetPBSext to define these associatis, as discussed earlier in
Section2.3.

Use the functiomunExamples()  to view all examples currently available in
PBSmodelling . This procedure copies all relevaii¢$ to a temporary directory located on
the path defined by the environment variabdenp. It then opens a window in which radio
buttons allow you to select aparticular case. Closing tmeenu window causes the temporary
files and related data to be cleaned up, and returns to the initial working directory.

Alternatively, you canapy all the files fromPBSmodelling\Examples to a
directory of your chaie and open R in that worlg directory. To run examplex , type
source("xxx.r") on the R command line. For instanseyrce("LissFig.r") creates
a window (from the description filleissFigWin.txt ) that can be used to draw the Lissajous
figures described in Sectiél. The built-in example alsocludes a history widget for
collecting settings that the user wishes to retain.

The examples documented here illustrate snlye of those available in version 1 of
PBSmodelling . For instance, we also includdastFuns GUI that we have used as a tool
for debugging various functions in the packdgduture versions, we plan to add more
examples that illustrate important modellc@ncepts and providenvenient supplementary
materials for university courses in fisheries, biology, ecology, statiatickmathematics. The
functionrunExamples()  should always represent the conlist currently available, and
theDocs button for each case should linkthee appropriate documentation.



— 27 —

The nine examples presented in this sedtiostrate some of the possibilities available
in PBSmodelling , although the documentation may be somewhat out of date. For example,
the figures in this report may not correctlpresent current versions of the GUIs and their
associated graphical output. Use Baxs button to read the most current information for each
example. If this seems rather primitive, please wait for improvements in future versions.

7.1. Random variables
7.1.1. RanVars — Random variables

-loix
View: Docsl R Eodel Windowl
7 — Normal

Sample Size Mean SD CV —_ Lognormal
[500 [ [ [ Gamma

1.0

True Estimated
Normal: mean|1 |0.981
sd |1 |naas7

True Estimated
mean |1 |1.0221
Lognormal: sd |1 |0.9822
mu  [-0.3465 |-0.2911
sigma 08325 |o7em3

0.6

pdf

0.4
|

True Estimated

mean |1 |nge37 ~
Gamma: sd |1 Jos2 e
shape|1 [11432
scale |1 |ngezr
o |
Simulate | ° L ‘ ‘ ‘ ‘ ‘
Density Plot | Cummulative Plot | Pairs Plot | 2 0 2 4 6 8

Figure 6. RanVars GUI (left) and density plot (right). Simulations are based on 500 random
draws with mean =1 and SD = 1.

TheRanVars example draws samples from three continuous random distributions
(normal, lognormal, and gamma) with a common mgaand standard deviatiosm. The
documentation (“Docs” button) shows relevantfialas that connect distribution parameters
with the momentsy and o Estimated parameter values from a simulation (invoked by
“Simulate”) are displayed in hGUI alongside the true valugsgure 6). We use only the
straightforward moment formulas in the docum#atg without sample bias correction formulas
like those described by Aitchison and Brovi®§9). Three buttons at the bottom of the GUI
portray the data visually as density curvesnalative proportions, angaired scatter plots.



28—

7.1.2. RanProp — Random proportions

=10l x| 61 02 03 04 05 08 o7
View: DocslHCodelWindowl o : s
pl N e o
Distributions " R s
£ M = Multinormial #Simulations  [z00 ;
&« D =Dirichlet Sample size (h,D)|10 o
© | = Logistic-normal Sigma (L) 01 5- E
=N p2
Proportion Vector 5 |
pvec mean sD E
1 |n2000 1 [0z131 1 [0.1285 o
2 [0.3000 2[ozms 2[01353 — L
3 |n5000 3[0.4953 3[0r47 VY s b3 -3
4o 4o 4[0 ' .
5o 5[0 5[0 .
6o B[o &[0 3

0.2

00 01 02 03 04 05 06 0.7 0.2 0.4 0.6 0.8

Figure 7. RanProp GUI (left) and pairglot (right). Simulatons are based on 200 random
draws whera = 10 for the multinomial and Dirichlet distributions amet 0.1 for the
logistic-normal distribution. The pairs plportrays results for the Dirichlet.

TheRanProp example simulates up to five rand@moportions drawn from one of three
distributions — multinomial, Dighlet, and logistic-normal’he observed proportion means and
standard deviations are reported in the GUgFe 7), and a graphicalsgilay renders the points
as a paired scatter plot. Aftéefining options in the GUI, inatling the vector “pvec” of true
underlying proportions, press “Gdchnute and Haigh (2007) provitiether technical details
about these three distributions.



—29_—

7.1.3. SineNorm - Sine normal

= .

View: Doss | R Cods| window|

==
Pars: :d |01 o ]
points | 500
== zd

LY % F S
Sart |0 ] Ernpity g |
|nzert Deletel Impu:urtl Espart

{~ bafore % after - owr

History:

[ CLIrve 3

r" pairs Plﬂt T T T T T T T
| -0.2 0.0 0.2 0.4 0.6 0.8 1.0

£ histogram

x(xm=0,xs=0.1)

Figure 8. SineNorm GUI (left) and plot (right). Simiations are based on 500 random draws
of y=sin(2rx), wherex is normal with mean: = @nd standard deviatiom = 0.1. Blue
points portray jittered values &f and red points show corresponding valueg of

TheSineNorm example illustrates a somewhatconventional random variable
y =sin(2zx), where x is normal. The GUI allows you to specify the mgaand standard
deviationo of x. If =0 ando is small, the transformation is nearly linear, so yhat
approximately normal. It is large, the transformation concentrate®ar -1 and 1. Figure 8
illustrates the transformation when has the moderate value 0.1. Tay=10 to see how values
y tend to occur near the peaks and troughs of tieefanction, where thebe is relatively flat.



—30 -

7.1.4. CalcVor - Calculate Voronoi tessellations

_io/x

View: Dn:u::sl R D:n:lel Windnwl

Input Controls
O
argl (O
n|100 ag2 |1
Distributions
X-axis Y-axis
" Uniform " Unifarm
&+ Momal " Mormal
 Gamma % Gamma
¢ LogMormal ¢ Log Momal
™ Logistic ™ Logistic
" Paizson " Poizson

o)

Figure 9. CalcVor GUI (left) and plot (right). Tesseltion of random pots (red) that are
normally distributed on the x-axismgan=0, sd=1) and gamma-distributed on the y-axis
(shape=8 , rate=2 ).

TheCalcVor example call®BSmapping’s calcVoronoi  function, which
calculates the Voronoi (Dahlet) tessellation for aet of points using théeldir ~ function in
the CRAN packagédeldir. The GUI accepts two arguments for each random distribution
represented on each axis. The underlyurgtions and their arguments are:

Distribution Function Argument1l  Argument 2

Uniform runif min max
Normal rnorm mean sd
Gamma rgamma shape rate
Log normal  rlnorm meanlog sdlog
Logistic rlogis location  scale

Poisson rpois lambda




—-31-

7.2. Statistical analyses

7.2.1. LinReg - Linear regression

o

View: Docs! Modell Datal R Eodel indowl

100
\

Choose Example
DataSets  sim & carz  © tees O swiss O attude

Fields Sim

50
!

dist

BRugs Linear Regression

b =g # chainz

a
C il
ARG vV v ¥ I-é— Eompﬂel Datal

Length  Thin  Total Ve

Update Iﬁﬁ"ﬁ_'w Updatel // a=-17.6
_ _ i b =3.93
Stat.  End  Thin First  Last -~
Report ErEﬁED—F-B_ Chains ﬁ_'fé-_ T T T T T
5 10 15 20 25
Tracel Density! AEFl F'airsl Histograml Hegressionl Speed

Figure 10. LinReg GUI (left) and regression plot (right). The linear regression usesatke
datasetrf=50) to predictist vs.speed . The plot shows obsenians (green circles),
fitted line (solid blue line), the 95% confidencenlis of the fitted model (solid red lines), the
95% CL of the data (dashed pwepines), and the fits usingdlBayes posterior estimates of
(a,b) (gold lines).

TheexampleLinReg estimates parameters in a linear regressiera+ bx using either
simulated data or data objects that come WiéhR-package. We compare a classical frequentist
regression with results from Bayesian analyss#ng the BRugs package to interface with the
program WinBUGS. After selecti various data options, “PaiPdot” shows a pairs plafx, y)

and “Classic Regression” adds confidence limits (at “p-level”) from regression theory. Red and
violet curves show bounds for a predictioraarew observation, respectively, each conditional
onx. If the data came from simulation, a blugeliportrays the truth, with specified valaeand

b, that must be estimated from the data.

A corresponding Bayesian analysigsishe WinBUGS model shown by pressing
“Model”. Choose parameters to monitoiofmally all of them): the intercept the slopé, and
the predictive standard deviatien. After specifying a number of sample chains for the MCMC
sample, press “Compile” to compile the model with these settings. “Update” generates samples
in “Length” increments. Additional buttons thie bottom of the GUI allow you to explore the
MCMC output. Posterior samples & b ,cdrrespond to sample lines. The “Regression” button

illustrates these in relationship to confidencetbnrom a frequentist analysis (Figure 10).



—-32-

7.2.2. MarkRec — Mark-recovery

i "
View: Docs! Mndell Datal Fi Eudel W’induwl
Data s
[o
Marked  |500 0
—

Sampled  |5000 n
FRecovered |5
E p=ilon [prior] | 0.001

Chainz 2 Compile !

Estimate |S5e+05

T T T T T T
0 500000 1000000 1500000 2000000 2500000

0.0 e+00
L

Chain

Length | 1000
Thin |1

Tatal | 3000 Updatel

Report

e
Start {1

End {3000
Thir |1

600
I

0 200

Tracel Densit_l,ll .fi‘n.EFl F'ails' 0.000 0.001 0.002 0.003 0.004

Figure 11. MarkRec GUI (left) and density plots (right). A low recovery of marked fish can
lead to fat tails ifN due to occasional large spikes in the population estimate.

TheexampleMarkRec performs a Bayesian analysisaomark-recovery experiment in
which M fish are marked and allowed to dispersed@nly in the population. Later, a sample of
sizeSis removed from the population aRdnarks are recovered. Both the total populakion
and the marked proportignare unknown, where

M R

= W = g .
In one version of the theorRR is binomially distributed with probability in a sample of siz§,
and the above approximation suggests the estimate
S M

N=>M=—S§.
R R

When recoveries are lowR(~ 0), the posterior distribution & exhibits a fat tail (Figure 11).

Asin LinReg , “Model” shows theMlarkRec model for WinBUGS, which
(deliberately) includes an illegiate prior that depends on the data. By increasing an initially
small quantitye , this fake prior allows the tail ™ values to be arbéarily clipped. Schnute
(2006) gives some historical perspiee to this analysis, in th@ontext of work by W.E. Ricker.



—33-—

7.2.3. CCA- Catch-curve analysis

S= Gm s ¢ s

View: Docsi Mode\l Datai R Eode' W'indowl 71 | w

; o & & A | & & =

Age Filz|CCA.gbr T Dim =70 14, Years: il _______ - | 2
et Lala

Data ‘ear[2004 | 1554,1965,1586, 1957 1988, ] z

i

-3

Design Model wal  min max  active i a

e T o
alpha [5_F2—’25_ 7
beekloz o |
tau [-‘i_[a—[S— 73
samsli o [ F betak.1 I
S T TR ET 2 m i

i

10 15 20 25

m I
'N‘N‘N
=1 = =}

=
5
T M
=
S
=
B
-

-

b0
eps

=
=
2
o

il

0.6

b1
b2
b3
b4
b5

|

wili o o F | L
tho2 ﬁ_[ﬁ—ﬁn— T3 z &
P E

P o T T
P o T T

S Multinomial Dirchlet Logistic-normal
Distribution Auto A

04

w

1T

tau.1

25

15

r v r W 4 i & Y & p
n.il :
SetiNLMl Plat | W pa T pi T i 4 |a a i & & i

50 150 250 350

———————————————— BRIGS === = e i
Distribution % Dirichlet [Case 4 only) —’_h i

Z alpha betak tau sigma n thol the2 rtho3 rthod thoB rhot.1

¥V ¥ ¥ F O WV FT O T i
. d : [ -

Compile # chaing [‘I_ Eompl\el Datai i ‘ i b i A

Length  Thin tha 1
Update [z200 |1 Total [300 Update =

St End  Thin Fist Last | | i : |-

1 54 X, o b L
Report [1o1  [30 |1 Chains [T |1 L a0 A pA LA e
T'acel DE”S“}'!AEFl Pai'sl Hismg'aml 0ts | 015 a0 04 08 0 a0 %0 s 10 15

Figure 12. CCAGUI (left) and parameter pairs plpight). Comparisomf Bayes posterior
distribution of CCA model pararter estimates from chain N£100). Symbols indicate
means (blue squares) and modes (red tream)gDiagonal shows parameter estimate
distributions.

TheexampleCCAillustrates a catch-curve modabposed by Schnute and Haigh (2007).
It incorporates effects of sumal, selectivity, and recruitment anomalies on age structure data
from a single year. After making various modebices, press “Set”, “NLM” (which may take
several seconds), and “Plot” ¥eew the maximum likelihood émates and their relationship
with the data. A WinBUGS model (“Model”) alies us to calculate posterior distributions.
(See the last few lines of “Model”.) As MarkRec, select parameters to monitor, specify a
number of chains, and “Compile” the mod&lpdate”s may be slow, but eventually they
produce interesting posterior sdeg(Figure 12). “Docs” gives details of the deterministic
model, and the Dirichlet disbution is used to describerer in the observed proportion.

We include this example to illustrate armwhat realistic WinBUG#&odel that can be
used to estimate parametersdgoopulation dynamics modé&lurther information can be found
in Schnute and Haigh (200PWBSmodelling includes the data for this example as the matrix
CCA.qgbr .



7.3. Other applications

7.3.1. FishRes - Fishery reserve

ol
View: Docsl R Eodel Windowl

% 1 Continuous € 2 Discrete

------ Simulation
Model:

Inputs

Biclogical Control

k|00

04

0.432

b |01

0.095

a |0E

garmma |0

k
%10
w2l

0138

2
05
05

Fres
F it

F max

1]

1]

0.35

0.235

055

0.423

pl
tres
b max
t step

& Time Series  Poirs

™ Erforce Constraints

cycle |8

nv abs tol|1e-06
15 rel kol |1e-04
a0
0z

% maw | 2 Plat gfx] |
Plat traiectoriesl

...... Equilibrium

from o

by
x1 |0.05 |0.895 [0.02
pl |0 095 |o0.02
maxF|1—W

Fairz

CACmax |0.975
arid cellz | 100 Image

Cottaur

chr levels |3

Crriax pl F2 Hl w2

[5.19  |o.os

|0135 o

|0.405

|>|>>

Figure 1. Right -
Recovering fishery

Sort

Inzert

<
1 IS Empty

Continuous madel B
Figure 2.

Delete | |rpart | Expart

r" before (:' after r" ovr

Left - press Image
Right - press Pairs

-

Figure 13. FishRes — Recovery of a heavily fished population after establishing a reserve.
The GUI (left) shows all input values (paraerstand controls). The selected continuous

dN/dt

501

40T

301

201

101

o

&

-101
-151

0.6f ¢
05f
0.4f
0.3f
0.2f
0.1f
0.0f
255
20f
15}

01

o

—34-—

= Resene = Fishery = Total

\_//’_/_/_m/\,—

0 20 40 60 80

0 20 40 60 80

0 20 40 60 80
time

time model uses input values common tchbmbdels (white &ckground) and values

specific to the continuous model (blue bguound). Corresponding vads are computed for

the discrete model (yellow background). Outajectories (right) trace various results
(N = populationdN/dt = instantaneous ange in populatiorf; = instantaneous fishing

mortality, C = instantaneous catch) for the reserve and fishery. Fishing mortality follows a
F...c: and the cycle length.

sinusoid determined biz

min ?

TheexampleFishRes (Figure 13) models a fish poputat associated with a marine
reserve in continuous or discretee (delay differential or tfierence equations, respectively).

For details see Schnute et al. (20@)ich can be viewed by pressing button in the
GUI. The R packageskima , PBSddesolve , andodesolve are required.




7.3.2. FishTows - Fishery tows

Random Fishing Tows

=10l x|

View: Dacs| R Cads | window|

no. of tows
Input;  towwidh |2

zide of zquare
mean length

polygonz

holes

Output:  vetices

awept area

impacted area

total area

40

100

55.568519985:

4
1
]

4445 4515388:

2455 2019334¢

10000

Generate Tows

Plot Lines
Plot Tows

Plot Union

Compare

- 35—

Figure 14. FishTows GUI (left) and simulated tow tradkight). Tow track plots show 40
random tows in a square wiside length 100. Each towswidth 2, and the rectangle
encompasses 10,000 square ufiiop: The individual rectanglesyith 160 vertices, have
areas that sum to 4,445 square udtgtom: The union includes a complex polygon (red)
and three isolated rectangles (blue, grgetipw) that cover only 3,455 square units. The

1001

801

601

401

201

100p

801

601

401

201

ok

0 20 40 60 80 100

complex polygon (red) has 547 vertices and 91 holes.

TheexampleFishTows provides a simulator ofghery tow tracks using the

PBSmapping package. The example demonstrates the difference between swept area and area
impacted by trawls that often cover the sanmugd repeatedly. This application can be regarded
an exotic random number generawhere tows initially join tw points picked from a uniform
random distribution within a square of a giv@de length. Three parameters (the number of

tows, the tow width, the side length) deternmseseral random variablascluding the mean tow
length, the areas swept and impacted, the ntsrddgolygons and holes in the union set of

tows, and the number of vertices in the uniorchaaf these would also have a variance and an

overall distribution generated by many runs of this example.



— 36 —

References

Aitchison, J., and Brown, J.A.C. 1969. The lognakuiistribution, with spcial reference to its
uses in economics. Cambridge University Press. Cambridge, UK. xviii + 176 p.

Chambers, J.M. 2008. Software for data gsial Programming with R. Springer Science +
Business Media, LLC. New York, NY. xiv + 498 p.

Daalgard, P. 2001. A primer on the R Tcl/Tk pack&Rews 1 (3): 27-31, September 2001.
URL: http://CRAN.R-project.org/doc/Rnews/

Daalgard, P. 2002. Changes to the R Tcl/Tk packadws 2 (3): 25—-27, December 2002.
URL: http://CRAN.R-project.org/doc/Rnews/

Griewank A. (2000) Evaluating derivativesirmiples and techniques of algorithmic
differentiation. Frontiers idpplied Mathematics 19. Societor Industrial and Applied
Mathematics

Kronlund, A.R., Cox, S.P., and Cleary, J.S. 20t€R: Management Strategy Evaluation in R,
Version 2.0. Canadian Technical ReporEwheries and Aquatic Sciences. In press.

Ligges, U. 2003. R Help Desk: Package ManagenieNews 3 (3), 37-39. URL:
http://CRAN.R-project.org/doc/Rnews/

Ligges, U, and Murdoch, D. 2005. R Help Desk: Md&&MD' work under Windows — an
exampleRNews 5 (2), 27-28. URLhttp://CRAN.R-project.org/doc/Rnews/

Mittertreiner, A., and Schnute, J. 1985. Siexp a manual and software package for easy
nonlinear parameter estimation and interpretaitiofishery research. Canadian Technical
Report of Fisheries Aquatic Sciences 1384: xi + 90 p.

Ousterhout, J.K. 1994. Tcl and the Tk tablAddison-Wesley, Boston, MA. 458 p.
R Development Core Team (RDCT) (2011a)ARanguage and environment for statistical

computing. R Foundation for Statistical Computing, Vienna, Austria.
ISBN 3-900051-07-0. URhttp://www.R-project.org/

R Development Core Team (RDCT) (2011Wyiting R extensions. Version 2.13.1 (2011-07-
08). R Foundation for Statistical Commgj Vienna, Austria. ISBN 3-900051-11-9.

Raymond, E. 2000. The cathedral &nel bazaar. Available online at:
http://catb.org/~esr/writingebmesteading/cathedral-bazaar/

Richards, L.J., Schnute, J.T., and Olsen, N. 198talizing catch-aganalysis: a case study.
Canadian Journal of Fisheriasd Aquatic Sciences 54: 1646—1658.



—-37-

Schnute, J. 1982. A manual for easy nonlinear parameter estimation in fishery research with
interactive microcomputer programs. . Cdiaa Technical Repoof Fisheries and
Aquatic Sciences 1140. xvi + 115 pp.

Schnute, J.T. 2006. Curiosity, recruitment, angosh a tribute to Bill Ricker’s inquiring mind.
Environmental Biologyf Fishes 75: 95-110.

Schnute, J.T., Boers, N.M., and Haigh, R. 2003. PBS software: maps, spatial analysis, and other
utilities. Canadian Technical Report of Fesies and Aquatic Sciences 2496. viii+82 pp.

Schnute, J.T., Boers, N.M., and Haigh2R04. PBS Mapping 2: user’s guide. Canadian
Technical Report of Fisheries aAduatic Sciences 2549. viii + 126 pp.

Schnute, J.T., and Haigh, R. 2007. Compositianalysis of catch curve data with an
application toSebastes maliger. ICES Journal of Marine Science 64: 218-233.
Available athttp://icesjms.oxfordjournals.ofcpntent/vol64/issue2/index.dtieference
number doi:10.1093/icesjms/fsl024.

Schnute, J.T., Haigh, R., and Couture-Beil, A020Mathematical models of fish populations in
marine reserves. Report on a CollaboraBveject between Malaspina University-
College and the Pacific Biologic8tation. February 2007, 24 pp.

(File FishResDoc.pdf  available in the packag@Smodelling .)

Schnute, J.T., and Richards, L.J. 1995. The influence of error on population estimates from
catch-age models. Canadian Journal eh€&ries and Aquatic Sciences, 52: 2063-2077.

Spiegelhalter, D., Thomas, A., Best, N., anghn, D. 2004. WinBUGS User Manual, version
2.0. Available anttp://mathstat.Hsinki.fi/openbugs/

Thomas, N. 2004. BRugs User Manual (the R interface to BUGS), version 1.0. Available at
http://mathstat.helsinki.fi/openbugs/




— 38 —

Appendix A. Widget descriptions

This appendix list®BSmodelling  widgets in alphabetical der, except for “Window”
which must exist before other widgets can et within it. Following a Tcl/Tk standard, we
use a recursive grid design that allows grids within grids for flexible widget arrangement. The
grid widget makes this possible. Furthermore,rtbeebook widget allows parts of a window
to be selected by tabs, as in many other GUI applications.

For each widget, we include a brief deptian, a usage line showing the default
arguments, a detailed list of arguments, andlastrated example. In specifying a widget, the
user can arrange named arguments in any ordarguiments are not named, they must appear in
the order specified by the argument list,ilamto named arguments in an R function.

The particular argumesticky  needs a bit of explanation. It must be a string with zero
or more of the charactel E, W or S that ‘stick’ the widget to theop, right, left, or bottom of
its grid cell. These lette can have either upper or lowereasnd can appear in any order. The
empty string gticky="" ) puts the widget in a central postti of the cell. A string of length 1
binds the widget to the corresponding side tfmagast, west, or south). The combinatibiis
SE, SWor NWwill bind the widget to one of the corners. The combinati&sr EWwill stretch
the widget vertically or horizontally tine limits of its grid cell, whileNEWSwill stretch the
widget in all directions to fill the cell.

Window

Description

Create a new window. Windows are used palatte upon which widgets are placed. Each
open window has a unique name. The functiomseWin closes all windows unless a
specific name (or vector of nameés)provided by the user. Also,agfeateWin opens a
window with a name already in use, the oldendow is closed before the new window is
opened.

Usage

type=window name="window" title="" vertical=TRUE bg="#D4D0C8"
fg="#000000" onclose="" remove=FALSE

Arguments
name...........cccuuee. unique name identifying an open window
title ... text to display in the window’s title line
vertical  .......... ifTRUE arrange widgets verticallyop to bottom, within the window
oo IS background colour for window
o [ colour for label fonts
onclose ............. name of function called when user closes the window by pr{xising

remove ............... ifTRUE remove fromPBSmod on closing



— 39—

Example

window title="Widget = window (upon which all other widgets are
placed)"

Widget = window {upon which all other wit _’ ' | =10 x|

Button

Description

A button linked to an R function that rungarticular analysisrad generates a desired
output, perhaps including graphics.

Usage

type=button text="Calculate" font="" fg="black" bg="" disablefg=NULL
width=0 name=NULL function="" action="button" sticky="" padx=0

pady=0
Arguments

text ., text to display on the button

font .o font for labels — specify familyirfies , Helvetica , or Courier ),
size (as point size), and styleo(d , italic  , underline
overstrike ), in any order

fg oo, colour for label fonts

Pg..cooiiis background colour for widget

disablefg ........ colour for label fonts when state is disabled

width .................. button width, the default O will asljthe width to the minimum required

name..........ccccuveen. unique name to identify button for use watividgetState

function  .......... R function to call when the buttorpisshed (i.e., clicked by the mouse)

action ............... string value associated wéegr this widget is engaged

sticky ... option for placing the widget in itsaflable space, as discussed in the
introductory paragrapher Appendix A on page 38

padx .......cccccvvvnene space used to pad the widget on tharidftight; two values can be used
to specify padding on the left and right separately

pady ......cccccvvnnnnnn space used to pad the widget otofhand bottom; two values can be

used to specify padding oretiop and bottom separately

Example

window title="Widget = button"
button text="Push Me"

widget = button = =] 5|

Puzh Mel




—40 -

Check

Description
A check box to turn a variabldfar on, with corresponding valuéALSE or TRUE(O / 1).
Usage

type=check name mode="logical" checked=FALSE text="" font=
fg="black" bg="" disablefg=NULL function="" action="check"
edit=TRUE sticky="" padx=0 pady=0

Arguments

name........cccoeee.... name of R variable altelsdthis check box (required)

mode.......ccccceveenn.. R mode for the associatedalde, where valid modes are
logical  ornumeric

checked ............. ifTRUE the box is checked initiallgnd the variable is set TRUEor 1

text e identifying text placed to the right of this check box

font .o font for labels — specify familyirfies , Helvetica , or Courier ),
size (as point size), and styleo(d , italic  , underline
overstrike ), in any order

o [ colour for label fonts

PO background colour for widget

disablefg ........ colour for label fonts when state is disabled

function ... R function to call when the check box is changed

action .............. string value associated wéegr this widget is engaged

edit ......oooeeeeen ITRUE the box’s state can be modified by the usdfALSE, the box is
read-only

Sticky .. option for placing the widget in itsaflable space, as discussed in the
introductory paragraphfer Appendix A on page 38

padx .......ccceveennnnn space used to pad the widget on tharidftight; two values can be used

to specify padding on the left and right separately
pady ......ccccccvvvnnnn space used to pad the widget otofhand bottom; two values can be
used to specify padding oretiiop and bottom separately

Example

window title="Widget = check"
check name=junk checked=T text="Check Me"

=101 x|

¥ Check Me




—41 —

Data

Description

An aligned set of entry fields fall components of a data frame. Tdeta widget can

accept a variety of modes. Thesusnust keep in mind thadwlabels  andcollabels

should conform to R naming conventions (no spatespecial charactemstic.). If mode is
logical, fields appear as a set of check boxasdhn be turned on or off using mouse clicks.

Usage

nn

entryfont=
noeditbg="gray" values="" byrow=TRUE function="" enter=TRUE
action="data" edit=TRUE width=6 borderwidth=0 sticky="" padx=0

pady=0
Arguments

NFOW ...coevvvveveeeanns number of rows (required)

ncol .......ccooeeei. number of columns(required)

Names.........coeevees either one name or a satroiv*ncol names used to store the data
frame in R (required)

modes.........cccen... R modes for the data frame, where valid modes are:
numeric , integer , complex ,logical , character

rowlabels ........ one oNULL, a single label, or a vector nfow labels. TheNULL label
displays no labels and minimizes space. A single label displays a label to
the left of the widget, and numbers each row (an empty tabehly
numbers each row). A vector ofow labels is used to specify a label for
each row.

collabels  ........ one oNULL, a single label, or a vector ntol labels. TheNULL label
displays no labels and minimizesasp. A single label displays a label
above the widget, and numbers each column (an empty'talozily
numbers each column). A vectorrafol labels is used to specify a label
for each column.

rownames .......... string scalar arector of lengtimrow to name the rows of the data frame

colnames .......... string scalar arector of lengtimcol to name the columns of the data
frame

font .o font for labels — specify famillirfies , Helvetica , or Courier ),
size (as point size), and styleo(d , italic  , underline
overstrike ), in any order

fO o, colour for label fonts

o]0 I background colour for widget

entryfont  ........ font of entries appearing in input/output boxes

entryfg  ...ccoeeennn. font colour of entries aggring in input/output boxes

entrybg ....cee..... background colour of input/output boxes

noeditfg  .......... font colour of entries appéay in input/output boxes whesulit=F



—42 —

noeditbg .......... background colour of input/output boxes wsit=F

values ............... default values (either one value fbdata frame components or a set of
nrow*ncol values)

byrow .................. ifTRUEandnrow*ncol names are used, interpret the names by row;
otherwise by column. Similarly, interpnetow*ncol initial values.

function  .......... R function to call when any entn the data frame is changed

enter .......occceenns ifTRUE call the function only after thé Enjekey is pressed

action ............... string value associated wénegr this widget is engaged

edit ......oocoeeee ITRUE the values can be modified by the useFALSE, the values are
read-only

width .................. character width to reserve for the each entry in the data frame

borderwidth  ...a non-negative value specifying the amount of space to use for drawing a

border (or margin) around the widg#te background colour of the space
is determined by theg value

sticky ... option for placing the widget in itsaflable space, as discussed in the
introductory paragrapher Appendix A on page 38

padx ......ccccevvennnn space used to pad the widget on tharidftight; two values can be used
to specify padding on the left and right separately

pady ......cccccvvennnn space used to pad the widget otofhand bottom; two values can be

used to specify padding oretiop and bottom separately

Example

window title="Widget = data"

data nrow=3 ncol=3 names=Census byrow=FALSE \
modes="character logical numeric" width=10 \
rowlabels="Recl Rec2 Rec3" collabels="City Smell Popn" \
values="Nanaimo Vancouver Spuzzum T T F 80000 600000 50"

Lol

City Smell Fopn
Recl[Nanamo ¥ [0000

Rec2|Vancouver [V |B00000
Rec3|Spuzzum [ |50




— 43—

Droplist

Description
A field in which a scalar variable (numbergtring) can be selected from a drop-down list.
Usage

type=droplist name values=NULL choices=NULL labels=NULL selected=1
add=FALSE font="" fg="black" bg="white" function="" enter=TRUE
action="droplist" edit=TRUE mode="character" width=20

sticky="" padx=0 pady=0
Arguments

name........ccccccuueee name (required) of the R variabd till receive the selected choices
from eithervalues orchoices

values ............... vector of values to populate the drop-down selectibitjlit_the values
are taken from the R object namedroices

choices ............. name of an R character vector objpdwtre elements will be the choices to
populate the drop-down selectionNULL the values are taken from the
character vector specified bpmes

labels ............... if suppliedabels is a vector with the same lengthvadues , and is
used as the contentstbke drop-down list; howevevalues are return
by getWinVal

selected .......... the index of the pre-seted item in drop-down list

add ......cccceeeeeenn. ITRUE the user can type in any textaddition to selecting a pre-defined
item

font oo font for drop-down list items — specify familin{es , Helvetica , or
Courier ), size (as point size), and stylo(d , italic  , underline
overstrike ), in any order

1o [ colour for drop-down list items

Py background colour for widget

function .......... R function to call when the entry is changed

enter ... ifTRUE call the function only after théEnten key is pressed when
add=TRUE enter=FALSE , is not implemented.

action ............... string value associated wénegr this widget is engaged

edit .. iTRUE the selected item can be changed by the ugeALSE, the
selected value is read-only and other items can be selected

mode..........eeveeeeee. R mode for the value entered, where valid modes are:
numeric , integer , complex ,logical , character

width .................. character width to reserve for the droplist

sticky ............... option for placing the widget in itsaflable space, as discussed in the
introductory paragrapher Appendix A on page 38

padx ......ccccevvnnnnn space used to pad the widget on tharidftight; two values can be used

to specify padding on the left and right separately



—44 —

pady ........ccccvvvnenn space used to pad the widget otofhand bottom; two values can be
used to specify padding oretiop and bottom separately

Note

To facilitate retrieving the index of the sekedtitem, two additional variables are created by
suffixing ".id " and "values " to the givemame. The"name.id" variable is only
returned bygetWinVal ;the"name.values” variable can be retrieved with

getWinVal , and can be set widetWinVal to change the selectablalues

dynamically after window creation.

Limitation: whensetWinVal is used to modify the droplishame.values" , the labels
are reset tblULL

Example

window title="Widget = droplist"

droplist name=junk values="one two 'thirty three" mode=character
selected=3 width=30

droplist name=punk choices=state.name

_Iojx
Ithirtw;.-' three |

IF'.IaI:uama j

Entry

Description
A field in which a scalar variabl@umber or string) can be altered.
Usage

type=entry name value="" width=20 label=NULL font="" fg="" bg=
entryfont="" entryfg="black" entrybg="white" noeditfg="black"
noeditbg="gray" edit=TRUE password=FALSE function=""
enter=TRUE action="entry" mode="numeric" sticky="" padx=0

nn

pady=0
Arguments
name........cccceeuvene name of R variable correspagdbp this entry (required)
value ......cccoceeee default value to display in the entry
width .................. character width to reserve for the entry
label .....ccccoeennnnn. text to display above the entry box
font ... font for labels — specify famillihes , Helvetica , or Courier ),

size (as point size), and styleo(d , italic  , underline
overstrike ), in any order



— 45—

fg e, colour for label fonts

oo I background colour for widget

entryfont  ........ font of entries appearing in input/output boxes

entryfg ..oooeeennl. font colour of entries aggring in input/output boxes

entrybg ... background colour of input/output boxes

noeditfg  .......... font colour of input/output boxes wheit=F

noeditbg .......... background colour of input/output boxes wéit=F

edit .. iTRUE the entry value can be modified by the user; otherwise, the value
is read-only

password .......... if TRUE the value displayed in the GUI is masked with asterigks ()
to protect sensitive information; otherwise, the value is displayed as
normal text

function ... R function to call when the entry is changed

enter .....oooeeeennn. ifTRUE call the function only after théEnter key is pressed

action ............... string value associated wéegr this widget is engaged

mode..........eeeveeeee. R mode for the value entered, where valid modes are:
numeric ,integer , complex ,logical , character

sticky ............... option for placing the widget in itsaflable space, as discussed in the
introductory paragrapher Appendix A on page 38

padx ......ccccevvennnn space used to pad the widget on tharidftight; two values can be used
to specify padding on the left and right separately

pady ......cccccevvvnnnn space used to pad the widget otofhand bottom; two values can be

used to specify padding orethop and bottom separately

Example

window title="Widget = entry"
entry name=junk value="Enter something here" width=20 mode=character

=10l x|

IEnter zomething here




— 46 —

Grid

Description

Creates space for a rectangular block of widggpaces must be filled. Widgets can be any

combination of available widgets, includiggd .
Usage

type=grid nrow=1 ncol=1 toptitle="" sidetitle="" topfont=
sidefont="" topfg=NULL sidefg=NULL fg="black" topbg=NULL
sidebg=NULL bg="" byrow=TRUE borderwidth=1 relief="flat"

||||||||

sticky="" padx=0 pady=0
Arguments
NFOW v number of rows in the grid
ncol .......ccooeee. number of columns in the grid
toptitle ... title to place above grid
sidetitte  ........ title to place on the left side of the grid
topfont ............. font for top labels — specify familyifhes , Helvetica , orCourier ),

size (as point size), and styleo(d , italic  , underline
overstrike ), in any order

sidefont .......... font for side labels — specify familjifhes , Helvetica , or
Courier ), size (as point size), and stylo(d , italic  , underline
overstrike ), in any order

topfg ..o colour for top title font

sidefg .....ccceee.. colour for side title font

fg e, colour for both topdaside title fonts ifopfg andsidefg areNULL

topbg ....covveeeene background color of the top title

sidebg ............... background color of the side title

o]0 I background colour of grid inéhgdtop and side titles whdaopbg and
sidebg areNULL

byrow .........c........ ITRUE create widgets across rows, otherwise down columns

borderwidth  ...width of the border around the grid

relief ... type of border around the gridhere valid styles are:

raised ,sunken ,flat ,ridge ,groove , solid

sticky ... option for placing the widget in itsaflable space, as discussed in the

introductory paragraphfer Appendix A on page 38

padx ......ccccevvennnnn space used to pad the widget on tharidftight; two values can be used

to specify padding on the left and right separately

pady .......ccccevennnn space used to pad the widget otofhand bottom; two values can be

used to specify padding oretiiop and bottom separately



Example

—47 -

grid 2 2 relief=groove toptitle=Columns sidetitle=Rows \

topfont="Helvetica 12 bold" sidefont="Helvetica 12 bold"
label text="Cell 1" font="times 8 italic"

label text="Cell 2" font="times 10 italic"

label text="Cell 3" font="times 12 italic"

label text="Cell 4" font="times 14 italic"

RI=TEY

Columns
el I Cell 2

Cell 3 Cell 4

‘ Rows

History
Description
Allows the user to manage a temporary aret{history) of widget settings (records) through
a panel of buttons:
<< Go directly to the first record of the history.
< Go to the previous record in the history.
> Go to the next record in the history.
>> Go directly to the last record in the history.
Sort Sort the order of the records in the history.
n Display window (white backgund) shows the current record.
N Display window (grey background) showsalonumber of records in the history.
Empty  Remove all records from the history.
Insert Add a new record (current widget settinggsjhe history, eitbr before, after or
overtop the current record.
Delete Remove the current record from the history.
Import  Import a previously saved history (text file the history, either before or after
the current record.
Export  Export the history to a text file.
Usage

type=history name="default" function="" import="" fg="black" bg=""

entryfg="black" entrybg="white" text=NULL textsize=0 sticky=""
padx=0 pady=0

Arguments
Name........ccoeeennnn. name of history archive
function  .......... R function to call when the losy record counter is changed
import .............. file name of a saved historyidad when the widget is called



—48 —

fg e, colour for label fonts

oo I background colour for widget

entryfg ..o font colour of entries aggring in input/output boxes

entrybg ....ceee.... background colour of input/output boxes

text e embed a text box for captions inviftget; the location of the text box is
controlled by one of the following valuas; E , S, W or NULL for none

textsize ... size of text box to display;téxt=N  or S, textsize controls the height; if
text=E or W the width is adjusted

Sticky .. option for placing the widget in itsa#lable space, as discussed in the
introductory paragrapher Appendix A on page 38

padx ......cccccvvennnne space used to pad the widget on thardftight; two values can be used
to specify padding on the left and right separately

pady .......cccccvvnene space used to pad the widget otofhand bottom; two values can be

used to specify padding oretiop and bottom separately

Example

window title="Widget = history"
vector length=3 names="alpha beta gamma" values="2 5 15"
history padx=20 pady=5

JRI=TE

alpha beta gamma
|2 |5 |15

L4 < ? g

Sart {|0 IEI Ermpty

Inzert | Delete | Impart | Export

{ before % after  owr

Image

Description
Embeds a graphics image in the eatrwindow. Support for GIF files only.
Usage

type=image file=NULL varname=NULL subsample=1 sticky="" padx=0
pady=0

Arguments

file e filename and path (if required) of GIF image to embed



Note

...... reduce the size of theage by subsampling evesybsample

— 49—

...... interpret the value of &wvariable, identified byarname , as the

filename of the image to embed; only one offilee  orvarname
arguments can be supplied
™ pixel,

wheresubsample is an integer less than the width of the image

...... option for placing the widget in itsaflable space, as discussed in the

introductory paragrapher Appendix A on page 38

....... space used to pad the widget on tharldftight; two values can be used

to specify padding on the left and right separately

....... space used to pad the widget otofhand bottom; two values can be

used to specify padding oretiop and bottom separately

Image only supports GIF file formats

Example

window title="Pacific Biological Station"
image file="pbs.gif"

Include

Description

Includes the specified window si&iption file in the cuent window description file.

Usage

type=include file=NULL name=NULL

Arguments

Note

...... file to include
...... indirectly include a file by integting the value of an R variable,
identified by name, as the file to be included

The window widget definition frorthe included file is ignored.



—50 -

Example

window title="include - parent"
label "hello world"
include file=child.txt

# child.txt contents:
window title="include - child"
vector name="abcde"

_inix

hiella world
a b C d =

Label

Description
Creates a text label. If tHext argument is left blankabel emulates thaull widget.

Usage

||||||||||||

type=label text="" name="" mode="character" font="" fg="black" bg=
sticky="" justify="left" anchor="center" wraplength=0 width=0
padx=0 pady=0

Arguments

text e text to display in the label

name........cccccuueee name of R variable correspagdbp the label value; iame="", label is
static and cannot be changed wa#tWinVal

mode........cccceuuen. R mode for the label value where valid modes are:
numeric , integer , complex ,logical , character

font oo font for labels — specify familyirfies , Helvetica , or Courier ),
size (as point size), and styl®o(d , italic  , underline
overstrike ), in any order

fg e, colour for label fonts

PO background colour for widget

sticky ... option for placing the widget in itsaflable space, as discussed in the
introductory paragraphfer Appendix A on page 38

justify ... if there are multiple linesgiintext is aligned to theft , center , or
right

anchor ............... if a width is specified, dmar the text to the one af ne, e, se, s, sw, w,

nw, orcenter locations of the widget. "w" for example, would anchor
the text on the left side of the widget

wraplength ...... maximum number of characddo fit per line; textvhich is longer is split
over multiple lines.



-51—

width .................. width of the label widget

padx ......cccccvvennnn space used to pad the widget on tharidftight; two values can be used
to specify padding on the left and right separately

pady ........ccccvvnenn space used to pad the widget otofhand bottom; two values can be

used to specify padding oretiop and bottom separately

Example

window title="Widget = label"
label text="Information Label"

widget = label S [u] 5

Information Label

Matrix

Description

An aligned set of entry fields for all companie of a matrix. If te mode is logical, the
matrix appears as a set of check boxesdhatbe turned on or off using mouse clicks.

Usage

type=matrix nrow ncol names rowlabels="" collabels="" rownames=""
colnames="" font="" fg="black" bg="" entryfont=""
entryfg="black" entrybg="white" noeditfg="black"
noeditbg="gray" values="" byrow=TRUE function="" enter=TRUE
action="matrix" edit=TRUE mode="numeric" width=6 borderwidth=0

sticky="" padx=0 pady=0
Arguments

NFOW ...covvvvveeeeeens number of rows (required)

ncol .....vvvvvvinnne number of columns(required)

NAMES.......cuvnnnnn. either one name or a satrofv*ncol names used to store the matrix in
R (required)

rowlabels ........ one oNULL, a single label, or a vector nfow labels. TheNULL label
displays no labels and minimizes space. A single label displays a label to
the left of the widget, and numbers each row (an empty Tabehly
numbers each row). A vector ofow labels is used to specify a label for
each row.

collabels  ........ one oNULL, a single label, or a vector ntol labels. TheNULL label

displays no labels and minimizesasp. A single label displays a label
above the widget, and numbers each column (an empty'fakaily
numbers each column). A vectorrafol labels is used to specify a label
for each column.
rownames .......... string scalar arector of lengtmrow to name the rows of the matrix
colnames .......... string scalar arector of lengtimcol to name the columns of the matrix



—-52 —

font .o font for labels — specify familyitfhes , Helvetica , or Courier ),
size (as point size), and styleo(d , italic  , underline
overstrike ), in any order

fg e, colour for label fonts

oo background colour for widget

entryfont  ........ font of entries appearing in input/output boxes

entryfg ..ocooceennn. font colour of entries aggring in input/output boxes

entrybg ... background colour of input/output boxes

noeditfg  .......... font colour of entries appédy in input/output boxes whesulit=F

noeditbg .......... background colour of input/output boxes wéit=F

values ............... default values (either one value for all matrix components or a set of
nrow*ncol values)

byrow .................. ifTRUEandnrow*ncol names are used, interpret the names by row;
otherwise by column. Similarly, interpnetow*ncol initial values.

function ... R function to call when anytenin the matrix is changed

enter ......oooeeeeenn.. ifTRUE call the function only after thé Enjekey is pressed

action ............... string value associated wéegr this widget is engaged

[To || iTRUE matrix value can be modified by the useFEALSE, the matrix
is read-only

mode..........eeeeeeeen. R mode for the matrix, where valid modes are:
numeric , integer , complex ,logical , character

width .................. character width to reserve for the each entry in the matrix

borderwidth  ...width of the border around the matrix widget

Sticky oo, option for placing the widget in itsa#lable space, as discussed in the
introductory paragrapher Appendix A on page 38

padx .......ccccvvennnn space used to pad the widget on tharidftight; two values can be used
to specify padding on the left and right separately

pady ........ccccvvnene space used to pad the widget otofhand bottom; two values can be

used to specify padding oretiop and bottom separately

Example

window title="Widget = matrix"

matrix nrow=2 ncol=3 rowlabels="Row A' 'Row B" \
collabels="Col 1' 'Col 2' 'Col 3" nhames="abcd e '\
values="10 20 30 100 200 300" font="times 10 italic"

=
Col 1 Col 2 Col 3
Row A[10 [20 30
Few E[100 200 300




— 53—

Menu
Description
A menu grouping. Submenus can eithenm@nu or menuitem .

Usage
type=menu nitems=1 label font="" fg="" bg=""

Arguments

nitems .............. number of items or submenus to include in the menu

label ......cccoeenen.. text to display as the menu label (required)

font .o font for labels — specify familyirfies , Helvetica , or Courier ),
size (as point size), and styl®o(d , italic  , underline
overstrike ), in any order

1o [ colour for menu fonts (only applicable for sub-menus)

oo I background colour for menuyapplicable for sub-menus)

Example (assuming that the R functions have been defined)

window title="Widget = menu"
menu nitems=1 label="Widgets"
menuitem label="Show arguments" func=showArgs
menu nitems=3 label="Test functions"
menuitem label="Colours" func=testCol
menuitem label="Line types" func=testLty
menu nitems=2 label="Line functions"
menuitem label="Line widths" func=testLwd
menuitem label="Point symbols" func=testPch

 widget =menu MM =TES
Widgets | Test Furckions

Colours

Poink symbols

Line functions Line tyvpes
Ling widths

Menultem

Description
One ofnitems following amenu command.

Usage
type=menuitem label font="" fg="" bg="" function action="menuitem"



—54—

Arguments
(F=1o]=] L text to display as the menu item label (required)
font oo font for labels — specify familjifies , Helvetica , or Courier ),
size (as point size), and styleo(d , italic  , underline
overstrike ), in any order
fO e, colour for menu item fonts
o]0 I background colour for menu items
function ... R function to call when the menu item is clicked (required)
action ............... string value associated wiegr this widget is engaged
Notebook
Description

Creates a notebook widget comprising a set gépahat can be selected by tabs, where each
page is visible when the corresponding tab is selected.

The number of notebook pages isedmined by the length of thabs vector argument.

Each page of the notebook is specitigtthe widgets that immediately follow the

declaration of a notebook widget. For exde if the notebook has three pagabs is a
character vector of length three. Each of three widgets that fatbdebook will be

assigned to the pages in sequence. A calleaf widgets can be embedded on each page by
the use ofyrid .

A bug in an underlying Tcl/Tk library farotebook prevents combining font family and
font style specifications for tfient argument. For examplint="Times italic

12" cannot be specified btdnt="Times 12" or font="italic" can be specified.
Specifyingfont with combinations of family and s&/will not cause an error but will not
have the desired effect.

Usage

type= notebook tabs name=NULL selected=1 tabpos="top" font=""
fg="" bg="" width=0 height=0 homogeneous=FALSE arcradius=2
tabbevelsize=0 function=NULL action="notebook" sticky="we"
padx=0 pady=0

Arguments
tabs ...cccceeiiiiennnn. a character vector of names for each tab — the length of the vector
determines the number of tabs to use
name...........cccuueee. if specified, the index of théseal tab can be queried wigletWinVal ;
other tabs can be raispdogrammatically witlsetWinVal
selected .......... default page to display

tabpos ............... position tabs on th@p" or"bottom" of the notebook widget



—- 55—

font .o font for tab labels — specify familynies , Helvetica , orCourier ),
size (as point sizedr style pold , italic  , underline
overstrike )

fg oo, colour of arrow used to horizontallpkt¢abs (only applicable when the
horizontal space required to display all tabs exceeds the width of the
notebook widget)

oo I background colour of theelmiok page (but not tabs)
width .................. width of the notebook
height .............. height of the notebook

homogeneous ...if TRUE all tabs have the same width, otherwise, each tab has a width
determined by the length of the tab name

arcradius  ........ an integer in the range 0 to 8, siyatg the rounding effect of the tab
corners

tabbevelsize  .an integer in the range 0 to 8espying the amount of bevel the tabs
should have; 0 effectively draws atangle, otherwise tabs have a
trapezoidal look

function ... R function to call when a pageraised by selecting a tab

action .............. string value associated wéegr this widget is engaged

sticky ... option for placing the widget in itsaflable space, as discussed in the
introductory paragraphfer Appendix A on page 38

padx ......cccceevennnnn space used to pad the widget on tharidftight; two values can be used
to specify padding on the left and right separately

pady ......ccccccvvvnnnn space used to pad the widget on the top and bottom

Note

Colour support is limited due to the undenlyiTk/Tcl library implementation. It is not
possible to specify colours for the tab font or background.

Example

window title="Widget = notebook"
notebook tabs="iris vector grid" name=nb width=380 height=150
object iris rowshow=5
vector length=5 name=vec
grid2 1
label "use a grid to include"
label "multiple widgets on a page"



— 56 —

_lnix

iris ]vectnr | grid |

Sepal.Length Sepal.\Width Petal.Length Petal Width Species
1 5.1 3.5 14 0.z setosa ﬂ
2 4.0 3 1.4 0.z lsetosa -
3 47 3.2 1.3 0.z setosa
4 46 3.1 1.5 0.z setosa W
5 & 3.6 1.4 0.z setosa ﬂ

il x|

s vector | grid |

ol

iris | vector arid l

use a grid ko inchade

multiple widgets on a page

Null

Description
Creates a null widget, useful for padding a gvith blank cells that appear as empty space.
Usage
type=null bg=

padx=0 pady=0



—57—

Arguments
by, background colour
padx ......ccccevvennnnn space used to pad the widget on tharidftight; two values can be used
to specify padding on the left and right separately
pady .......ccccvvnnnnn space used to pad the label on the top and bottom
Example

grid 2 2 relief=raised toptitle=Top sidetitle=Side \
topfont="Courier 10 bold" sidefont="courier 10 bold"
label text="Here" font="courier 8"
null
null
label text="There" font="courier 8"

Object

Description

A widget that represents the R-object specified — a vector becoveetoa widget, a
matrix becomes matrix widget, and a data frame becometata widget.

Usage

type=object name rowshow=0 font="" fg="black" bg="" entryfont=""
entryfg="black" entrybg="white" noeditfg="black"
noeditbg="gray" vertical=FALSE collabels=TRUE rowlabels=TRUE
function="" enter=TRUE action="data" edit=TRUE width=6
borderwidth=0 sticky="" padx=0 pady=0

Arguments

name........ccccccuueee name of object (vector, matrix, dadeame) to convert to a widget
(required)

rowshow ............. number of rows to display on the screemmvifshow=0 or
rowshow>=rows(name) then all rows will be displayed

font ... font for labels — specify famillirhes , Helvetica , or Courier ),
size (as point size), and styleo(d , italic  , underline
overstrike ), in any order

fg e colour for label fonts

DY .o background colour for widget

entryfont ... font of entries appearing in input/output boxes

entryfg ...oooeennn. font colour of entries aggaring in input/output boxes



— 58 —

entrybg ... background colour of input/output boxes

noeditfg  .......... font colour of entries appédy in input/output boxes whesulit=F
noeditbg .......... background colour of input/output boxes wésit=F

vertical  .......... only applicable when tieobject is a vector; ifRUE, display the vector

as a vertical column with labels on the left; otherwise display it as a
horizontal row with labels above

collabels ........ if TRUE display the object’s column nameskFALSE, no column labels
are displayed

rowlabels ........ if TRUE display the object’'s row namesHALSE, no row labels are
displayed

function ... R function to call when anytenin the vector is changed

enter .......ooeeeen... ifTRUE call the function only after thé Enjekey is pressed

action ............... string value associated wiegr this widget is engaged

edit ... iTRUE, the object’s values can beactyed by the user; otherwise, the
values are read-only

width .................. character width to reserve for the each entry in the vector

borderwidth  ...width of the border around the text box

sticky ... option for placing the widget in itsaflable space, as discussed in the
introductory paragrapher Appendix A on page 38

padx ......cccccvvennne space used to pad the widget on thardftight; two values can be used
to specify padding on the left and right separately

pady .......cccccvvvnenn space used to pad the widget otofhand bottom; two values can be

used to specify padding oretiop and bottom separately

Note

When scrolling is enabled, the up, down, page up, and page down keys can be used to scroll.
The keys are only enabled when sanéy box in the object is selected.

Example

window bg="#ffd2a6" tittle="Object: longley"

label text="Longley\'s Economic Regression Data" font="bold 12" \
fg="#400080" pady=0 sticky=S

object name=longley rowshow=5 width="5 27 6 6 7 4 6" pady=5

JR[=TE

Longley's Economic Regression Data

GMP. deflakar GHP Uremployed Armed.Forces Population Year Employved il
1947 83 234,289 £35.6 159 107,608 (1947 |60.323
1945 58.5 259.426 232.5 145.6 105,632 (1948 |61.122
1949 88,2 255,054 368.2 161.6 109,773 1949 |60,171
1950 §9.5 284,599 335.1 165 110,929 1950 |61.187

1951 Q5.2 328,975 209.9 309.9 112,075 [1951 |63.241 ;I




— 59—

Progressbar

Description

A progress indicator widget. Tipgogressbar  status can be animated by updating the
widget state usingetWinVal

Usage

type=progressbar name value=0 maximum=100 style="normal" width=NULL
height=NULL vertical=FALSE fg=NULL bg=NULL relief="sunken"
borderwidth=2 sticky="" padx=0 pady=0

Arguments

name........cccccuuee name of the progressbar
value ......cccoceeee initial value of the widget variable
maximum............. the maximum value of the widget variable (must be greater than zero)
style .o one aformal ,incremental , infinite or
nonincremental_infinite

if normal , a bar is displayed within a framed area with length
proportional tovalue scaled tanaximum. Updates of the widget state
usingsetWinVal adjust the bar length to the passed positive value

if incremental , the widget behaves like tl@rmal style with one
exception: the positivealue passed witlsetWinVal is addedo the
bar length rather than lmgj used to set the bar length

if infinite , @ bar segment is displayed within a framed area. Updating
of the bawvalue usingsetWinVal advances the bar segment first from
left to right and then from right to left by the specified positive integer
increment.

if nonincremental_infinite , the widget behaves like the
infinite style with one exception: the positive integalue passed
with setWinVal is used to set the position of the bar segment. The bar
segment moves from left to right if variabalue (modulomaximum)
is less thamaximum/2 and from right to left ivalue is greater than
maximumnmy/2

width .................. the width of the progressbar widget

height .............. the height of the progressbar widget

vertical ... if TRUE, orient the progressbar veatig starting at the bottom for zero,
moving upwards until maximum is reached, otherwise, orient the widget
horizontally and move from left to right

1o [ foreground colour of the progress indicator

PO background colour for widget



— 60—

relief ... type of border around the textere valid styles are:
raised ,sunken ,flat ,ridge ,groove , solid
borderwidth  ...width of the border around the widget

sticky ............... option for placing the widget in itsaflable space, as discussed in the
introductory paragrapher Appendix A on page 38

padx ......ccccevvennnn space used to pad the widget on tharidftight; two values can be used
to specify padding on the left and right separately

pady .......ccccvvennnn space used to pad the widget otofhand bottom; two values can be

used to specify padding oretiop and bottom separately

Note

Animation of theprogressbar  widget to indicate the s&bf ongoing calculations can be
achieved by repeated callsgetWinVal that reference the progressbhame.

If thevalue set withsetWinVal is negative th@rogressbar is not displayed (i.e., it
is hidden by drawing it “flat” using thigackground color), ithe value is 0, the
progressbar s reinitialized. Positive vaks work as described by thgle argument
andinfinite andnonincremental_infinite styles only accept integers.

Run thetestWidgets() function and select "progresab for an example of how to
programmatically manipulate tipeogressbar  widget for each of thetyle options.

Example

window title="75%"
progressbar name=status fg=blue value=0.75 maximum=1.0

BEE - (o]
I

window title="infinite"
progressbar name=status style=infinite fg=blue value=80

| infiagy [aTE
M W

window title="incremental progressbar"

progressbar name=status style=incremental \
value=20 maximum=2100 fg=blue width=200

button text="add 10" function=doAction \
action=setWinVal(c(status=10))

_inix]
2 10|

add 10




—-61-—

Radio

Description

One of a set of mutually exclus radio buttons for making a particular choice. Buttons with
the same value farame act collectively to define a single choice among the alternatives.

Usage
type=radio name value text="" font="" fg="black" bg="" function=
action="radio" edit=TRUE mode="numeric" selected=FALSE

||||||||||||||||

sticky="" padx=0 pady=0
Arguments

name........cccceeuuens name of R variable altered by thisa&utton, where radio buttons with
the same name define a mutually exclusive set (required)

value ......cccccceeee value of the variable when tfadio button is selected (required)

text ..o identifying text placed to the right of this radio button

font oo font for labels — specify famillirfies , Helvetica , or Courier ),
size (as point size), and styleo(d , italic  , underline
overstrike ), in any order

fO o, colour for label fonts

DY background colour for widget

function .......... R function to call when this radio button is selected

action .............. string value associated wéegr this widget is engaged

edit .., iTRUE the selected radio options can be changed; otherwise, the radio
values are read-only

mode..........cccuue.... R mode for the value associated thithbutton, where valid modes are:
numeric , integer , complex ,logical , character

selected .......... ifTRUE the radio button is selected (switched on)

Sticky oo, option for placing the widget in itsaflable space, as discussed in the
introductory paragrapher Appendix A on page 38

padx ......ccccevvennnnn space used to pad the widget on tharidftight; two values can be used
to specify padding on the left and right separately

pady ......cccccvvvnnnn space used to pad the widget otofhand bottom; two values can be

used to specify padding oretiop and bottom separately
Example

window title="Widget = radio"

grid14
radio name=junk value=0 text="None"
radio name=junk value=1 text="Option A"
radio name=junk value=2 text="Option B"
radio name=junk value=3 text="Option C"

i x

i Meope © Optiond © Optioh B © Optioh C




—-62 —

Slide

Description
A slide bar that sets the value of a ahie. This widget only accepts integer values.
Usage

type=slide name from=0 to=100 value=NA showvalue=FALSE
orientation="horizontal" font="" fg="black" bg="" function=""
action="slide" sticky="" padx=0 pady=0

Arguments

name........ccccccuueee name of the numeric R variable poading to this slide bar (required)

from ...l minimum value of the variable (must be an integer)

(0 ISR maximum value of the variable (must be an integer)

value .................. initial slide value, whetige default is the specifiddbm value

showvalue ........ if TRUE display the current slide value above the slide bar

orientation ...direction for orienting the slide bdrorizontal or vertical

font .o font for labels — specify familjirfies , Helvetica , or Courier ),
size (as point size), and styleo(d , italic  , underline
overstrike ), in any order

fO o, colour for label fonts

o]0 IS background colour for widget

function  .......... R function to call when the slide value is changed

action ............... string value associated wiegr this widget is engaged

sticky ............... option for placing the widget in itsaflable space, as discussed in the
introductory paragrapher Appendix A on page 38

padx ......cccceevennnn space used to pad the widget on tharidftight; two values can be used
to specify padding on the left and right separately

pady ......cccccvvennnn space used to pad the widget otofhand bottom; two values can be
used to specify padding onethop and bottom separately

Example

window title="Widget = slide"
slide name=junk from=1 to=1000 value=225 showvalue=T

=101 |




— 63—

SlidePlus

Description

An extended slide bar that also displaysinimum, maximum, and current value. This
widget accepts real numbers.

Usage
type=slideplus name from=0 to=1 by=0.01 value=NA font="" fg="black"

bg="" entryfont="" entryfg="black" entrybg="white" function=""
enter=FALSE action="slideplus" sticky="" padx=0 pady=0
Arguments

name........ccccevveeee name of the numeric R variable spoading to this slide bar (required)

from ... minimum value of the variable

(0 TR maximum value of the variable

DY i minimum amount for changing the variable’s value

value .................. initial slide value, whetiee default is the specifidcom value

font ..o font for min/max labels — specify familynes , Helvetica , or
Courier ), size (as point size), and stylo(d , italic  , underline
overstrike ), in any order

fg o, colour for min/max label fonts

oo background colour for widget

entryfont  ........ font for entry widgets — specify familyifnes , Helvetica , or
Courier ), size (as point size), and stylo(d , italic  , underline
overstrike ), in any order

entryfg ..o colour for entry widget fonts

entrybg ... background colour for entry widgets

function ... R function to call when the slide value is changed

enter ......ooeeeeeennn. ifTRUEand the slide value is changéd the entry box, call the function
only after the(Enten key is pressed

action ............... string value associated wénegr this widget is engaged

sticky ... option for placing the widget in itsa#lable space, as discussed in the
introductory paragraphier Appendix A on page 38

padx ......cccccevvennnne space used to pad the widget on tharidftight; two values can be used
to specify padding on the left and right separately

pady ......cccccvvvnnnn space used to pad the widget otofhand bottom; two values can be
used to specify padding oretiop and bottom separately

Note

To facilitate retrieving and setting themmum and maximum values, two additional
variables are created by suffixingriax " and "min " to the givemame.

Example
window title="Widget = slideplus"



— 64—

slideplus name=junk from=0 to=1 by=0.01 value=0.75

Widget = slide

plus i [=] XS]
i 1]

Mins [0 075 |1 ¢Max

Spinbox

Description

A field in which a scalar variable can be incremented or decremented by a fixed value within
a range of values.

Usage

type=spinbox name from to by=1 value=NA label="" font="" fg="black"
bg="" entryfont="" entryfg="black" entrybg="white" function=""
enter=TRUE edit=TRUE action="droplist" width=20 sticky=""
padx=0 pady=0

Arguments

name........c..coooee.. name of the R variable containing the text (required)

from ... minimum value of the variable

(0 TR maximum value of the variable

DY i minimum amount for changing the variable’s value

value ... initial value; INA set the initial value tbrom

label .....ccccoeennnnn. text to display to the right of this spinbox

font ... font for labels — specify famillifhes , Helvetica , or Courier ),
size (as point size), and styleo(d , italic  , underline
overstrike ), in any order

fO i colour for label fonts

oo U background colour for label

entryfont ... font for labels — specify familffimes , Helvetica , orCourier ),
size (as point size), and styleo(d , italic  , underline
overstrike ), in any order

entryfg ..oooeeenin. colour for spinbox entry value and arrows

entrybg ... background colour for spinbox

function  .......... R function to call when the slide value is changed

enter .......occeeenns IfTRUEand the slide value is changad the entry box, call the function
only after the( Enterkey is pressed

edit ..o ITRUE, the value can be changed by tiser; otherwise, the value is
read-only

action .............. string value associated wéegr this widget is engaged

width .................. character width to reserve for the entry



— 65—

sticky ............... option for placing the widget in itsaflable space, as discussed in the
introductory paragrapher Appendix A on page 38

padx ......cccccevvennnn space used to pad the widget on tharidftight; two values can be used
to specify padding on the left and right separately

pady .......ccccvvnnnnn space used to pad the widget otofhand bottom; two values can be

used to specify padding onethop and bottom separately
Note

The values of the spinbox can be adjusted up and down with the up and down arrows on the
keyboard.

Example

window title="Widget = spinbox"
spinbox name=spun from=0 to=100 by=12.5 value=50 label="Showcase
showdown" bg=lightyellow font=bold entryfg=purple

=k
Showcase showdown [0 2

Table

Description
A spreadsheet-like widget that can display and edit data in tabular format.
Usage

type=table name rowshow=0 font="" fg="black" bg="white" rowlabels=""
collabels="" function="" action="table" edit=TRUE width=10

sticky="" padx=0 pady=0
Arguments

NaMe......ovvveeeeeenen. name of object (vector, matrix, cladaame) to convert to a widget
(required)

rowshow ............. number of rows to display on the screemmvishow=0 then the table
height is maximized and the number is determined automatically

font .o font for labels — specify familyirfies , Helvetica , or Courier ),
size (as point size), and styleo(d , italic  , underline
overstrike ), in any order

fg oo, colour for label fonts

by background colour for widget

rowlabels ........ a vector ofirow labels used to label rows;rdwlabels="" |, then the
object’s row names are usedNULL, no labels are displayed

collabels ........ a vector ofcol labels used to label columnscifllabels="" , then

the object’s column names are usedWLL, no labels are displayed



— 66 —

function ... R function to call when anytenin the vector is changed
action ............... string value associated wénegr this widget is engaged
edit .. ITRUE, the object’s values can beactyged by the user; otherwise, the

values are read-only

width .................. character width to reserve for the eatly;aha vector of widths is given,

then each element corresponds to a different column

sticky ... option for placing the widget in itsaflable space, as discussed in the

introductory paragrapher Appendix A on page 38

padx ......cccccvvernnn. space used to pad the widget on thandftight; two values can be used

to specify padding on the left and right separately

pady .......cccceevenne space used to pad the widget otofhand bottom; two values can be

used to specify padding oretiop and bottom separately

Example

window bg="#ffd2a6" tittle="table: iris"

label text="Longley\'s Economic Regression Data" font="bold 12" \
fg="#400080" pady=0 sticky=S

table name=iris rowshow=5 rowlabels=NULL

=Y
Edgar Anderson’s Iris Data
Sepal Length Sepal’width Petal Length Petal'wfidth  Species
5.1 35 1.4 nz zetogza
49 3 1.4 nz zetogza
47 32 1.2 nz zeboza

46 31 1.5 nz zetoga -
ki 5

Text

Description

An information text box that can display messagesults, or whatevehe user desires. The

displayed information can be either fixed or editable.
Usage

type=text name height=8 width=30 edit=FALSE scrollbar=TRUE
fg="black" bg="white" mode="character" font="" value=""
borderwidth=1 relief="sunken" sticky="" padx=0 pady=0

Arguments
name........cccccuuuee name of the R variable containing the text (required)
height .............. text box height
width .................. text box width

edit ...oocoiiiieenn. ifTRUE the user can edit the value storedame



—-67 -

scrollbar  ........ if TRUE a scroll bar is added the right of the text box

1o [ colour for label fonts

by background colour specified in hexadecimal format; e.g.,
rgb(255,209,143,maxColorValue=255) yields "#FFD18F"

mode..........cccuueee. R mode for the value associated with this widget, where valid modes are:
numeric , integer , complex ,logical , character

font e font for labels — specify familjifies , Helvetica , or Courier ),

size (as point size), and styleo(d , italic  , underline
overstrike ), in any order

value .................. default value to display in the text

borderwidth  ...width of the border around the text box

relief  ............... type of border around the texere valid styles are:
raised ,sunken ,flat ,ridge ,groove , solid

sticky ............... option for placing the widget in itsaflable space, as discussed in the
introductory paragrapher Appendix A on page 38

padx ......cccccevvennnn space used to pad the widget on tharidftight; two values can be used
to specify padding on the left and right separately

pady ......cccccvvnnnnn space used to pad the widget otofhand bottom; two values can be

used to specify padding orethop and bottom separately

Example

window title="Widget = text"

text name=mytext height=2 width=55 bg="#FFD18F" font="times 11"
borderwidth=1 relief="sunken" edit=TRUE \
value="You can edit text here & change value of \"mytext\""

wdget—text Il x|

|Ynu can edit the text here and change the walue of "mytest"




— 68 —

Vector

Description

An aligned set of entry fields for all componeotsa vector. If the mode is logical, the vector
appears as a set of check boxes thabeatnrned on or off using mouse clicks.

Usage

type=vector names length=0 labels=
fg="black" bg="" entryfont=""
noeditfg="black" noeditbg="gray" vertical=FALSE function=
enter=TRUE action="vector" edit=TRUE mode="numeric" width=6
borderwidth=0 sticky="" padx=0 pady=0

||||||||||||

values="" vecnames="" font=
entryfg="black" entrybg="white"

Arguments

NAMES........veennnn. either one name (for a whole vector) or a vector of names for individual
variables used to storeetlvalues in R (required)

length ............... required only if a single name is git@na vector of length greater than 1

labels .............. one df' , NULL, a single label, or a vector leingth  labels. The"
label uses the value nmes as labels, ihames only contains a single
name, then elements are numbered. NbéL label displays no labels and
minimizes space. A single label displays a label for the entire widget, and
numbers elements. A vector of labdisplays a label for each element of
the array.

values ............... default values (either one value for all vector components or a vector of
length values)

vecnames .......... string vector of lenglength  to name the scalars or vector

font oo font for labels — specify familyirfies , Helvetica , or Courier ),
size (as point size), and styl®o(d , italic  , underline
overstrike ), in any order

fg e, colour for label fonts

oo I background colour for widget

entryfont  ........ font of entries appearing in input/output boxes

entryfg  ..oooeeenil. font colour of entries aggaring in input/output boxes

entrybg ... background colour of input/output boxes

noeditfg  .......... font colour of entries appédy in input/output boxes whesulit=F

noeditbg .......... background colour of input/output boxes wisdit=F

vertical ... ifTRUE, display the vector as a vertical column with labels on the left;
otherwise display it as a hooatal row with labels above

function  .......... R function to call when anytenin the vector is changed

enter ..o ifTRUE call the function only after thé&Enter) key is pressed

action ............... string value associated wiegr this widget is engaged

edit .. iTRUE, the vector’s values can beartgyed by the user; otherwise, the

values are read-only



— 69 —

mode..........eeeeeeen. R mode for the vector, where valid modes are:
numeric , integer , complex ,logical , character
width .................. character width to reserve for the each entry in the vector
borderwidth  ...a non-negative value specifying the amount of space to use for drawing a

border (or margin) around the widg#te background colour of the space
is determined by theg value

sticky ............... option for placing the widget in itsalable space, as discussed in the
introductory paragrapher Appendix A on page 38

padx ......ccccevvennnn space used to pad the widget on tharidftight; two values can be used
to specify padding on the left and right separately

pady ......cccccevvnnnns space used to pad the widget otofhand bottom; two values can be

used to specify padding onethop and bottom separately

Example

window title="Widget = vector"

vector length=4 names="a b g d" labels="alpha beta gamma delta" \
values="100 0.05 1 5" font="times italic" width=6

vector length=5 mode=logical names=chosen labels=choose \
values="FTFTT"

Widget = vector =10f x|

aipha beta gamma delia
{100 fo.os  [1 |5

chooze
1 2 a 4 ]
I 2 I 2




—-70 -

Appendix B. Talk description files

This appendix specifies the struewand syntax for talk description files
discussed in Sectigh Formally, such a file contains thedicode elements listed there. A valid
file must have one rogttalk> element that contains one or mewection> elements. One
<talk> element defines the root and the namthefcorresponding GUI. This can include one
or more<section> elements. Eackisection> contains a mixture of the threeimitive
elementsctext> |, <file> , and<code> . These primitive elements occur in isolation; they
cannot contain any other elements. Thus, we suppbrttwo levels of nesting: sections within a
talk and primitives within a section. (Think of a talk root with section branches and primitive
leaves.)

WhenpresentTalk() runs a description file, it pduces a control GUI like the one
shown in Figure 5. Any declaregection> s, or<file> s automatically generate menu items
in the GUI. These links can also appear as batwithin columns of the GUI's lower section.

By default,<section> buttons appear in the first column, asfde>  buttons in the second
column, although an author can overwrite theseulstan this way, dalk description file
allows an author to design both the talk’s content and the GUI used to present it.

Some tags allow the presentation to braagpecified places. Specifically, a break
produces a message in the R console indicataighle speaker must press the “Go” button in
the GUI to continue on to the next step @ ghresentation. During a break, the speaker can
spontaneously type code into the R consoléustrate points oimmediate interest. A
conceptuallide consists of all material between one break and the next.

We end this appendix with a precise dgawh of the purpose and syntax for each code
element. Instead of alphabetical order, we use the more logical etal&r , <section> ,
<text> ,<file> , and<code>. In particular, we identify the arguments (also cadittd butes
in the XML literature) that arsupported in the initial tag.

<talk> ... </tal k>

Description

A code element that constitutes a talk
Usage

<talk name= (required)>
Arguments

name............ccuueee. A string giving the name of the tallq(ieed). It appears as the title of the
control GUI. It must start with ketter and contaionly alphanumeric
characters and underscores.



—71 -

Notes

A file must have exactly onetalk> element that contains at least arsection>
element.

<section> ... </section>

Description
A code element that defines a section of a talk
Usage
<section name=(  requi r ed) button="FALSE" col="1">

Arguments
name........cccccuveens A string giving the name of the st(required). It appears in the control
GUI as a menu item (under “Sectionaf)d possibly also as a button. It
must start with a letter and comtainly alphanumeric characters and
underscores.
button ............... A Boolean variabld RUEor FALSE) that determines whether or not the
GUI should add a button that seleitis section, in addition to access by
the menu.
col i If a button is used, the column withimch to place it iHower section of
the GUI.
Notes

A <talk> mustinclude at least orsection> , and each section must have a unique
name. Although a<talk> tag is commonly followed by esection> tag (the first
section), this may not always bee. See the description<file>  below.

<text> ... </text>

Description
A primitive that specifies text to be printed (displayed) on the R console

Usage
<text break="TRUE">
Arguments
break ........ccccc.... A Boolean valugd RUEor FALSE) that specifies whether or not to break
the presentation after displaying the text specified.
Notes

Line breaks in the descriptioitef correspond to line breakstime displayed text. Keep lines
short enough that they wilitfinto the R console with ehlarge font size required for
presentation (Sectid).



—72 —

<file> ... </file>

Description

A primitive that specifies files to be opened by the operating systenopattile()
Usage

<file name=(  requi r ed) button="FALSE" col="2" break="TRUE">

Arguments

name........ccccceuueee A string giving the name for this gradifiles (required). It appears in the
control GUI as a menu item (under “Kf¢ and possibly also as a button.
It must start with a letter anatain only alphanunme characters and
underscores.

button ............... A Boolean variabl@ RUEor FALSE) that determines whether or not the
GUI should add a button that opens tisup of files, in addition to the
available menu item.

(o0 | If a button is used, the column withkinich to place it iHower section of
the GUI.
break ........cccce.... A Boolean valug@ RUEor FALSE) that specifies whether or not to break

the presentation after opagithe group of files.
Notes

File names betweetfile> and</file>  must appear as indoal strings (separated by
spaces or line breaks) that are suitable argumentpéntile() . Files without explicit
paths are presumed to lie in the user’'s wagldirectory. As usual, the operating system
must have an associated application oRB&modelling options must be set to associate
extensions and applications (Secti@i3 ands.1 above).

Although a speaker may commonly introduce amyg file at a time, it can sometimes be
convenient to open several files in a single dtep.example, they may all appear in a single
text editor window, with tabs faselecting individual files.

If a<file> element appears betweetalk> and the talk’s firsksection> | the file
groupname will be added to the talk’'s GUI. However, because the segment doesn’t belong
to any section, it will not cause files to be npé at this point. Theshture allows files to
become part of a talk without havitgopen them at an explicit point.

<code> ... </code>

Description

A primitive that specifies R code to be executed on the R console
Usage

<code show="TRUE" print="TRUE" break="print">



—73-—

Arguments
ShOW ......ovviiiininee A Boolean valu& RUEor FALSE) that specifies whether or not to show
the code snippet in the R consolesibwn, each line of the intended code
will be prefixed by the usual R command prompt ™.
print ... A Boolean valu& RUEor FALSE) that specifies whether or not to print
the results of running the R code.
break .................. A stringghow, print , all , ornone) describing where to introduce
breaks in the code segment:
show — break only after showing the R code;
print — break only after printing the results;
all — break after showing the R cod®alaagain after printing the results;
none — do not break during this code segment.
Notes

The text betweercode> and</code> normally consists of valid R code, although a
speaker may choose to demonstrate the consequences of invalid code.

Line breaks in the text correspotadindividual lines of R codeKeep lines short enough that
they will fit into the R console with the largertt size required for presentation, as discussed
in SectionG.

Implementing a<code> element involvesa two-step processFirst, if show=TRUE the

code is shown on the R console. Secorganmdiess of argumentttiags, the code is

executed. Iprint=TRUE , the results are printed on the R console. Notice particularly that
code execution takes place in the second step

Thebreak argument acts independently from giw andprint arguments. For

example, an author might use bptint=FALSE andbreak=print if the R calculation
takes notable time and produceseasive output that should Bappressed. In this case, the
break would indicate that the calculation is complete. Similarly, the arguments
show=FALSE andbreak=show allow an author to suppressttisplay of a large block of

R code, but still to introduce adak before the code is executed.

* Reminder: XML characters must be ‘escaped’. (i€ becomes ‘&lIt’). Since this is ugly, users
will probably want to wrap code witl[CDATA|...]]>



—74 -

Appendix C. Building PBSnodel | i ng and other packages

The R project defines a standard farating a package of functions, data, and
documentation. You can obtain a comprediee guide to “Writing R Extensions”
(R Development Core Team 201®yexts.pdf ) from the CRAN web site or the R GUI
(see the References above). Ligges (2003 Laygks and Murdoch (2005) provide useful
introductions. We have designe@&Smodelling and a very simple enclosed package
PBStry as prototypes for package development. This Appendix summarizes the steps needed
to:

C.1. install the required software;

C.2. buildPBSmodelling from source materials;

C.3. write source materials for a new package and compile them;
C.4. include C code in a package.

Our discussion applies only to packageadepment on a computer running Microsoft
Windows 2000, XP, or (maybe) later. We parkaely highlight issues that have proved
troublesome for us. Thelrary  directoryPBSmodelling\PBStools contains batch
files that can assist the process. For epamyou might locate this directory as
C:\Utils\R\R-2.13.1\library\PBSmodelling\PBStools

C.1. Installing required software

Building R packages requires four pieces$reé software. Duncan Murdoch currently
maintains their availability and installation instructions at:
http://www.murdoch-sutherland.com/Rtools/

Users should periodically check this websitedieanges to the various software packages. We
recommend installing each package on a path thatrb@sclude spaces. For example, avoid
usingC:\Program Files , even if that happens to be pafia package’s default path. In this
appendix, we us€:\Utils as a root directory for all required software. The list below gives a
brief summary of the required softwgidurdoch provides links to these products).

1. Ritself, currently version 2.13.LC(\Utils\R\R-2.13.1 ). We assume that R is already
installed from the CRAN web sitgtp://cran.r-project.orgdnd that it rungorrectly on your
computer. (See ‘Upgrading to the latest version of R’ below.) We also assume that the
package’BSmodelling is installed in R.

2. Rtools installe Command line tools, MinGW compiler&ctivePerl text scripting, etc.
(C:\Utils  \Rtools\ ). Download and run the filRtools28.exe . The installation
should create the subdirectorib;n  for command line programgVinGW for the
minimalist GNU C compiler for Windows, anperl  for the ActivePerl scripting language.
These tools aressential. DO NOT plan to use programs with the same name in an
installation of Cygwiror any other UNIX emulator tha&appens to be installed on your
computer.



—75—

3. The MicrosoftHTML Help Workshop (C:\Utils  \HHW). Run the installation file
HtmlHelp.exe . After installation, wehink you can safely ignore a message that “This
computer already has a newer version of HTIN®RIp”. (If anyone has different information,
please let us know.)

4. MiKTeX : a LaTeX and pdftex packagé:{Utils\MiKTeX ). The link takes the user to
http://www.miktex.org/ This processor for TeX and LaTeX files helps typeset help files
within a package. Download the “basic” inkiton file, and install these components only.
You can add more LaTeX packages from thertrgelater, as required. (MiKTeX often does
this automatically.) Take some timeitwestigate the MiKTeX package managap(.exe
or go to the “Programs” menu andessl“MiKTeX 2.9”, “Browse Packages”).

We recommend enhancing MiKTeX slightly, that it can independdmgtprocess the LaTeX
files produced from R documentation files.

a) Create a new subdirectd® under the MiKTeX’s directorjor storing LaTeX styles and
font definitions (e.g.C:\Utils\MiKTeX\tex\latex ).

b) Copy into itall files from\texmf in the R installation tree (e.@;,\WinApps\R\R-
2.13.1\share\texmf ). These should included.sty .

c¢) Go to the “Start” menu, select “Progrsinthen “MiKTeX 2.9”, and run the program
“Settings”. In the “General” tab, click the boh marked “Refresh FNDB”. This refreshes
MiKTeX’s file name database, so that it recognizes files in the\Resubdirectory.

Every user has a preferred editoowever, if you are still usingjotepad.exe , you
may wish to explore the freely alable, open-source software callémn-R available at
http://sourceforge.net/projects/tinnfinn-R is described as a “simple but efficient replacement
for the basic code editprovided by Rgui”. Alteratively, the text editovWWinEdt (available
from http://www.winedt.cony provides a convenient GUI fediting LaTeX files and operating
MiKTeX. Combined with the R packadg®NVNinEdt , it can also serve @ editor and interface
for R. However, it is available only as sharesvtrat requires a fee for long-term use, unlike any
other software mentioned here.

Upgrading to the latest version of R

1. Download the nevir-x.y.z  binary from a local CRAN mirror, such as the one at SFU:
http://cran.stat.sfu.ca/bin/windows/base/

2. Uninstall the old versioR-a.b.c  ((Star}y, (Programg, (R), (UninstallR-a.b.c )). If
you cannot find an uninstall program in the Progpamenu, use the Control Panel in the
usual way (slightly different bewen Windows XP and Windows VISTA).

3. Install the new versioR-x.y.z  to a new folder. Our default would be:
C:\Utils\R\R-x.y.z\

4. Find the library files for both veiens of R in the directories:

C:\Utils\R\R-a.b.c\library\
C:\Utils\R\R-x.y.z\library\
Copy all subdirectories (packages) from vergdnc to versionx.y.x ; but press




76—

(Shifty(Noy to avoid overwriting packages just iak¢d as part of the new version. You

want to copy the optional packages, but notettbat come with the standard installation.
5. Runthe new GUI foR-x.y.z . From the menu, click PackagegUpdate packages).,.
select a local mirror, and wait for any instdllgackages to be updated. To stay current,
repeat this update step every week or two.
6. Remove the old R installation directo@:{Utils\R\R-a.b.c\ ).

At the time of writing, the program to uninstBlfa.b.c  has a small bug, because it
does not actually remove all of the packatled come with the base distribution.

PBStools for building R packages

After the above pieces of software arstaied, you're ready to start building R
packages. For this purpose, create a new directory e\Bdevel\ ) that will contain your
packages. Within the R library directoi@:{Utils\R\R-2.13.1\library\) , find the
subdirectoryPBSmodelling\PBStools . Copy all the batch fikethere into your new
packages directory. Younsuld have these 11 files:

e RPaths.bat , RPathCheck.bat related to the installation;

e unpackPBS.bat ,checkPBS.bat ,buildPBS.bat ,packPBS.bat , related to
PBSmodelling ;

e Runpack.bat ,Rcheck.bat ,Rbuild.bat , Rpack.bat , RmakePDF.bat related to
the construction of new packages.

IMPORTANT : You need to changePaths.bat  so that it reflects #hpaths you chose in the
above six installations. For example, your varadthis batch file might contain the lines

set R_PATH=C:\Utils\R\R-2.13.1\bin\i386

set TOOLS_ PATH=C:\Utils\Rtools\bin

set PERL_PATH=C:\Utils\Rtools\perl\bin

set MINGW_PATH=C:\Utils\Rtools\MinGW\bin
set TEX_PATH=C:\Utils\MiKTeX\miktex\bin
set HTMLHELP_PATH=C:\Utils\HHW

Notice that each path, except the last, endsbin asubdirectory.

Hopefully, your installation is now complet@ your new packages directory, run
RPathCheck.bat from a command line or double-clicketicon. This script verifies that a
few essential files lie on the irgdited paths. If everything t®rrect, you should see the message
“All program paths look good”. Otherwise, youdée a warning about software that doesn’t
appear on your specified paths.

If you view all the batch file with a text editor, you will see that they don’t use your
system PATH environment variable. Instead, eawd defines a new local path appropriate for
building R packages (viePathCheck.bat ). A SETLOCALcommand ensures that this
change doesn't alter your system’s permanent environment.



— 77 -

C.2. Building PBSnodel | i ng

Once all the required softwaiinstalled, the batch filefiscussed above make it fairly

easy to buillPBSmodelling . We assume that you haveeady created the directory

discussed in Appendix C.1, sey\Rdevel , for building R packages and that it contains the
relevant eight batch files. In particul&Paths.bat  should reflect your installation paths and
RPathCheck.bat should report the message that “All program paths look good”. Then follow
these steps:

1.

On the CRAN web sitattp://cran.r-project.orgio to “Packages” on the left and find

PBSmodelling . Download the filePBSmodelling_x.xx.tar.gz into D:\Rdevel
Then rename this file (or copy it and renatime copy) so that the version number is
removed. You should now have the #ffSmodelling.tar.gz in D:\Rdevel

In the development directofy:\Rdevel , double-click the icon founpackPBS.bat or
type the commandnpackPBS in a corresponding command window. This should extract
the contents odPBSmodelling.tar.gz , preserving directory structure, into a
subdirectory®BSmodelling  with five sudirectoriesidata ,\inst ,\man,\R, and
\src

Our batch file uses the commatad -xzvf PBSmodelling.tar.gz , Where
tar.exe appears in theRtools directory (Section C.Xktep 3). The command line
parameters specify a verbosg €xtraction x) of the given file {), after filtering with

gzip (2).
If you use other software for this extractiorggde ensure that itéenfigured to handle

UNIX files correctly. For example, “WinZip” haan option to extract a “TAR file with smart
CR/LF conversion”. This must be turned off.

In the base directorip:\Rdevel , double-click the icon focheckPBS.bat or type the
commandcheckPBS in a corresponding command winddiall software is installed

correctly andD:\Rdevel\PBSmodelling correctly representke contents of the

tar.gz file, you should see a series of DOSss®ges reporting “OK” to various tests. A
distinct pause might accompany the message: “checking whether package 'PBSmodelling’
can be installed ...".

You might also encounter a delayMi#<TeX downloads the LaTeX packadrmodern

part of a larger packagdm . If this is really slow, you caabort the process and instat

with the MiKTeX package manager, as discussed in step 5 of Section C.1. Choose a remote
server near you. You only need totties once. When it’s finished, rumeckPBS.bat

again.

Examine the new directoiy:\Rdevel\PBSmodelling.Rcheck created by the
check process in step 2. The text fil@8check.log  andOOinstall.out show
detailed results.

In the base directorfp:\Rdevel , double-click the icon fobuildPBS.bat  or type the
commandouildPBS in a corresponding command window. This creates the file



- 78—

D:\Rdevel\PBSmodelling.zip , Which could be used to instédlBSmodelling
from a local zip file.

8. Again in the base directoy:\Rdevel , double-click the icon fopackPBS.bat or type
the commangbackPBS in a corresponding command windoWhis creates a new package
distribution filePBSmodelling_x.xx.tar.gz that replaces the one downloaded from
CRAN in step 1.

9. Finally, type the commandmakePDF PBSmodelling in a command window for
D:\Rdevel . This generates an indexed documentatiorPid&modelling.pdf
See Appendix D.2 for further details about tise of this file foproducing this report.

If these steps all work without problems, you &l confident that the requisite software is
installed correctly and thgbu understand the basic steps needed to build R packages.

C.3. Creating a new R package

R packages require a speciakdiory structure. The R functiggackage.skeleton

automatically creates this structure, but (without further work) it does not produce a package that

can be compiled. AlthoughBSmodelling has the requisite strugg, it is perhaps too
complicated to serve as a coniant prototype. For this reas, we include a small subset
PBStry that illustrates the key details. You cankea new package simply by editing the files
in PBStry . You need a suitable editor (e.g., UltraEWMinEdt, or Notepad) to view and change
various text files.

1. Start by locating the fil@BStry x.xx.tar.gz in the R library directory
\PBSmodelling\PBStools . Copy this file into youdevelopment directory
(D:\Rdevel) , and rename it (or copy and renatine copy) to obtain the file
PBStry.tar.gz

2. Remove any previous tracesRBStry in your development directory, such as
subdirectorie®BStry , PBStry.Rcheck , and.Rd2dvi$ , along with the documentation
file PBStry.pdf

3. Follow steps similar to those in Section C.2 to unpack, check, build, re-package, and
documenPBStry . You must now use a DOS command windoWikRdevel to issue
the five commands
Runpack PBStry
Rcheck PBStry
Rbuild PBStry
Rpack PBStry
RmakePDF PBStry
which invoke the batch fileRunpack.bat , Rcheck.bat , Rbuild.bat , Rpack.bat
andRmakePDF.bat . The first command should give you a new subdired®B5try |,
along with its five sudirectoriesdata ,\inst ,\man,\R, and\src .



—-79—

4. Use your editor to open the fIRESCRIPTIONIn the root directoryPBStry . This file,
essential in every R package, containsikégrmation in a special format (RDCT 2011b,
Section 1.1.1). The following example illtestes a minimal set of required fields.

5. Package: MyPack
Version: 1.00
Date: 2008-12-31
Title: My R Package
Author: User of PBS Modelling
Maintainer: User of PBS Modelling
Depends: R (>= 2.6.0)
Description: My customized R functions
License: GPL (>= 2)

6. The package name IDESCRIPTIONmust agree with the directory name in which this file
lies. For example, if you chan@§BStry to MyPack in DESCRIPTIONand rename the
directory from\PBStry to MyPack, you have effectively changed the package name.
Similarly, if you change the version 1001 , you have effectively changed the version
number that appears in the filames for distributing your package.

7. The subdirectoryPBStry\R  contains all R code used by the package. For example,
PBStry includes seven R functionsa|cFib , calcFib2 , calcGM, calcSum ,
findPat , pause, andview ). The seven files could be combahinto a single file (such as
PBStry.R ), but we use separate files here farity. The functions all have relatively
simple code, hopefully comprehensible to gseith limited R experience. Five of them
come fromPBSmodelling . Three of themdalcFib , calcFib2 , calcSum ) call
compiled C code, as we discuss mooepletely in Section C.4 below.

8. By convention, the distinct filezz.R defines code for initializing the package. In this case
the function.First.lib , callslibrary.dynam to load a dynamic link library
(PBStry.dll ) created from compiled C codeiring the build process.

9. When a version number changes, BHESCRIPTIONfile must be changed accordingly. We
also like to make a corresponding changezmR , so that the version number appears on
the R console when the library is loadB&Stry illustrates this possibility fazzz.R .

10.The subdirectoryPBStry\data contains all data objectsathcome with the package.
Here, the binary fil€@BR.rda holds a matrix of quillback rockfist&¢bastes maliger)
sample data used in tkECAexample above (Sectigh2.3). The same data matrix is called
CCA.gbr.hl  in PBSmodelling

11.1f you want to add data to a newgsage, first create the object (emyData) in R and then
execute the command:
save(myData,file="myData.rda")
The object name must match the prefitha file name, and the suffix must loda .
Include the resultingle in your package’sdata subdirectory.

12.The subdirectoryPBStry\man  contains a documentatioiteffor every object in the
packagePBStry has six functions and one data set, sartten subdirectory has seven



— 80—

corresponding R documentation filésRd ). An additional filePBStry.Rd documents the
package as a whole. Rd files use aeattomplex scripting language (RDCT 2011b,
Section 2) that can be converted to hégsfin several formats (PDF, HTML, text). For
many packages, the example®BStry may provide adequateqiotypes. They represent
three distinct cases: functions (e@palcGM.Rd , findPat.Rd ), data setsgBR.Rd), and
complete package®BStry.Rd ).

13.The subdirectoryPBStry\src contains source code for C code to be compiled into the
dynamic link libraryPBStry.dll . We include sample files walculate Fibonacci numbers
iteratively fib.c ,fib2.c ) and to add the components of a numeric vestiam(c ). In
Section C.4, we discuss the linkage between R code and compiled C functions.

14.Finally, the subdirectoryPBStry\inst contains files that are to be included directly in
the R library tree foPBStry when the package is installed. The RBStry-Info.txt
briefly describes the context apdrpose of the trial package.

If you have successfully followed theps above, you have actually built two R
packagesPBSmodelling andPBStry . Furthermore, you're reasonably familiar with the
contents oPBStry . You can use the files in that smpdickage as prototypes for writing your
own R package, which might contain R code in the subdired®rgata indata , C source
code in\src, and R documentation kman .

The larger packageBSmodelling offers more prototyeand uses a somewhat
different style. The main dkctory includes the requird@ESCRIPTIONfile, plus a second file
NAMESPACHat lists all objects avaltde to a user of the packageffectively, the namespace
mechanism distinguishes betwesrjects provided by the pacleagnd other (hidden) objects
required for the implementation, bt intended for public use. ONMMESPACHle contains
the rather cryptic instructiomxportPattern("["™\.]") . The R string[M\.]"
translates to the regular expressiph.] that designates any pattarat starting with a period
(- ). We don’t export “dot” objects, whosames in R start with a period. TR&AMESPACHle
must also import functions required from other packages. BeB&fSmodelling relies on
tcltk , the file includes the commanidaport(tcltk)

In PBStry , without a namespace, the flez.R defines the initializing function
First.lib , @S mentioned in step 8 above. By contrast, the namespace protocol in
PBSmodelling requires a different namerfthe initializing function.onLoad inzzz.R .

In summary, we recommend building a neackage by editing, adding, and deleting
prototype files inPBStry . Our batch files can facilitate tests and debugging. For more advanced
work, particularly packagesith a namespace protocol, lookRBSmodelling . Have a
current version of RDCT (2011b) available, aahsult that manual when necessary. We find it
useful to keep the PDF file open and to use Bats search feature (G) to find topics of
interest.



-81-—

C.4. Embedding C code

R provides two functionsC() andCall() , for invoking compiled C cod®BStry
includes two simple examples that u§€) , probably the method of choice for simple
packages. TheCall()  function uses a more complex interface that offers better support for R
objects, and another example ilkade that calling convention.

Table C1.C representations of R data types.

R Obiject C Type

logical int *

integer int *

double double *
complex Rcomplex * 1
character char **

! Rcomplex is defined inComplex.h .

Calling C functions from R using. C()

The.C() calling convention uses the following key concepts:
e R must allocate the appropriate length anmktof variables before calling a C function.

¢ R objects are transformed into an equivalengge t(Table C1), and a pointer to the value is
passed into the C function. All values are resédrby modifying the origial values passed in.

e A C function called byC() must have return typeid , because values are returned only
by accessing the predefined R function arguments.

e C code written for the shared DLL must not contamaan function.

e Within a C function, dynamically allocated mermanust be de-allocated by the programmer
before the function returns. Otherwise a memory leak will likely occur.

e .C() returns a list similar to the "..." list ofgarments passed in, but reflecting any changes
made by the C code. (See the help file.@}

ThefunctioncalcFib  in PBStry illustrates an application of these concepts
(Table C2). The R function uses C code to calculate thenfifgbonacci numbers iteratively,
where a vector holds the ldsh numbers calculated. After ensuring thadndlen satisfy
obvious constraints, the Rde creates a return arnatArr  of the appropriate length. Thé
call passes, len , andretArr by reference to the C functidibonacci . On exit, the
vectorout contains a list correspomdj to the input variables, len , andretArr , so that the
third componenout[[3]] holds the modified vector of values calculatedibgnacci
We encourage you also to examine a second exampRBStry , associated the files
calcSum.R andsum.c .



-82—

Table C2.Two text files associated with.&() call inPBStry . R code in the first file calls C
code in the second.

File 1: calcFib.R
calcFib <- function(n, len=1) {
if (N<0) return(NA);
if (len>n) len <- n;
retArr <- numeric(len);
out <- .C("fibonacci", as.integer(n), as.integer(len),
as.numeric(retArr), PACKAGE="PBStry")
X <- out[[3]]
return(x) }

File 2: fib.c
void fibonacci(int *n, int *len, double *retArr) {
double xa=0, xb=1, xn=-1; int i,j;
[* iterative loop */
for(i=0;i<=*n;i++) {
/* initial conditions: fib(0)=0, fib(1)=1 */
if i<=1){xn=i;}
/* fib(n) = fib(n-1) + fib(n-2) */
else {xn = xa + xb; xa = xb; xb = xn; }
/* save results if iteration i is within the range from n-len to n */
j=i-*n+*en-1,
if (j >= 0) retArr[j] = xn;
} /* end loop */
} /¥ end function */




— 83—

Table C3. .Call() example adapted froPBStry , with two associated text files. R code in
the first file calls C code in the second.

File 1: calcFib2.R
calcFib2 <- function(n, len=1) {

out <- .Call("fibonacci2", as.integer(n), as.integer(len),
PACKAGE="PBSmaodelling")

return(out) }

File 2: fib2.c
#include <R.h>
#include <Rdefines.h>
SEXP fibonacci2(SEXP sexp_n, SEXP sexp_len) {
/* ptr to output vector that we will create */
SEXP retVals;
double *p_retVals, xa=0, xb=1, xn;
intn, len, i, j;
/* convert R variables into C 'int's */
len = INTEGER_VALUE(sexp_len);
n = INTEGER_VALUE(sexp_n);
/* Allocate space for the output vector */
PROTECT(retVals = NEW_NUMERIC(len));
p_retVals = NUMERIC_POINTER(retVals);
[* iterative loop */
for(i=0; i<=n; i++) {
/* initial conditions: fib(0)=0, fib(1)=1 */
ifi<=1){xn=i;}
/* fib(n) = fib(n-1) + fib(n-2) */
else { xn = xa + xb; xa = xb; xb = xn; }
[* save results if iteration i is within the range from n-len to n */
j=i-n+len-1;
if (j >=0) p_retVals[j] = xn;
} /¥ end loop */
UNPROTECT(1);
return retVals;
} /* end fibonacci2 */




-84 -

Calling C functions from R using. Cal | ()

The.C() convention requires a fairly simptenversion of R objects into C types
(Table C1). By contrastCall() provides extra structure thamables C to handle R objects
directly (RDCT 2011b, Section 4.7his function uses “S-expressioBEXPtypes defined in
rinternals.h ., afilein théinclude  directory of the R installation. ABEXPpointer can
reference any type of R object. Ti@&all() convention uses the following key concepts:

e C functions called by R must accept o8l XPtyped arguments. These arguments should be
treated as read only.

e Similarly, C functions called by R must haS8&XPreturn types.

e The Programmer must protect R objects ftbmR garbage collector, and must release
protected objects beforedliunction terminates. R provides macros for this task.

e C code written for the shared DLL must not contamaan function.

e Within a C function, dynamically allocated memanust be de-allocated by the programmer
before the function returns. Otherwise a memory leak will likely occur.

ThefunctioncalcFib2 in Table C3 illustrates an application of these concepts. As
before, the R function usesd@de to calculate the firat Fibonacci numbers iteratively, where a
vector holds the lagén numbers calculated. (To save spaee’ve removed R code that checks
constraints om andlen ). The simpleCall tofibonacci2  looks very natural. Input values
n andlen produce the output vectout , where the C code must somehow determine what
out should be. Not surprisingly, it requires mamplicated C code to make this happen.

The C functiorfibonacci2  (Table C3) first loads header files that include the
required definitions from R. All inpudnd output variables belong to typEXP. Other internal
variables have the standard C tydesible andint . Functions likdNTEGER_VALUE()
convert R types into C types. TB&EXPvectorretVals of return values is created by the R
constructoNEW_NUMERIC()and then protected from garbage collectioiPROTECT().

After all required variables adefined and type cast correcttiie iterative loop of calculations
follows the earlier example in TabB2. Finally, the only protected vect@tVals s released
by UNPROTECT(1) and the standard closing commaetlirn retVals returns the output
vector fromfibonacci2

Obviously, it takes some time and effort to become familiar with the specialized R types,
constructors, and conversion functions. For te&son, it's probably sgr at first to useC() ,
rather thanCall()



— 85—

Appendix D. PBSnodel | i ng functions and data

Section 1 of this appendix summarifles functions currently available in
PBSmodelling . Additionally, there are numerous hidden or ‘dot’ functions (not presented
here) that reside in RNAMESPACH hese can be seen eitheingshe triplecolon convention
on the command line (e.PBSmodelling:::.function ) or through our function
viewCode , which gathers function code for a specified package installed on the user’s
computer. (R also provides a utility call@&nNamespace() for modifyingNAMESPACE
objects.) Section 2 of this appix details how a user canrgrate a standard R manual for
PBSmodelling , that includes a Table of Contents, hegmes for all objects, and an index.
The manual itself is also appended.

D.1. Objects inPBSnodel | i ng

addAIrtowsS .......ccccevvviiiieeeen. Add Arrows to a Plot UsiRglative (0:1) Coordinates
addHistory ..o Create Structures for a New History Widget
addLabel .......ooeeeiiiiiinn, Add a Label to a Plot Udiggjative (0:1) Coordinates
addLegend ........ccccvviiinnnnnn. Add a Legend to a Plot Using Relative (0:1) Coordinates
backHistory  .....cccceeiiiiennn. Create Structures for a New History Widget

calcFib . Calculate Fibonacci Numbers by Several Methods
calcGM ..., Calculate the Geometric Mean, Allowing for Zeroes
calcMin ... Calculate the Minimumedf)ser-Defined Function
chooseWinVval ................... Choose and Set a String Item in a GUI

cleanProj .....ccocvivviiiiennn. Launch a GUI for Project File Deletion

cleanWD .......cccceeeiiiiiiieeeeennn, Launch a GUI for File Deletion

clearAll ..., Remove all R Objects From the Global Environment
clearHistory  .................. Create Structures for a New History Widget
clearPBSext .......cccceeee. Clear File Extension Associations

clearRcon ..., Clear the R Console

clearWinval .................... Remove all Current Widget Variables

clipVector  ...ccccoeviiiiiiennn. Clip a Vector at One or Both Ends

closeWin .......cccoceeiiiieeiinnnnn. Close GUI Window(s)

compileC ....ooooiiiiiiiii, Compile a C File into a Shared Library Object
compileDescription ....Convert and Save a Windd»escription as a List
convSlashes .........cccceeeen. Convert Slashes from UNIX to DOS

createVector  .......ccceeeeeee. Create a GUI with a Vector Widget

createWin .......cccccvvvviiiennn. Create a GUI Window

declareGUIloptions ... Declare Option Names that Correspond with Widget Names
doAction .....cccciiiiiiiei, Execute Action Created by a Widget

drawBars ..........ccccciiiiiiinnns Draw a Linear Barplot on the Current Plot

evalCall ... Evaluate a Function Call

expandGraph .................... Expand the Plot Area by Adjusting Margins
exportHistory ... Export a Saved History

findPat ............coeeviiiiiiinnns Search a Character Vector to Find Multiple Patterns



findPrefix
findProgram
findSuffix
firstHistory
focusRgui
focusWin
forwHistory
genMatrix
getChoice
getGUloptions
getOptions
getOptionsFileName
getOptionsPrefix
getPBSext
getPBSoptions
getWinAct
getWinFun
getWinVal

importHistory
initHistory
iIsWhat
jumpHistory
lastHistory
loadC
loadOptions
loadOptionsGUI
openExamples
openkFile
openPackageFile
openProjFiles

pado ........ccccevvvvinnnns

pause
pickCol
plotACF
plotAsp
plotBubbles
plotCsum
plotDens

- 86—

Find a Prefix Based on Names of Existing Files
Locates a program in the PATH environment variable
Find a Prefix Based on Names of Existing Files
Create Structures for a New History Widget

Focus on the RGui Window

Set the Focus on a Particular Window

Create Structures for a New History Widget

Generate Test MatricegpfotBubbles

Choose One String Item from a List of Choices

Get PBS Options for Widgets

get and set user options

....get and set filename used $aving and loading of options
get and set GUI prefix of options class

............. Get a Command Associated With a File Name
Retrieve A User Option

Retrieve the Last Window Action

Retrieve Names of Functions Referenced in a Window
Retrieve Widget Values for Use in R Code

Prompt the User to Choose Yes or No

Restrict a Numeric Variable to a Positive Value
Import a History List from a File

Create Structures for a New History Widget

Identify an Object and Print Information

Create Structures for a New History Widget

Create Structures for a New History Widget

Launch a GUI for Compiling and Loading C Code
save and load options to and from disk

load and save options values to and from a GUI

Open Example Files from a Package

Open a File with an Associated Program

Open a File from a Package Subdirectory

Open Files with a Common Prefix

Open Package User Guide

Pack a List with Objects

Pad Numbers with Leading Zeroes

Convert a Window Descriptibite into a List Object
Pause Between Graphicddyspr Other Calculations
Pick a Colour From a Palette and get the Hexadecimal Code
Plot Autocorrelation Bars From a Data Frame, Matrix, or Vector
Construct a Plot witBecified Aspect Ratio

Construct a Bubble Plot from a Matrix

Plot Cumulative Sum of Data

Plot Density Curves from a Data Frame, Matrix, or Vector



plotFriedEggs
plotTrace

presentTalk
promptOpenFile
promptSaveFile

—-87-

........... Render a Pairs Plot as Fried Eggs and Beer
............ Plot Trace Lines from a Diatame, Matrix, or Vector
........... Run an R Presentation

.......... Deprecated: Display Dialogue: Open File

.......... Deprecated: Display Dialogue: Save File

promptWriteOptions ....Prompt the User to Write Changed Options
readList  .......ccccciiiiiieieiinnnn, Read a List from a File in PBS Modelling Format
readPBSoptions .............. Read PBS Options from an External File
resetGraph .......ccooeeiiiiins Reset par Values for a Plot

restorePar .......cccoceeiiiinennn. Get Actual Parameters from Scaled Values
rmHistory ... Create Structures for a New History Widget
runDemos ........cccoeevvvviiiiinnns Interactive GUI for R Demos

runExamples  .......ccccceeeennn. Run GUI Examples Included with PBS Modelling
saveOptions  .........ceeeeee. save and load options to and from disk
saveOptionsGUI .............. load and save options values to and from a GUI
scalePar ....occoviiiiiiiieeennn, Scale Parameters to [0,1]

selectDir ..., Display Dialogue: Select directory

selectFile  ...cccooeeiiiiiie Display Dialogue: Open or Save File

setFileOption
setGUloptions

........... Set a PBS File Path Option Interactively
........... Set PBS Options from Widget Values

setOptions  ....cceeeeeeeeeeeee, get and set user options

setOptionsFileName ....get and set filename used $aving and loading of options
setOptionsPrefix ... get and set GUI prefix of options class

setPathOption  ................ Set a PBS Path Option Interactively

setPBSext ........ccccccvvvvvieenn. Set a Command Associated with a File Name Extension
setPBSoptions  ................ Set A User Option

setwdGUI ......ooooeeeeiiiii, Browse for Working Diregt@nd Optionally Find Prefix
setWidgetColor  .............. Update Widget Color

setWidgetState  .............. Update Widget State

SetWinAct ..., Add a Window Action to the Saved Action Vector
setWinval .......cccccceeeennn. Update Widget Values

ShOWO .....cooeiiiii, Convert Numbers into Text with Specified Decimal Places
showAlert ..., Display a Message in an Alert Window

ShOWAIQS .cooivieieeeeieiieeieiii, Display Expected Widget Arguments

showHelp ..., Display HTML Help Pages for Packages in Browser
showPacks ........ccccccvvvnnnnn. Show Packages Required But Not Installed

ShOWRES ......ovvveiiiiiiieeeeee, Show Results of Expression Represented by Text
showVignettes  ................ Display Vignettes for Packages
sortHistory .., Sort an Active or Saved History

testAlpha ... Test Various Alpha Transparency Values

testCol  .ooooeiiiii Display Named Colours Available Based on a Set of Strings
testLty oo Display Line Types Available

testbwd ..o Display Line Widths



— 88 —

testPch ..o, Display Plotting Symbols and Backslash Characters
testWidgets  .......cceeeeinnis Display Sample GUIs and their Source Code
unpackList ... Unpack List Elements into Variables

updateGUI ............cceeeeein. Update Active GUI With Local Values

VIEW eiiiieeee e View First/Last/Random n Elements/Rows of an Object
viewCode ........ccceciiiiiiinne View Package R Code

writeList . Write a List to a File in PBS Modelling Format
writePBSoptions  ............ Write PBS Options to an External File

D.2.PBSnodel | i ng manual

The following pages show the standard R manud@PB8modelling , including help
pages for all objects, a table of contents, @méhdex. This manual also appears on the CRAN
web site:

http://cran.r-project.org/web/packages/PBSmodelling/index.html

To generate the pages that follow, the ubeukl first ensure th&’s style and font files
have been copied to MiKTeX (see steps Ba-8ection C.1). This enhancement may be
necessary for the successtokation of a PDF manual.

Next we provide a batch fiRmakePDF.bat to assist the user in building the manual.
This method uses R’s temporary latex oufRdR.tex and alters it using system and MiKTeX
commands (e.gsed, latex , makeindex , dvips , ps2pdf ). The final result yields a PDF
manual with letter-size (8'% 11") pages rather than A4, apdge numbering beginning at a
specified odd number to ensure that the paxgfe becomes the front of a two-sided copy.
Currently,R CMD Rd2dvi orRd2pdf have no way to start pagembering at an arbitrary
integer.

Method On a command line, type the command:

RmakePDF PBSmodelling 91

which automatically generates the PDF mamB$Bmodelling.pdf from the package’s
*Rd files. Page numbering for this PDF begwith the number specified by the second
argument of the above command. If the argungenot supplied, it defaults to 1.

The batch file issuethe following command:

R CMD Rd2dvi --no-clean --no-preview %1

This method creates anm@orary directory calledRd2dviNNNN\ (whereNNNNcomprise an
arbitrary set of four integers) containiRgi2.tex with the initial lines:



— 89 —

\documentclass]letterpaper]{book}

\usepackage[ae[{Rd}

\usepackage{makeidx}

\usepackage][utf8,latin1]{inputenc}

\makeindex{}

\topmargin 0.5in \oddsidemargin Oin \evensidemargi n Oin
\textheight 9in \textwidth 6.5in

\begin{document}

\ set count er { page} {91}

where a boldface red fomdicates changes thRimakePDF.bat makes to the fil&kd2.tex
from the temporary folder. Thehanges are saved to the flBSmodelling.tex and the
following MiKTeX commands are issued:

latex -interaction=nonstopmode %1.tex
makeindex  %1.idx

latex -interaction=nonstopmode %1.tex
makeindex  %1.idx

latex -interaction=nonstopmode %1.tex
latex -interaction=nonstopmode %1.tex
dvips -q %1.dvi

ps2pdf  %1.ps

The repetitive calls ttatex andmakeindex are a byproduct of a non-dynamic system where
index references need to bpdated several times. You shoualov have the PDF manual called
PBSmodelling.pdf , which can be appended to the first 90 pages of this report.

The technique presented in this appendixlmapplied to any package to produce a manual
based on th&.Rd files. Readers may wish to gaiver and append their manual to more
detailed instructions to produce a comprehensive User’s Guide such as this one.



—-90 -

Page left blank intentionally



Package ‘PBSmodelling’

November 21, 2011

Version 2.64
Date 2011-11-21
Title GUI Tools Made Easy: Interact with Models, Explore Data, Give Dynamic Presentations

Author Jon T. Schnute (Jon.Schnute@dfo-mpo.gc.ca), Alex Couture-Beil (alex@mofo.ca), Rowan Haigh
(rowan.haigh@dfo-mpo.gc.ca), and A.R. (Rob) Kronlund (Allen.Kronlund@dfo-mpo.gc.ca)

Maintainer Jon Schnute (Jon.Schnute@dfo-mpo.gc.ca)
Depends R (>= 2.7.0), methods
Suggests PBSmapping, PBSddesolve, deSolve, KernSmooth, XML

Description PBS Modelling provides software to facilitate the design, testing, and operation of computer
models. It focuses particularly on tools that make it easy to construct and edit a customized
graphical user interface (GUI). Although it depends heavily on the R interface to the Tcl/Tk
package, a user does not need to know Tcl/Tk. The package contains examples that illustrate models
built with other R packages, including PBSmapping, deSolve, PBSddesolve, and BRugs. It also
serves as a convenient prototype for building new R packages, along with instructions and batch files
to facilitate that process. The R directory ’.../library/PBSmodelling/doc’ includes a complete user
guide PBSmodelling-UG.pdf. To use this package effectively, please consult the guide.

License GPL (>= 2)

R topics documented:

addATrows . . .. L L e 94
addLabel . . . . . . . e 94
addLegend . . . . . . . oL e 95
calcFib . . . . . o e e 96
calcGM . . . L e e 96
calcMin . . . . . e 97
CCA.gbr . . . e 99
chooseWinVal . . . . . . . e 100
cleanProj . . . . . L e 102
cleanWD . . . . e 102
clearAll . . . . . e 103
clearPBSext . . . . . . . e 104
clearRcon . . . . . . . . e 104
clearWinVal . . . . . . . . e 105
clipVector . . . . . . . L e 105
closeWin . . . . . . L e 106



92

R topics documented:

compileC . . . L. e 107
compileDescription . . . . . . .. L 108
convSlashes . . . . . . . L L 108
createVector . . . . . . L L e 109
createWin . . . . . L. 110
declareGUloptions . . . . . . . . . . 111
doAction. . . . . . L 112
drawBars . . . . . L. e 113
evalCall . . . . . . L 114
expandGraph . . . . .. e 115
exportHistory . . . . . . . o L 116
findPat . . . . e 116
findPrefix . . . . . . . e 117
findProgram . . . . . . . L e 118
focusWin . . . . . L 118
genMatrix . . . . ... L 119
getChoice . . . . . . o e 120
getGUIoptions . . . . . . . L e 121
getOpLIONS . . . . L L e 122
getOptionsFileName . . . . . . . . . . . e 122
getOptionsPrefix . . . . . . . . o e 123
getPBSext . . . . e 124
getPBSoptions . . . . . . e 124
getWinAct . . . . . e 125
getWinFun . . . . ..o 125
getWinVal . . . . . oL e 126
getYes . . .. e 127
GTO . . e 127
importHistory . . . . . . . oL 128
initHistory . . . . . . . o e 129
isSWhat . . . . o o e 131
loadC . . . . e 131
loadOptions . . . . . . . . L e 132
loadOptionsGUL . . . . . . . . . e 133
openExamples. . . . . .. oL e 134
openFile . . . . Lo e 135
openPackageFile . . . . . . . L 136
openProjFiles . . . . .. e 137
openUG . . . . L e 138
packList . . . . . . 139
padl . . . 140
parseWinFile . . . . . . . oL 140
PAUSE . v v v o e e e e e e e e e e e e e e e e 141
PBSmodelling . . . . . . . .. 141
PBSoptions-class . . . . . . . . 142
pickCol . . . e 143
PlotACE . . . e 144
PIOtASD . o o o e 145
plotBubbles . . . . . . e 145
plotCsum . . . . . L e 147
plotDens . . . . . . . e 147
plotFriedEggs . . . . . . . e 148
plotTrace . . . . . . . . . e 149

presentTalk . . . . . . oL 150



R topics documented: 93

Index

promptOpenFile . . . . . . . .. 151
promptSaveFile . . . . . . L 151
promptWriteOptions . . . . . . . . . . 152
readlist . . . . L e e 153
readPBSoptions . . . . . . .. 154
resetGraph . . . . . . L 154
restorePar . . . .o 155
runDemos . . . Lo e 156
runExample . . . ... oL 156
runExamples . . . ..o Lo e 157
scalePar . . . . .. L e e 158
selectDir . . . . L L 158
selectFile . . . . . L L e 159
setFileOption . . . . . . . . . L 160
setGUIOPLIONS . . . . . . o o 161
setPathOption . . . . . . . . . . 162
setPBSext . . . . e 163
setPBSoptions . . . . . . L 163
setwdGUL . . . . . o e e e 164
setWidgetColor . . . . . . . . e 164
setWidgetState . . . . . . . . e 166
SetWINACE . . . . o o o e 167
setWinVal . . . . . . . e e 168
Show( . . . . . e e 169
showAlert . . . . . . . e 170
ShOWATES . . . . o 170
showHelp . . . . . o . o 171
showPacks . . . . . . . e e 172
showRes . . . . . o L 172
showVignettes . . . . . . . . . . e 173
sortHistory . . . . . . . L L 174
talk-class . . . .o L e 174
testAlpha . . . . . L L 176
testCol .« . L L e 177
testLty . . . . L e e 178
testLwd . . . . e e e e e 178
testPch . . . L e 179
testWidgets . . . . . L . e 179
unpackList . . . . L. L 182
updateGUI . . . . o L 182
vbdata . . . .. e e e e 183
VDPATS . . . e e 184
VIEW . o e e 184
viewCode . . . . . L e 185
writeLdist . . . . . e e e 186
writePBSoptions . . . . . .. L 187

188



94 addLabel

addArrows Add Arrows to a Plot Using Relative (0:1) Coordinates

Description

Call the arrows function using relative (0:1) coordinates.

Usage

addArrows(x1l, yi, %2, y2, ...)

Arguments
x1 x-coordinate (0:1) at base of arrow.
y1 y-coordinate (0:1) at base of arrow.
x2 x-coordinate (0:1) at tip of arrow.
y2 y-coordinate (0:1) at tip of arrow.
additional paramaters for the function arrows.
Details

Lines will be drawn from (x1[i],y1[i]) to (x2[i],y2[i])

Author(s)

Jon Schnute, Pacific Biological Station, Nanaimo BC

See Also

addLabel, addLegend

Examples

tt=seq(from=-5,to=5,by=0.01)

plot(sin(tt), cos(tt)*(1-sin(tt)), type="1")
addArrows(0.2,0.5,0.8,0.5)
addArrows(0.8,0.95,0.95,0.55, col="#FF0066")

addLabel Add a Label to a Plot Using Relative (0:1) Coordinates

Description

Place a label in a plot using relative (0:1) coordinates

Usage

addLabel(x, y, txt, ...)



addLegend 95

Arguments
X x-axis coordinate in the range (0:1); can step outside.
v y-axis coordinate in the range (0:1); can step outside.
txt desired label at (x,y).
additional arguments passed to the function text.
Author(s)

Jon Schnute, Pacific Biological Station, Nanaimo BC

See Also

addArrows, addLegend

Examples

resetGraph()
addLabel(0.75,seq(from=0.9,t0=0.1,by=-0.10) ,c('a','b','c'), col="#0033AA")

addLegend Add a Legend to a Plot Using Relative (0:1) Coordinates

Description

Place a legend in a plot using relative (0:1) coordinates.

Usage
addLegend(x, y, ...)
Arguments
X x-axis coordinate in the range (0:1); can step outside.
v y-axis coordinate in the range (0:1); can step outside.
arguments used by the function legend, such as lines, text, or rectangle.
Author(s)

Jon Schnute, Pacific Biological Station, Nanaimo BC

See Also

addArrows, addLabel

Examples

resetGraph(); n <- sample(l:length(colors()),15); clrs <- colors() [n]
addLegend(.2,1,fill=clrs,leg=clrs,cex=1.5)



96 calcGM

calcFib Calculate Fibonacci Numbers by Several Methods

Description

Compute Fibonacci numbers using four different methods: 1) iteratively using R code, 2) via the closed
function in R code, 3) iteratively in C using the .C function, and 4) iteratively in C using the .Call
function.

Usage

calcFib(n, len=1, method="C")

Arguments
n nth fibonacci number to calculate
len a vector of length len showing previous fibonacci numbers
method select method to use: C, Call, R, closed

Value

Vector of the last 1en Fibonacci numbers calculated.

Author(s)

Jon Schnute, Pacific Biological Station, Nanaimo BC

calcGM Calculate the Geometric Mean, Allowing for Zeroes

Description
Calculate the geometric mean of a numeric vector, possibly excluding zeroes and/or adding an offset to
compensate for zero values.

Usage

calcGM(x, offset = 0, exzero = TRUE)

Arguments
X vector of numbers
offset value to add to all components, including zeroes
exzero if TRUE, exclude zeroes (but still add the offset)
Value

Geometric mean of the modified vector x + offset

Note

NA values are automatically removed from x



calcMin

Author(s)

97

Rowan Haigh, Pacific Biological Station, Nanaimo BC

Examples

calcGM(c(0,1,100))
calcGM(c(0,1,100) ,offset=0.01,exzero=FALSE)

calcMin

Calculate the Minimum of a User-Defined Function

Description

Minimization based on the R-stat functions nlm, nlminb, and optim. Model parameters are scaled and
can be active or not in the minimization.

Usage

calcMin(pvec, func, method="nlm", trace=0, maxit=1000, reltol=1e-8,

Arguments

pvec

func

method

trace

maxit

reltol

steptol

temp

repN

Details

steptol=1le-6, temp=10, repN=0, ...)

Initial values of the model parameters to be optimized. pvec is a data frame com-
prising four columns ( "val","min","max","active") and as many rows as there are
model parameters. The "active" field (logical) determines whether the parameters
are estimated (T) or remain fixed (F).

The user-defined function to be minimized (or maximized). The function should return
a scalar result.

The minimization method to use: one of nlm, nlminb, Nelder-Mead, BFGS, CG, L-
BFGS-B, or SANN. Default is nlm.

Non-negative integer. If positive, tracing information on the progress of the minimiza-
tion is produced. Higher values may produce more tracing information: for method
"L-BFGS-B" there are six levels of tracing. Default is 0.

The maximum number of iterations. Default is 1000.

Relative convergence tolerance. The algorithm stops if it is unable to reduce the value
by a factor of reltolx*(abs(val)+reltol) at a step. Default is 1e-8.

A positive scalar providing the minimum allowable relative step length. Default is
le-6.

Temperature controlling the "SANN" method. It is the starting temperature for the
cooling schedule. Default is 10.

Reports the parameter and objective function values on the R-console every repN
evaluations. Default is 0 for no reporting.

Further arguments to be passed to the optimizing function chosen: nlm, nlminb, or
optim. Beware of partial matching to earlier arguments.

See optim for details on the following methods: Nelder-Mead, BFGS, CG, L-BFGS-B, and SANN.



98
Value
A list with components:
Fout The output list from the optimizer function chosen through method.
iters Number of iterations.
evals Number of evaluations.
cpuTime The user CPU time to execute the minimization.
elapTime The total elapsed time to execute the minimization.
fminS The objective function value calculated at the start of the minimization.
fminE The objective function value calculated at the end of the minimization.
Pstart Starting values for the model parameters.
Pend Final values estimated for the model parameters from the minimization.
ATIC Akaike’s Information Criterion
message Convergence message from the minimization routine.
Note
Some arguments to calcMin have no effect depending on the method chosen.
Author(s)
Jon Schnute, Pacific Biological Station, Nanaimo BC
See Also
scalePar, restorePar, calcMin, GTO
In the stats package: nlm, nlminb, and optim.
Examples

Ufun <- function(P) {

Linf <- P[1]; K <- P[2]; tO <- P[3]; obs <- afile$len;

pred <- Linf * (1 - exp(-K*(afile$age-t0)));

n <- length(obs); ssq <- sum((obs-pred)~2 );

return(n*log(ssq)); };

afile <- data.frame(age=1:16,len=c(7.36,14.3,21.8,27.6,31.5,35.3,39,
41.1,43.8,45.1,47.4,48.9,50.1,51.7,51.7,54.1));

pvec <- data.frame(val=c(70,0.5,0) ,min=c(40,0.01,-2) ,max=c(100,2,2),
active=c (TRUE,TRUE,TRUE) ,row.names=c("Linf","K","t0"),
stringsAsFactors=FALSE) ;

alist <- calcMin(pvec=pvec,func=Ufun,method="nlm",steptol=1le-4,repN=10);
print(alist[-1]); P <- alist$Pend;

resetGraph(); expandGraph();

xnew <- seq(afile$age[1],afile$age [nrow(afile)],len=100);

ynew <- P[1] * (1 - exp(-P[2]*(xnew-P[3])) );

plot(afile); lines(xnew,ynew,col="red",lwd=2);

addLabel (.05, .88,paste(paste(c("Linf","K","t0") ,round(P,c(2,4,4)),
sep=" = "),collapse="\n"),adj=0,cex=0.9);

calcMin



CCA.qbr 99

CCA.gbr Data: Sampled Counts of Quillback Rockfish (Sebastes maliger)

Description

Count of sampled fish-at-age for quillback rockfish (Sebastes maliger) in Johnstone Strait, British
Columbia, from 1984 to 2004.

Usage
data(CCA.qgbr)

Format

A matrix with 70 rows (ages) and 14 columns (years). Attributes “syrs” and “cyrs” specify years of survey
and commercial data, respectively.

[,c(3:5,9,13,14)] Counts-at-age from research survey samples
[,c(1,2,6:8,10:12)] Counts-at-age from commercial fishery samples

All elements represent sampled counts-at-age in year. Zero-value entries indicate no observations.

Details

Handline surveys for rockfish have been conducted in Johnstone Strait (British Columbia) and adjacent
waterways (126°37'W to 126°53'W, 50°32’N to 50°39’N) since 1986. Yamanaka and Richards (1993)
describe surveys conducted in 1986, 1987, 1988, and 1992. In 2001, the Rockfish Selective Fishery Study
(Berry 2001) targeted quillback rockfish Sebastes maliger for experiments on improving survival after
capture by hook and line gear. The resulting data subsequently have been incorporated into the survey
data series. The most recent survey in 2004 essentially repeated the 1992 survey design. Fish samples
from surveys have been supplemented by commercial handline fishery samples taken from a larger region
(126°35'W to 127°39°W, 50°32’N to 50°59’N) in the years 1984-1985, 1989-1991, 1993, 1996, and 2000
(Schnute and Haigh 2007).

Note
Years 1994, 1997-1999, and 2002-2003 do not have data.

Source

Fisheries and Oceans Canada - GFBio database:
http://wuw-sci.pac.dfo-mpo.gc.ca/sa-mfpd/statsamp/StatSamp_GFBio.htm

References

Berry, M.D. (2001) Area 12 (Inside) Rockfish Selective Fishery Study. Science Council of British
Columbia, Project Number FS00-05.

Schnute, J.T. and Haigh, R. (2007) Compositional analysis of catch curve data with an application to
Sebastes maliger. ICES Journal of Marine Science 64, 218-233.

Yamanaka, K.L. and Richards, L.J. (1993) 1992 Research catch and effort data on nearshore reef-fishes
in British Columbia Statistical Area 12. Canadian Manuscript Report of Fisheries and Aquatic Sciences
2184, 77 pp.



100 chooseWinVal

Examples

# Plot age proportions (blue bubbles = survey data, red = commercial)

data(CCA.qgbr); clrs=c("cornflowerblue","orangered")

z <- CCA.gbr; cyr <- attributes(z)$cyrs;

z <- apply(z,2,function(x){x/sum(x)}); z[,cyr] <- -z[,cyr]l;

x <- as.numeric(dimnames(z)[[2]]); x1lim <- range(x) + c(-.5,.5);

y <- as.numeric(dimnames(z) [[1]]); ylim <- range(y) + c(-1,1);

expandGraph (mgp=c(2, .5,0) ,1las=1)

plotBubbles(z,xval=x,yval=y,powr=.5,size=0.15,clrs=clrs,
xlim=x1im,ylim=ylim,xlab="Year",ylab="Age", cex.lab=1.5)

addLegend(.5,1,bty="n",pch=1,cex=1.2,col=clrs,
legend=c("Survey","Commercial") ,horiz=TRUE,xjust=.5)

chooseWinVal Choose and Set a String Item in a GUI

Description
Prompts the user to choose one string item from a list of choices displayed in a GUI, then sets a specified
variable in a target GUIL.

Usage

chooseWinVal (choice, varname, winname="window")

Arguments
choice vector of strings from which to choose
varname variable name to which choice is assigned in the target GUI
winname window name for the target GUI

Details

chooseWinVal activates a setWinVal command through an onClose function created by the getChoice
command and modified by chooseWinVal.

Value

No value is returned directly. The choice is written to the PBS options workspace, accessible through
getPBSoptions ("getChoice"). Also set in PBS options is the window name from which the choice was
activated.

Note

Microsoft Windows users may experience difficulties switching focus between the R console and GUI
windows. The latter frequently disappear from the screen and need to be reselected (either clicking on
the task bar or pressing <Alt><Tab>. This issue can be resolved by switching from MDI to SDI mode.
From the R console menu bar, select <Edit> and <GUI preferences>, then change the value of “single
or multiple windows” to SDI.

Author(s)

Rowan Haigh, Pacific Biological Station, Nanaimo BC



chooseWinVal 101

See Also

getChoice, getWinVal, setWinVal

Examples

## Not run:

dfnam <-
c("airquality","attitude","ChickWeight","faithful","freeny",
"iris","LifeCycleSavings","longley", "morley","Orange",
"quakes","randu","rock","stackloss","swiss","trees")

wlist <- c(

"window name=choisir title=\"Test chooseWinVal\"",
"label text=\"Press <ENTER> in the green entry box
\nto choose a file, then press <GO>\" sticky=W pady=5",
"grid 1 3 sticky=W",

"label text=File: sticky=W",

"entry name=fnam mode=character width=23 value=\"\"
func=chFile entrybg=darkolivegreenl pady=5",

"button text=G0 bg=green sticky=W func=test",

")

chFile <- function(ch=dfnam,fn="fnam")
{chooseWinVal(ch,fn,winname="choisir")};

#-- Example 1 GUI test

test <- function() {

getWinVal (winName="choisir",scope="L")

if (fnam!="" && any(fnam==dfnam)) {

file <- get(fnam);

pairs(file,gap=0); }

else {

resetGraph() ;

addLabel(.5,.5,"Press <ENTER> in the green entry box

\nto choose a file, then press <GO>", col="red",cex=1.5)}};

#-- Example 2 Non-GUI test
#To try the non-GUI version, type 'test2()' on the command line
test2 <- function(fnames=dfnam) {
frame () ;resetGraph()
again <- TRUE;
while (again) {
fnam <- sample(fnames,1); file <- get(fnam);
flds <- names(file);
xfld <- getChoice(paste("Pick x-field from",fnam),flds,gui=F);
yfld <- getChoice(paste("Pick y-field from",fnam),flds,gui=F)
plot(file[,xf1d],file[,yf1ld],xlab=xfld,ylab=yfld,
pch=16,cex=1.2,col="red");
again <- getChoice("Plot another pair?",gui=F) }
}
require (PBSmodelling)
createWin(wlist,astext=T); test();

## End(Not run)



102 cleanWD

cleanProj Launch a GUI for Project File Deletion

Description
Launches a new window which contains an interface for deleting junk files associated with a prefix and
a set of suffixes (e.g., PBSadmb project) from the working directory.

Usage

cleanProj(prefix, suffix, files)

Arguments
prefix default prefix for file names.
suffix character vector of suffixes used for clean options.
files character vector of file names used for clean options.
Details

All arguments may contain wildcard characters ("*" to match 0 or more characters, "?" to match any
single character).

The GUI includes the following:

1  An entry box for the prefix.
The default value of this entry box is taken from prefix.

2 Check boxes for each suffix in the suffix argument and
for each file name in the files argument.

3 Buttons marked "Select All” and ”Select None” for
selecting and clearing all the check boxes, respectively.

4 A ”Clean” button that deletes files in the working directory
matching one of the following criteria:
(i) file name matches both an expansion of a concantenation of a
prefix in the entry box and a suffix chosen with a check box; or
(ii) file name matches an expansion of a file chosen with a check box.

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

Examples

## Not run:
cleanProj(prefix="foo",suffix=c(".ax",".b?",".c","-0ld.d") ,files=c("red","blue"))

## End(Not run)

cleanWD Launch a GUI for File Deletion




clearAll 103

Description

Launches a new window which contains an interface for deleting specified files from the working directory.

Usage

cleanWD(files)

Arguments

files character vector of file names used for clean options.

Details

All arguments may contain wildcard characters ("*" to match 0 or more characters, "?" to match any
single character).

The GUI includes the following:

1  Check boxes for each suffix in the suffix argument and
for each file name in the files argument.

2 Buttons marked ”"Select All” and ”Select None” for
selecting and clearing all the check boxes, respectively.

3 A 7’Clean” button that deletes files in the working directory
matching file name expansion of files chosen with a check box.

Author(s)
Rowan Haigh, Pacific Biological Station, Nanaimo BC

Examples

## Not run:
cleanWD(c("*.bak","*.tmp","junk*"))

## End(Not run)

clearAll Remowve all R Objects From the Global Environment

Description

Generic function to clear all objects from .RData in R

Usage
clearAll (hidden=TRUE, verbose=TRUE, PBSsave=TRUE)

Arguments
hidden if TRUE, remove variables that start with a dot(.).
verbose if TRUE, report all removed items.
PBSsave if TRUE, do not remove .PBSmod.

Author(s)

Jon Schnute, Pacific Biological Station, Nanaimo BC



104 clearRcon

clearPBSext Clear File Extension Associations

Description

Disassociate any number of file extensions from commands previously saved with setPBSext.

Usage
clearPBSext (ext)
Arguments
ext optional character vector of file extensions to clear; if unspecified, all associations are
removed
Author(s)

Alex Couture-Beil, Malaspina University-College, Nanaimo BC

See Also

setPBSext, getPBSext, openFile

clearRcon Clear the R Console / Focus on the RGui Window

Description

Clear the R console window or focus on the RGui window using Visual Basic shell scripts.

Usage

clearRcon(os=.Platform$0S.type)
focusRgui(os=.Platform$0S.type)

Arguments

os operating system (e.g., "windows", "unix").

Detalils

Creates a VB shell script file called clearRcon.vbs or focusRgui.vbs in R’s temporary working direc-
tory, then executes the script using the shell command.

While clearRcon clears the R console, focusRgui returns the desktop focus back to the RGui window.

These commands will only work on Windows operating platforms, using the system’s executable
%SystemRoot%\system32\cscript.exe.

Author(s)

Norm Olsen, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC



clearWinVal 105

See Also

cleanWD, clearPBSext, clearWinVal

Examples

## Not run:
createWin( c("window title=Focus",
"button text=\"Go to RGui\" width=20 bg=aliceblue func=focusRgui"), astext=T)

## End(Not run)

clearWinVal Remove all Current Widget Variables

Description

Remove all global variables that share a name in common with any widget variable name defined in
names (getWinVal()). Use this function with caution.

Usage
clearWinVal()

Author(s)
Alex Couture-Beil, Malaspina University-College, Nanaimo BC

See Also

getWinVal

clipVector Clip a Vector at One or Both Ends

Description

Clip a vector at one or both ends using the specified clip pattern to match.

Usage

clipVector(vec, clip, end=0)

Arguments
vec vector object to clip
clip value or string specifying repeated values to clip from ends
end end to clip clip from: 0=both, 1=front, 2=back

Details

If the vector is named, the names are retained. Otherwise, element positions are assigned as the vector’s
names.



106 closeWin

Value

Clipped vector with names.

Author(s)

Rowan Haigh, Pacific Biological Station, Nanaimo BC

See Also

createVector

Examples

x=c(0,0,0,0,1,1,1,1,0,0)
clipVector(x,0)

x=c (TRUE, TRUE,FALSE, TRUE)
clipVector(x,TRUE)

X=C("red" s "tide" s "red" s "red")
clipVector(x,"red",2)

closeWin Close GUI Window(s)

Description

Close (destroy) one or more windows made with createWin.

Usage
closeWin(name)
Arguments
name a vector of window names that indicate which windows to close. These names appear
in the window description file(s) on the line(s) defining WINDOW widgets. If name is
ommitted, all active windows will be closed.
Author(s)

Alex Couture-Beil, Malaspina University-College, Nanaimo BC

See Also

createWin



compileC 107

compileC Compile a C File into a Shared Library Object

Description

This function provides an alternative to using R’s SHLIB command to compile C code into a shared
library object.

Usage

compileC(file, lib="", options="", logWindow=TRUE, logFile=TRUE)

Arguments
file name of the file to compile.
1lib name of shared library object (without extension).
options linker options (in one string) to prepend to a compilation command.
logWindow if TRUE, a log window containing the compiler output will be displayed.
logFile if TRUE, a log file containing the compiler output will be created.
Details
If 1ib="", it will take the same name as file (with a different extension).

If an object with the same name has already been dynamically loaded in R, it will be unloaded auto-
matically for recompilation.

The name of the log file, if created, uses the string value from 1ib concatenated with ".log".

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

loadC

Examples

## Not run:
compileC("myFile.c", lib="myLib", options="my0Obj.o")

## End(Not run)



108 convSlashes

compileDescription Convert and Save a Window Description as a List

Description

Convert a window description file (ASCII markup file) to an equivalent window description list. The
output list (an ASCII file containing R-source code) is complete, i.e., all default values have been added.

Usage

compileDescription(descFile, outFile)

Arguments
descFile name of window description file (markup file).
outFile name of output file containing R source code.
Details

The window description file descFile is converted to a list, which is then converted to R code, and
saved to outFile.

Author(s)
Alex Couture-Beil, Malaspina University-College, Nanaimo BC

See Also

parseWinFile, createWin

convSlashes Convert Slashes from UNIX to DOS

Description
Convert slashes in a string from ‘/’ to ‘\\' if the operating system is ‘windows’. Do the reverse if the
OS is ‘unix’.

Usage
convSlashes(expr, os=.Platform$0S.type, addQuotes=FALSE)

Arguments

expr String value (usually a system pathway).

os operating system (either "windows" or "unix").

addQuotes logical: if TRUE, enclose the string expression in escaped double quotation marks.
Value

Returns the input string modified to have the appropriate slashes for the specified operating system.



create Vector 109

Author(s)

Rowan Haigh, Pacific Biological Station, Nanaimo BC

createVector Create a GUI with a Vector Widget

Description

Create a basic window containing a vector and a submit button. This provides a quick way to create a
window without the need for a window description file.

Usage

createVector (vec, vectorLabels=NULL, func="",
windowname="vectorwindow")

Arguments

vec a vector of strings representing widget variables. The values in vec become the default
values for the widget. If vec is named, the names are used as the variable names.

vectorLabels an optional vector of strings to use as labels above each widget.

func string name of function to call when new data are entered in widget boxes or when
"GQO” is pressed.

windowname unique window name, required if multiple vector windows are created.

Author(s)

Alex Couture-Beil, Malaspina University-College, Nanaimo BC

See Also

createWin

Examples

## Not run:

#user defined function which is called on new data

drawlLiss <- function() {
getWinVal (scope="L");
tt <- 2xpix(0:k)/k; x <- sin(2*pi*m*tt); y <- sin(2*pi*(n*tt+phi));
plot(x,y,type="p"); invisible(NULL); };

#create the vector window

createVector(c(m=2, n=3, phi=0, k=1000),
vectorLabels=c("x cycles","y cycles", "y phase", "points"),
func="drawLiss");

## End(Not run)



110 createWin

createWin Create a GUI Window

Description

Create a GUI window with widgets using instructions from a Window Description (markup) File.

Usage

createWin( fname, astext=FALSE, env=parent.frame() )

Arguments
fname name of window description file or list returned from parseWinFile.
astext logical: if TRUE, interpret fname as a vector of strings with each element representing
a line in a window description file.
env an environment in which to evaluate widget callback functions; see example.
Details

Generally, the markup file contains a single widget per line. However, widgets can span multiple lines
by including a backslash (’\’) character at the end of a line, prompting the suppression of the newline
character.

For more details on widget types and markup file, see “PBSModelling-UG.pdf” in the R directory
.../1library/PBSmodelling/doc.

It is possible to use a Window Description List produced by compileDescription rather than a file
name for fname.

Another alternative is to pass a vector of characters to fname and set astext=T. This vector represents
the file contents where each element is equivalent to a new line in the window description file.

Note

Microsoft Windows users may experience difficulties switching focus between the R console and GUI
windows. The latter frequently disappear from the screen and need to be reselected (either clicking on
the task bar or pressing <Alt><Tab>. This issue can be resolved by switching from MDI to SDI mode.
From the R console menu bar, select <Edit> and <GUI preferences>, then change the value of “single
or multiple windows” to SDI.

Author(s)

Alex Couture-Beil, Malaspina University-College, Nanaimo BC

See Also

parseWinFile, getWinVal, setWinVal
closeWin, compileDescription, createVector
initHistory for an example of using astext=TRUE

environment



declareGUloptions 111

Examples

## Not run:
# See file .../library/PBSmodelling/testWidgets/LissWin.txt

# Calculate and draw the Lissajous figure
drawLiss <- function() {

getWinVal(scope="L"); ti=2*pi*(0:k)/k;

x=sin(2*pi*m*ti); y=sin(2*pi* (n*ti+phi));

plot(x,y,type=ptype); invisible(NULL); };
createWin(system.file("testWidgets/LissWin.txt",package="PBSmodelling"));

## End(Not run)

B S s s s s s s s
# Environment example:

#function in global

hello <- function()

{

stop( "I shouldn't be called" )
}

newNameGreeter <- function( name )

{

#method to display window

greet <- function()

{

createWin( c( "button \"say hello\" func=hello" ), astext=TRUE, env = parent.env( environment() ) )

}

#hello method will refer to the name in this local scope
hello <- function()

{

cat( "Hello", name, "\n" )

}

#return functions which the user can call directly
return( list( greet = greet, hello = hello ) )
}

alex <- newNameGreeter( "Alex" )
jon <- newNameGreeter( "Jon" )

alex$hello() #prints hello Alex
jon$hello() #hello Jon

alex$greet () #creates a GUI with a button, which will print "hello Alex" when pushed

declareGUIoptions Declare Option Names that Correspond with Widget Names




112 doAction

Description
This function allows a GUI creator to specify widget names that correspond to names in PBS options.
These widgets can then be used to load and set PBS options uing getGUIoptions and setGUIoptions.
Usage

declareGUIoptions (newOptions)

Arguments

newOptions a character vector of option names

Details

declareGUIoptions is typically called in a GUI initialization function. The option names are remem-
bered and used for the functions getGUIoptions, setGUIoptions, and promptSave.

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

getGUIoptions, setGUIoptions, promptWriteOptions

Examples

## Not run:
declareGUIOptions("editor")

## End(Not run)

doAction Execute Action Created by a Widget

Description

Executes the action expression formulated by the user and written as an ‘action’ by a widget.

Usage

doAction(act)

Arguments

act string representing an expression that can be executed



drawBars

Details

113

If act is missing, doAction looks for it in the action directory of the window’s widget directory in

.PBSmod. This action can be accessed through getWinAct () [1].

Due to parsing complications, the expression act translates various symbols.
The function translates:

1. The back tick character ‘>’ to a double quote ‘"’ character. For example,
"openFile(paste (getWinVal () $prefix,” .tpl™,sep=""))"
2. Underscore period ‘_.’ to four back slashes and one period ‘\\\\.’. For example,
"poop=strsplit( some.thing.else” ,split="_.")"

Value
Invisibly returns the string expression expr.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

createWin, evalCall, getWinAct

Examples

createWin("button text=\"list objects\" func=doAction action=print(ls())",
astext=TRUE)

drawBars Draw a Linear Barplot on the Current Plot

Description

Draw a linear barplot on the current plot.

Usage

drawBars(x, y, width, base = 0, ...)
Arguments

bq x-coordinates

y y-coordinates

width bar width, computed if missing

base y-value of the base of each bar

further graphical parameters (see par) may also be supplied as arguments

Author(s)

Jon Schnute, Pacific Biological Station, Nanaimo BC



114 evalCall

Examples

plot(0:10,0:10,type="n")
drawBars(x=1:9,y=9:1,col="deepskyblue4",1lwd=3)

evalCall FEvaluate a Function Call

Description

Evaluates a function call after resolving potential argument conflicts.

Usage
evalCall(fn, argu, ..., envir = parent.frame(),
checkdef=FALSE, checkpar=FALSE)
Arguments
fn R function
argu list of explicitly named arguments and their values to pass to fn.
additional arguments that a user might wish to pass to fn.
envir environment from which the call originates (currently has no use or effect).
checkdef logical: if TRUE, gather additional formal arguments from the functions default func-
tion.
checkpar logical: if TRUE, gather additional graphical arguments from the list object par.
Details

This function builds a call to the specified function and executes it. During the build, optional arguments

(...) are checked for

(i) duplication with explicit arguments argu: if any are duplicated, the user-supplied arguments super-

sede the explicit ones;

(ii) availability as usable arguments in fn, fn.default if checkdef=TRUE, and par if checkpar=TRUE.
Value

Invisibly returns the string expression of the function call that is passed to eval (parse (text=expr)).

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

doAction, plotAsp



expandGraph 115

Examples

# A user may have a function that calls other functions
# using specific defaults (e.g., blue triangles)

pbsfun = function(..., use.evalCall=TRUE) {

par0 <- par(no.readonly = TRUE); on.exit(par(par0))
plotAsp(0,0,type="n",xlim=c(-1.5,1.5) ,ylim=c(-1.5,1.5),

axes=FALSE, frame.plot=TRUE, xlab="",ylab="")
if (use.evalCall)

evalCall(polygon, ...,

argu=list(x=c(-1,1,0),y=c(1,1,-1), col="dodgerblue", border="grey"))

else

polygon(x=c(-1,1,0),y=c(1,1,-1),col="dodgerblue" ,border="grey",...)
}
pbsfun(lwd=4,use.evalCall=FALSE)
# ______________________________________________________

# But what if the user wants pink triangles?
pbsfun(col="pink",1lwd=4,use.evalCall=TRUE, checkpar=TRUE)

# Without 'evalCall' an error occurs due to duplicated arguments
## Not run: pbsfun(col="pink",lwd=4,use.evalCall=FALSE)

expandGraph Expand the Plot Area by Adjusting Margins

Description

Optimize the plotting region(s) by minimizing margins.

Usage

expandGraph (mar=c(4,3,1.2,0.5), mgp=c(1.6,.5,0),...)

Arguments
mar numerical vector of the form ’c(bottom, left, top, right)’ specifying the margins of the
plot
mgp numerical vector of the form ’c(axis title, axis labels, axis line)’ specifying the margins
for axis title, axis labels, and axis line
additional graphical parameters to be passed to par
Author(s)

Jon Schnute, Pacific Biological Station, Nanaimo BC

See Also

resetGraph



116 findPat

Examples

resetGraph(); expandGraph(mfrow=c(2,1));
tt=seq(from=-10, to=10, by=0.05);

plot(tt,sin(tt), xlab="this is the x label", ylab="this is the y label",
main="main title", sub="sometimes there is a \"sub\" title")
plot(cos(tt),sin(tt*2), xlab="cos(t)", ylab="sin(2 t)", main="main title",
sub="sometimes there is a \"sub\" title")

exportHistory Export a Saved History

Description

Export the current history list.

Usage
exportHistory(hisname="", fname="")
Arguments
hisname name of the history list to export. If set to "", the value from getWinAct () [1] will
be used instead.
fname file name where history will be saved. If it is set to "", a <Save As> window will be
displayed.
Author(s)

Alex Couture-Beil, Malaspina University-College, Nanaimo BC

See Also

importHistory, initHistory, promptSaveFile

findPat Search a Character Vector to Find Multiple Patterns

Description

Use all available patterns in pat to search in vec, and return the matched elements in vec.

Usage

findPat (pat, vec)

Arguments

pat character vector of patterns to match in vec

vec character vector where matches are sought



findPrefix 117

Value

A character vector of all matched strings.

Author(s)

Rowan Haigh, Pacific Biological Station, Nanaimo BC

Examples

#find all strings with a vowel, or that start with a number
findPat (c(" [aeoiy]l", "~ [0-9]1"), c("hello", "WRLD", "11b"))

findPrefix Find a Prefix Based on Names of Existing Files

Description

Find the prefixes or suffixes of files with a given suffix or prefix in a directory.

Usage

findPrefix(suffix,path=".")
findSuffix(prefix,path=".")

Arguments
suffix character vector of suffixes
prefix character vector of prefixes
path directory to look for files in
Details

The function findPrefix locates all files in a directory that end with one of the provided suffixes; where
as findSuffix locates all files that start with the given prefixes.

Value
A character vector of all the prefixes or sufixes of files in the working directory that matched to one of
the given suffixes.

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

Examples

#TODO give better examples from the library's example dir
findPrefix( c(".txt", ".r") )

#or use R's dir for similar functionality
dir(pattern="txt$")
dir(pattern=""[a-h]")



118 focusWin

findProgram Locates a program in the PATH environment variable

Description
Returns the complete filename and path of a program in the PATH environment variable. This is a
wrapper for Sys.which, and may be depricated in the future.

Usage

findProgram( name, includename=FALSE )

Arguments

name name of a program to locate

includename boolean: if true, include the filename in the path returned, otherwise just the directory.
Value

A string containing the location of the program. NULL is returned if the program is not located.

Author(s)
Alex Couture-Beil

See Also

Sys.which

Examples

findProgram( "gcc" )
findProgram( "notepad" )
findProgram( "R", TRUE )

focusWin Set the Focus on a Particular Window

Description

Bring the specified window into focus, and set it as the active window. focusWin will fail to bring the
window into focus if it is called from the R console, since the R console returns focus to itself once a
function returns. However, it will work if focusWin is called as a result of calling a function from the
GUI window. (i.e., pushing a button or any other widget that has a function argument).

Usage

focusWin(winName, winVal=TRUE)

Arguments

winName name of window to focus

winVal if TRUE, associate winName with the default window for setWinVal and getWinVal



genMatrix 119

Author(s)
Alex Couture-Beil, Malaspina University-College, Nanaimo BC

Examples

## Not run:
focus <- function() {
winName <- getWinVal()$select;

focusWin(winName) ;
cat("calling focusWin(\"", winName, "\")\n", sep="");
cat("getWinVal()$myvar = ", getWinVal()$myvar, "\n\n", sep=""); };

#create three windows named winl, win2, win3
#each having three radio buttons, which are used to change the focus
for(i in 1:3) {
winDesc <- c(
paste('window name=win',i,' title="Win',i,'"', sep=''),
paste('entry myvar ', i, sep=''),
'radio name=select value=winl text="one" function=focus mode=character',
'radio name=select value=win2 text="two" function=focus mode=character',
'radio name=select value=win3 text="three" function=focus mode=character');
createWin(winDesc, astext=TRUE); };

## End(Not run)

genMatrix Generate Test Matrices for plotBubbles

Description

Generate a test matrix of random numbers (mu = mean and signa = standard deviation), primarily for
plotBubbles.

Usage

genMatrix(m,n,mu=0,sigma=1)

Arguments
m number of rows
number of columns
mu mean of normal distribution
sigma standard deviation of normal distribution
Value

An m by n matrix with normally distributed random values.

Author(s)
Jon Schnute, Pacific Biological Station, Nanaimo BC

See Also

plotBubbles



120 getChoice

Examples

plotBubbles (genMatrix(20,6))

getChoice Choose One String Item from a List of Choices

Description

Prompts the user to choose one string item from a list of choices displayed in a GUI. The simplest case
getChoice() yields TRUE or FALSE.

Usage

getChoice(choice=c("Yes","No"), question="Make a choice: ",
winname="getChoice", horizontal=TRUE, radio=FALSE,
gcolor="blue", gui=FALSE, quiet=FALSE)

Arguments
choice vector of strings from which to choose.
question question or prompting statement.
winname window name for the getChoice GUIL
horizontal logical: if TRUE, display the choices horizontally, else vertically.
radio logical: if TRUE, display the choices as radio buttons, else as buttons.
qcolor colour for question.
gui logical: if TRUE, getChoice is functional when called from a GUI, else it is functional
from command line programs.
quiet logical: if TRUE, don’t print the choice on the command line.
Details

The user’s choice is stored in .PBSmod$options$getChoice (or whatever winname is supplied).

getChoice generates an onClose function that returns focus to the calling window (if applicable) and
prints out the choice.

Value

If called from a GUI (gui=TRUE), no value is returned directly. Rather, the choice is written to the
PBS options workspace, accessible through getPBSoptions("getChoice") (or whatever winname was
supplied).

If called from a command line program (gui=FASLE), the choice is returned directly as a string scalar
(e.g., answer <- getChoice(gui=F) ).

Note

Microsoft Windows users may experience difficulties switching focus between the R console and GUI
windows. The latter frequently disappear from the screen and need to be reselected (either clicking on
the task bar or pressing <Alt><Tab>. This issue can be resolved by switching from MDI to SDI mode.
From the R console menu bar, select <Edit> and <GUI preferences>, then change the value of “single
or multiple windows” to SDI.



getGUlIoptions 121

Author(s)

Rowan Haigh, Pacific Biological Station, Nanaimo BC

See Also

chooseWinVal, getWinVal, setWinVal

Examples

## Not run:

#-- Example 1

getChoice(c("Fame","Fortune","Health","Beauty","Lunch"),
"What do you want?",qcolor="red",gui=F)

#-- Example 2
getChoice(c("Homer Simpson","Wilberforce Humphries","Miss Marple"),

"Who™s your idol?",horiz=F,radio=T,gui=F)

## End(Not run)

getGUIoptions Get PBS Options for Widgets

Description

Get the PBS options declared for GUI usage and set their corresponding widget values.

Usage

getGUIoptions()

Details

The options declared using declareGUIoptions are copied from the R environment into widget values.
These widgets should have names that match the names of their corresponding options.

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

declareGUIoptions, setGUIoptions, promptWriteOptions, readPBSoptions

Examples

## Not run:
getPBSoptions() #loads from default PBSoptions.txt

## End(Not run)



122 getOptionsFileName

getOptions Get and Set User Options

Description

Functions to get and set user options within an option class object.

Usage
getOptions(option.object, key)
setOptions(option.object, ...)
Arguments

option.object options class object used for storing package options

any number of user options to set, where the named argument is the option key and
the value is the option value

key name of option to retrieve — if missing all options are returned

Value

getOptions: returns the value of the option specified by key.
If key is missing, a list of all options.

Author(s)

Alex Couture-Beil

See Also

See PBSoptions-class for more details and an example using PBSmodelling’s option management
functions.

getOptionsFileName Get and Set File Name for Saving and Loading of Options

Description

Functions for retrieving and setting the default file name used by loadOptions and saveOptions.

Usage

getOptionsFileName (option.object)
setOptionsFileName (option.object, name)

Arguments

option.object options class object used for storing package options

name new name for default file name



getOptionsPrefix 123

Value

getOptionsFileName: the default file name

See Also

loadOptions, saveOptions
See PBSoptions-class for more details and an example using PBSmodelling’s option management
functions.

getOptionsPrefix Get and Set GUI Prefix of Options Class

Description

The GUI prefix is used for determining which GUI variables are associated with a user option.

Usage
getOptionsPrefix(option.object)
setOptionsPrefix(option.object, prefix)
Arguments

option.object options class object used for storing package options

prefix new prefix to use

Value

getOptionsPrefix: a prefix string used to reference GUI variables

See Also

See PBSoptions-class for more details and an example using PBSmodelling’s option management
functions.

Examples

.mypkg <<- new( "PBSoptions", filename="my_pkg.txt",
initial.options=1list(pi=3.14), gui.prefix="opt" )

#prefix the option "pi" with "opt" to get "optpi"
createWin( "entry name=optpi", astext = TRUE )

#the GUI variable "optpi" will be loaded with the option "pi"
loadOptionsGUI( .mypkg )



124 getPBSoptions

getPBSext Get a Command Associated With a File Name

Description

Display all locally defined file extensions and their associated commands, or search for the command
associated with a specific file extension ext.

Usage

getPBSext (ext)

Arguments

ext optional string specifying a file extension.

Value

Command associated with file extension.

Note

These file associations are not saved from one PBS Modelling session to the next unless explicity saved
and loaded (see writePBSoptions and readPBSoptions).

Author(s)

Alex Couture-Beil, Malaspina University-College, Nanaimo BC

See Also

setPBSext, openFile, clearPBSext

getPBSoptions Retrieve A User Option

Description

Get a previously defined user option.

Usage

getPBSoptions (option)

Arguments

option name of option to retrieve. If omitted, a list containing all options is returned.

Value

Value of the specified option, or NULL if the specified option is not found.



getWinAct

Author(s)

Alex Couture-Beil, Malaspina University-College, Nanaimo BC

See Also

getPBSext, readPBSoptions

125

getWinAct Retrieve the Last Window Action

Description

Get a string vector of actions (latest to earliest).

Usage

getWinAct (winName)
Arguments

winName name of window to retrieve action from
Details

When a function is called from a GUI, a string descriptor associated with the action of the function is
stored internaly (appended to the first position of the action vector). A user can utilize this action as a
type of argument for programming purposes. The command getWinAct () [1] yields the latest action.

Value

String vector of recorded actions (latest first).

Author(s)

Alex Couture-Beil, Malaspina University-College, Nanaimo BC

getWinFun Retrieve Names of Functions Referenced in a Window

Description

Get a vector of all function names referenced by a window.

Usage

getWinFun(winName)

Arguments

winName name of window, to retrieve its function list



126 getWinVal

Value

A vector of function names referenced by a window.

Author(s)

Alex Couture-Beil, Malaspina University-College, Nanaimo BC

getWinVal Retrieve Widget Values for Use in R Code

Description

Get a list of variables defined and set by the GUI widgets. An optional argument scope directs the
function to create local or global variables based on the list that is returned.

Usage

getWinVal (v=NULL, scope="", asvector=FALSE, winName="")

Arguments
v vector of variable names to retrieve from the GUI widgets. If NULL, v retrieves all
variables from all GUI widgets.
scope scope of the retrieval. The default sets no variables in the non-GUI environment;
scope="L" creates variables locally in relation to the parent frame that called the
function; and scope="G" creates global variables(pos=1).
asvector return a vector instead of a list. WARNING: if a widget variable defines a true vector
or matrix, this will not work.
winName window from which to select GUI widget values. The default takes the window that
has most recently received new user input.
Details

TODO talk about scope=G/L and side effects of overwriting existing variables

Value

A list (or vector) with named components, where names and values are defined by GUI widgets.

Author(s)

Alex Couture-Beil, Malaspina University-College, Nanaimo BC

See Also

parseWinFile, setWinVal, clearWinVal



getYes 127
getYes Prompt the User to Choose Yes or No
Description
Display a message prompt with "Yes” and "No” buttons.
Usage
getYes(message, title="Choice", icon="question")
Arguments
message message to display in prompt window.
title title of prompt window.
icon icon to display in prompt window; options are "error", "info", "question", or
"warning".
Value

Returns TRUE if the "Yes” button is clicked, FALSE if the "No” button is clicked.

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

showAlert, getChoice, chooseWinVal

Examples

## Not run:

#default settings

if (getYes("Print the number 17"))
print (1)

## End(Not run)

GTO Restrict a Numeric Variable to a Positive Value

Description

Restrict a numeric value x to a positive value using a differentiable function. GTO stands for “greater

than zero”.

Usage
GTO(x,eps=1le-4)



128 importHistory

Arguments
X vector of values
eps minimum value greater than zero.
Details
if (x>=eps).......... GTO = x
if (0 <x<eps)....... GTO = (eps/2) * (1 + (x/eps)”2)
if x<=0)...iii.n. GTO = eps/2
Author(s)

Jon Schnute, Pacific Biological Station, Nanaimo BC

See Also

scalePar, restorePar, calcMin

Examples

plotGTO <- function(eps=1,x1=-2,%x2=10,n=1000,col="black") {
x <- seq(x1,x2,len=n); y <- GTO(x,eps);
lines(x,y,col=col,lwd=2); invisible(list(x=x,y=y)); }

testGTO <- function(eps=c(7,5,3,1,.1),x1=-2,%2=10,n=1000) {

x <- seq(x1,x2,len=n); y <- x;

plot(x,y,type="1");

mycol <- c("red","blue","green","brown","violet","orange","pink");
for (i in 1:length(eps))
plotGTO(eps=eps[i],x1=x1,%x2=x2,n=n,col=mycol[i]);

invisible(); };

testGTO()

importHistory Import a History List from a File

Description

Import a history list from file fname, and place it into the history list hisname.

Usage

importHistory(hisname="", fname="", updateHis=TRUE)

Arguments
hisname name of the history list to be populated. The default ("") uses the value from
getWinAct O [1].
fname file name of history file to import. The default ("") causes an open-file window to be

displayed.
updateHis logical: if TRUE, update the history widget to reflect the change in size and index.



initHistory

Author(s)

129

Alex Couture-Beil, Malaspina University-College, Nanaimo BC

See Also

exportHistory, initHistory, promptOpenFile

initHistory

Create Structures for a New History Widget

Description

PBS history functions (below) are available to those who would like to use the package’s history func-
tionality, without using the pre-defined history widget. These functions allow users to create customized

history widgets.

Usage

initHistory(hisname, indexname=NULL, sizename=NULL,
buttonnames=NULL, modename=NULL, func=NULL, overwrite=TRUE)

rmHistory(hisname="", index="")

addHistory(hisname="")

forwHistory (hisname="")

backHistory(hisname="")

lastHistory(hisname="")

firstHistory(hisname="")

jumpHistory(hisname="", index="")

clearHistory(hisname="")

Arguments

hisname

indexname

sizename

buttonnames

modename

index

func

overwrite

name of the history ”list” to manipulate. If it is omitted, the function uses the value
of getWinAct () [1] as the history name. This allows the calling of functions directly
from the window description file (except initHistory, which must be called before
createWin()).

name of the index entry widget in the window description file. If NULL, then the current
index feature will be disabled.

name of the current size entry widget. If NULL, then the current size feature will be
disabled.

named list of names of the first, prev, next, and last buttons. If NULL, then the buttons
are not disabled ever

name of the radio widgets used to change addHistory\’s mode. If NULL, then the
default mode will be to insert after the current index.

index to the history item. The default ("") causes the value to be extracted from the
widget identified by indexname.

name of user supplied function to call when viewing history items.

if TRUE, history (matching hisname) will be cleared. Otherwise, the imported history
will be merged with the current one.



130 initHistory

Details

PBS Modelling includes a pre-built history widget designed to collect interesting choices of GUI variables
so that they can be redisplayed later, rather like a slide show.

Normally, a user would invoke a history widget simply by including a reference to it in the window
description file. However, PBS Modelling includes support functions (above) for customized applications.

To create a customized history, each button must be described separately in the window description file
rather than making reference to the history widget.

The history "List” must be initialized before any other functions may be called. The use of a unique
history name (hisname) is used to associate a unique history session with the supporting functions.

The indexname and sizename arguments correspond to the given names of entry widgets in the window
description file, which will be used to display the current index and total size of the list. The indexname
entry widget can also be used by jumpHistory to retrieve a target index.

Author(s)
Alex Couture-Beil, Malaspina University-College, Nanaimo BC

See Also

importHistory, exportHistory

Examples
## Not run:
# Example of creating a custom history widget that saves values
# whenever the "Plot" button is pressed. The user can tweak the
# inputs "a", "b", and "points" before each "Plot" and see the
# "Index" increase. After sufficient archiving, the user can review
# scenarios using the "Back" and "Next" buttons.
# A custom history is needed to achieve this functionality since
# the packages pre-defined history widget does not update plots.

# To start, create a Window Description to be used with createWin
# using astext=TRUE. P.S. Watch out for special characters which
# must be "escaped" twice (first for R, then PBSmodelling).

winDesc <- '

window title="Custom History"

vector names="a b k" labels="a b points" font="bold" \\
values="1 1 1000" function=myPlot

grid 1 3

button function=myHistoryBack text="<- Back"

button function=myPlot text="Plot"

button function=myHistoryForw text="Next ->"

grid 2 2

label "Index"

entry name="myHistoryIndex" width=5

label "Size"

entry name="myHistorySize" width=5

'

# Convert text to vector with each line represented as a new element
winDesc <- strsplit(winDesc, "\n")[[1]]

# Custom functions to update plots after restoring history values
myHistoryBack <- function() {
backHistory ("myHistory") ;



isWhat 131

myPlot (saveVal=FALSE); # show the plot with saved values
}

myHistoryForw <- function() {

forwHistory ("myHistory") ;

myPlot (saveVal=FALSE); # show the plot with saved values
}

myPlot <- function(saveVal=TRUE) {

# save all data whenever plot is called (directly)

if (saveVal) addHistory("myHistory");

getWinVal (scope="L");

tt <= 2xpix(0:k)/k;

x <= (1+sin(a*tt)); y <- cos(tt)*(1+sin(b*tt));

plot(x, y);

}

initHistory("myHistory", "myHistoryIndex", "myHistorySize")
createWin(winDesc, astext=TRUE)

## End(Not run)

isWhat Identify an Object and Print Information

Description

Identify an object by class, mode, typeof, and attributes.

Usage

isWhat (x)

Arguments

X an R object

Value

No value is returned. The function prints the object’s characteristics on the command line.

Author(s)

Jon Schnute, Pacific Biological Station, Nanaimo BC

loadC Launch a GUI for Compiling and Loading C Code

Description

A GUI interface allows users to edit, compile, and embed C functions in the R environment.

Usage
loadC()



132 loadOptions
Details
The function loadC() launches an interactive GUI that can be used to manage the construction of
C functions intended to be called from R. The GUI provides tools to edit, compile, load, and run C
functions in the R environment.
The loadC GUI also includes a tool for comparison between the running times and return values of R and
C functions. It is assumed that the R and C functions are named prefix.r and prefix.c, respectively,
where prefix can be any user-chosen prefix. If an initialization function prefix.init exists, it is called
before the start of the comparison.
The GUI controls:
File Prefix Prefix for .c and .r files.
Lib Prefix Prefix for shared library object.
Set WD Set the working directory.
Open Log Open the log file.
Open.c File Open the file prefix.c from the working directory.
Open .r File Open the file prefix.r from the working directory.
COMPILE Compile prefix.c into a shared library object.
LOAD Load the shared library object.
SOURCE R Source the file prefix.r.
UNLOAD Unload the shared library object.
Options
Editor Text editor to use.
Update Commit option changes.
Browse Browse for a text editor.
Clean Options
Select All Select all check boxes specifying file types.
Select None Select none of the check boxes.
Clean Proj Clean the project of selected file types.
Clean All Clean the directory of selected file types.
Comparison
Times to Run  Number of times to run the R and C functions.
RUN Run the comparison between R and C functions.
R Time Computing time to run the R function multiple times.
C Time Computing time to run the C function multiple times.
Ratio Ratio of R/C run times.
Author(s)
Anisa Egeli, Vancouver Island University, Nanaimo BC
See Also
compileC
loadOptions Save and Load Options to and from Disk
Description

Save and load options for use from one R session to another. If no file name is given, then the default

file name (specified when the option object was created) is used.



loadOptionsGUI 133

Usage

loadOptions(option.object, fname, prompt = FALSE)
saveOptions(option.object, fname, prompt = FALSE)

Arguments
option.object options class object used for storing package options

fname file name to use: if missing the default file name is used; if given, file name becomes
the default.

prompt logical: if TRUE, prompt the user to select a file from an interactive GUI. If fname is
given, then the value appears as the default selected file.
Details

If fname is given (or selected when prompt=TRUE), then that file becomes the default file name for
subsequent loading and saving.

See Also
See PBSoptions-class for more details and an example using PBSmodelling’s option management
functions.
loadOptionsGUI Load and Save Options Values to and from a GUI
Description

These functions are used to move option values to and from a GUI. Option values are stored within an
R object (as referenced by the option.object).

loadOptionsGUI copies the values from the R object to the GUI.

saveOptionsGUI copies the GUI values from the tcltk GUI to the R object.

Usage
loadOptionsGUI(option.object)
saveOptionsGUI(option.object)

Arguments

option.object options class object used for storing package options

See Also

See PBSoptions-class for more details and an example using PBSmodelling’s option management
functions.



134 openExamples

openExamples Open Example Files from a Package

Description

Open examples from the examples subdirectory of a given package.

Usage

openExamples (package, prefix, suffix)

Arguments
package name of the package that contains the examples.
prefix prefix of the example file(s).
suffix character vector of suffixes for the example files.
Details

Copies of each example file are placed in the working directory and opened. If files with the same name
already exist, the user is prompted with a choice to overwrite.

To use this function in a window description file, the package, prefix and suffix arguments must be
specified as the action of the widget that calls openExamples. Furthermore, package, prefix, and each
suffix must be separated by commas. For example, action=myPackage,examplel,.r,.c will copy
examplel.r and example2.c from the examples directory of the package myPackage to the working
directory and open these files. If the function was called by a widget, a widget named prefix will be
set to the specified prefix.

Note

If all the required arguments are missing, it is assumed that the function is being called by a GUI widget.

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

openFile, openProjFiles, openPackageFile

Examples

## Not run:

# Copies examplel.c and example2.r from the examples directory in
# myPackage to the working directory, and opens these files
openExamples ("myPackage", "examplel", c(".r", ".c"))

## End(Not run)



openFile 135

openFile Open a File with an Associated Program

Description

Open a file using the program associated with its extension defined by the Windows shell. Non-windows
users, or users wishing to overide the default application, can specify a program association using
setPBSext.

Usage
openFile(fname, package=NULL)

Arguments

fname name(s) of file(s) to open.

package (optional) open files relative to this package
Value

An invisible string vector of the file names and/or commands + file names.

Warning

Windows only: openFile( ".." ) does not work as expected, but openFile( ”../..” ) only opens the first
parent directory.

Note

If a command is registered with setPBSext, then openFile will replace all occurrences of "%f" with the
absolute path of the filename, before executing the command.

Author(s)
Alex Couture-Beil, Malaspina University-College, Nanaimo BC

See Also

getPBSext, setPBSext, clearPBSext, writePBSoptions

Examples

## Not run:

#use openFile directly:
openFile( "doc/PBSmodelling-UG.pdf", package="PBSmodelling" )

#via doAction in a window description file:
createWin( "button text=help func=doAction action=\"openFile( “doc/PBSmodelling-UG.pdf~, package="PBSmodelling’

HHHHHHHHH R R R R R R R R R R R RS

# Set up firefox to open .html files (only applicable if firefox is NOT the default web browser
setPBSext ("html", '"c:/Program Files/Mozilla Firefox/firefox.exe" file://%f')
openFile("foo.html")

## End(Not run)



136 openPackageFile

openPackageFile Open a File from a Package Subdirectory

Description

Open a file from a package in the R library, given the package name and the file path relative to the
package root directory.

Usage

openPackageFile(package, filepath)

Arguments

package name of the package

filepath path to file from the package’s root directory
Details

The openFile function is used to open the file, using associations set by setPBSext.

To use this function in a window description file, the package and filepath arguments must be specified
as the action of the widget that calls openPackageFile. Furthermore, package and filepath must be
separated by commas (e.g., action=myPackage,/doc/help.pdf).

If all the required arguments are missing, it is assumed that the function is being called by a GUI widget.

Note

*#* This function is deprecated and will be removed in a future version. Use openFile or doAction
with openFile. ***

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

openFile, setPBSext, openProjFiles, openExamples

Examples

## Not run:
#use openFile directly:
openFile( "doc/PBSmodelling-UG.pdf", package="PBSmodelling" )

#via doAction in a window description file:
createWin( "button text=help func=doAction action=\"openFile( “doc/PBSmodelling-UG.pdf~, package="PBSmodelling’

## End(Not run)



openProjFiles

openProjFiles Open Files with a Common Prefiz

Description

Open one or more files from the working directory, given one file prefix and one or more file suffixes.

Usage
openProjFiles(prefix, suffix, package=NULL, warn=NULL, alert=TRUE)

Arguments
prefix a single prefix to prepend to each suffix
suffix a character vector of suffixes to append to the prefix
package name of the package that contains templates, or NULL to not use templates
warn if specified, use to temporarily override the current R warn option during this function’s
activity; if NULL, the current warning settings are used.
alert if TRUE, an alert message is shown should any files fail to be opened;
if FALSE, no alert is displayed.
Details

The suffixes may contain wildcards ("*" to match 0 or more characters, "?" to match any single char-
acter).

For any file that does not exist in the working directory, a template can optionally be copied from a
directory named templates in the specified package. The templates in this directory should have the
prefix template, followed by the suffix to match when openProjFiles is called (e.g., template.c to
match the suffix .c. After being copied to the working directory, the new file is renamed to use the
specified prefix.

To use this function in a window description file, the package and suffix arguments must be specified
as the action of the widget that calls openProjFiles. Furthermore, package and each suffix must be
separated by commas. For example, action=myPackage, .r,.c will try to open a .r and .c file in the
working directory, copying templates from the template directory for the package myPackage, if the
files didn’t already exist. To disable templates, leave package unspecified but keep the leading comma
(e.g., action=,.r,.c). When the function is called from a widget in this fashion, the prefix is taken
from the value of a widget named prefix.

If all the required arguments are missing, it is assumed that the function is being called by a GUI widget.

Note

*** This function is deprecated and will be removed in a future version. Use openFile or doAction
with openFile. ***

*** Warning: this function is buggy; see examples for an alternative. ***

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

openFile, setPBSext, openExamples, openPackageFile



138 openUG

Examples

## Not run:
openProjFiles("foo", c(".r", ".c"), package="myPackage")

#use openFile directly:
openFile( dir(pattern=""prefix.*\.suffix$") )

#example with multiple suffixes (prefix=foo, suffix=.r, .c)
openFile( dir(pattern=""foo.*\.(rl|c)$") )

## End(Not run)

openUG Open Package User Guide

Description

Open package User’s Guide 'pkg-UG.pdf’ if it exists. This function is essentially a wrapper for codeopen-
File.

Usage

openUG(pkg = "PBSmodelling")

Arguments

pkg Full name (with or without quotes) of a package installed on the user’s system.

Detalils

We assume that the name of the User’s Guide follows 'PBS’ conventions. This means a user’s guide in
PDF format with extension pdf. The name of the PDF file will be '<pkg>-UG.pdf’ (e.g., PBSmodelling-
UG.pdf.

Author(s)

Rowan Haigh, PAcific Biological station, Nanaimo BC

See Also

openFile, showHelp, viewCode



packList

139

packList

Pack a List with Objects

Description

Pack a list with existing objects using names only.

Usage

packList(stuff, target="PBSlist", value,

lenv=parent.frame(), tenv=.GlobalEnv)

Arguments

stuff string vector of object names

target target list object

value an optional explicit value to assign to stuff

lenv local environment where objects are located

tenv target environment where target list is or will be located
Details

A list object called target will be located in the tenv environment. The objects named in stuff and

located in the lenv environment will appear as named components within the list object target.

If an explicit value is specified, the function uses this value instead of looking for local objects. Essen-

tially, stuff=value which is then packed into target.

Value

No value is returned

Author(s)

Rowan Haigh, Pacific Biological Station, Nanaimo BC

See Also

unpackList, readList, writelList

Examples

fn = function() {

alpha=rnorm(10)

beta=letters

gamma=mean

delta=longley
packList(c("alpha","beta","gamma","delta")) }
fn(); print(PBSlist)



140 parseWinFile

pado Pad Numbers with Leading Zeroes

Description

Convert numbers to integers then text, and pad them with leading zeroes.

Usage
pad0(x, n, £ = 0)

Arguments
X vector of numbers
n number of text characters representing a padded integer
factor of 10 transformation on x before padding
Value

A character vector representing x with leading zeroes.

Author(s)
Rowan Haigh, Pacific Biological Station, Nanaimo BC

Examples

resetGraph(); x <- pad0(x=123,n=10,f=0:7);
addLabel(.5, .5,paste(x,collapse="\n"),cex=1.5);

parseWinFile Convert a Window Description File into a List Object

Description

Parse a window description file (markup file) into the list format expected by createWin.

Usage

parseWinFile(fname, astext=FALSE)

Arguments
fname file name of the window description file.
astext if TRUE, fname is interpreted as a vector of strings, with each element representing a
line of code in a window description file.
Value

A list representing a parsed window description file that can be directly passed to createWin.



pause 141

Note

All widgets are forced into a 1-column by N-row grid.

Author(s)
Alex Couture-Beil, Malaspina University-College, Nanaimo BC

See Also

createWin, compileDescription

Examples

## Not run:
x<-parseWinFile(system.file("examples/LissFigWin.txt",package="PBSmodelling"))
createWin(x)

## End(Not run)

pause Pause Between Graphics Displays or Other Calculations

Description

Pause, typically between graphics displays. Useful for demo purposes.

Usage

pause(s = "Press <Enter> to continue")
Arguments

S text issued on the command line when pause is invoked.
Author(s)

Jon Schnute, Pacific Biological Station, Nanaimo BC

PBSmodelling PBS Modelling

Description

PBS Modelling provides software to facilitate the design, testing, and operation of computer models. It
focuses particularly on tools that make it easy to construct and edit a customized graphical user interface
(GUI). Although it depends heavily on the R interface to the Tc1/Tk package, a user does not need to
know Tecl/Tk.

PBSmodelling contains examples that illustrate models built uisng other R packages, including PBSmapping,
odesolve, PBSddesolve, and BRugs. It also serves as a convenient prototype for building new R pack-
ages, along with instructions and batch files to facilitate that process.

The R directory . ../library/PBSmodelling/doc includes a complete user guide ‘PBSmodelling-UG.pdf’.
To use this package effectively, please consult the guide.



142 PBSoptions-class

PBS Modelling comes packaged with interesting examples accessed through the function runExamples ().
Additionally, users can view PBS Modelling widgets through the function testWidgets(). More gen-
erally, a user can run any available demos in his/her locally installed packages through the function
runDemos ().

PBSoptions-class S4: Project Options Class

Description

Projects commonly involve various settings or options such as paths to C compilers or other third-party
tools. PBSmodelling provides a set of option management functions for managing user specific options.
Options can be modified through the provided set of functions on the command line, or through a custom
GUI. These options can be saved to disk for use in subsequent R sessions.

To use PBSmodelling’s suite of option management functions, a PBSoptions object must be created for
each of your projects. Each PBSoptions object contains a distinct R environment where option values
are stored; this allows different projects to use overlapping option names without conflicts (provided
each project has its own PBSoptions class object).

Details

When a PBSoptions object is created with the new function, the initial.options list, if supplied, is
stored as initial user options in the object. The initialization routine then attempts to load user set
options from the filename file. If such a file exists, these values are stored in the PBSoptions object
overwriting any initial values as specified by initial.options

Option values are not directly stored in the object, but rather in an environment stored in the instance
slot. Using an environment rather than slots for storing options allows us to pass option object by
reference rather than value; that is, we can save options in the object without the need of returning a
new modified class object. It is therefore necessary that users use the functions listed in the "see also”
section to effectively manage user options.

Objects from the Class

Objects can be created by calls of the form
new("PBSoptions",filename,initial.options=1ist(),gui.prefix="option").

filename: default file name to use when saving and loading options to and from disk
initial.options: a list with distinctly named initial options to use if no previously saved file exists

gui.prefix: a prefix used to identify GUI variables which correspond to user options

Slots

instance: The R environment used to store options. Please do not use this directly; use the functions
listed under the ”see also” section.

Methods

print signature(x = "PBSoptions"): prints the list of options

Warning

Do not use the slots — use the access functions instead.



pickCol 143

Author(s)
Alex Couture-Beil

See Also

getOptions for retrieving and modifying user options

getOptionsFileName for retrieving and modifying the default options file name
loadOptions for loading and saving options from and to disk

getOptionsPrefix for retrieving and modifying the GUI prefix (for custom GUI interfaces)

loadOptionsGUI for setting GUI values to reflect user options and vice-versa

Examples

#initialize an option manager with a single logical option
.mypkg <<- new( "PBSoptions", filename="my_pkg.txt",
initial.options=1list( sillyhatday=FALSE ) )

#retrieving an option
silly <- getOptions( .mypkg, "sillyhatday" )
cat( "today is", ifelse( silly, "silly hat day!", "monday" ), "\n" )

#set an option
setOptions( .mypkg, sillyhatday = TRUE, photos = "/shares/silly_hat_photos" )

#create a GUI which works with options

createWin( c(

"check name=optionsillyhatday text=\"silly hat day\"",

"entry name=optionphotos mode=character label=\"photos directory\"",

"button func=doAction text=save action=saveOptionsGUI(.mypkg)" ), astext = TRUE )

#update GUI values based on values stored in .mypkg's options
loadOptionsGUI( .mypkg )
print(getOptions( .mypkg ))

pickCol Pick a Colour From a Palette and get the Hexadecimal Code

Description

Display an interactive colour palette from which the user can choose a colour.

Usage

pickCol(returnValue=TRUE)

Arguments

returnValue If TRUE, display the full colour palette, choose a colour, and return the hex value to
the R session.
If FALSE, use an intermediate GUI to interact with the palette and display the hex
value of the chosen colour.



144 plotACF

Value

A hexidecimal colour value.

Author(s)

Alex Couture-Beil, Malaspina University-College, Nanaimo BC

See Also

testCol

Examples

## Not run:
junk<-pickCol(); resetGraph(); addLabel(.5,.5,junk,cex=4,col=junk);

## End(Not run)

plotACF Plot Autocorrelation Bars From a Data Frame, Matriz, or Vector

Description

Plot autocorrelation bars (ACF) from a data frame, matrix, or vector.

Usage
plotACF(file, lags=20,
clrs=c("blue","red","green","magenta","navy"), ...)
Arguments
file data frame, matrix, or vector of numeric values.
lags maximum number of lags to use in the ACF calculation.
clrs vector of colours. Patterns are repeated if the number of fields exceeed the length of
clrs.

additional arguments for plot or lines.

Detalils

This function is designed primarily to give greater flexibility when viewing results from the R-package
BRugs. Use plotACF in conjuction with samplesHistory ("*",beg=0,plot=FALSE) rather than samplesAutoC
which calls plotAutoC.

Author(s)

Rowan Haigh, Pacific Biological Station, Nanaimo BC

Examples

resetGraph(); plotACF(trees,lwd=2,lags=30);



plotAsp 145

plotAsp Construct a Plot with a Specified Aspect Ratio

Description

Plot x and y coordinates using a specified aspect ratio.

Usage

plotAsp(x, y, asp=1, ...)

Arguments
X vector of x-coordinate points in the plot.
y vector of y-coordinate points in the plot.
asp y/x aspect ratio.
additional arguments for plot.
Details

The function plotAsp differs from plot(x,y,asp=1) in the way axis limits are handled. Rather than
expand the range, plotAsp expands the margins through padding to keep the aspect ratio accurate.

Author(s)

Alex Couture-Beil, Malaspina University-College, Nanaimo BC

Examples

x <- seq(0,10,0.1)

y <- sin(x)

par (mfrow=2:1)

plotAsp(x,y,asp=1,x1lim=c(0,10),ylim=c(-2,2), main="sin(x)")
plotAsp(x,y~2,asp=1,x1im=c(0,10) ,ylim=c(-2,2), main="sin"2(x)")

plotBubbles Construct a Bubble Plot from a Matriz

Description

Construct a bubble plot for a matrix z.

Usage

plotBubbles(z, xval=FALSE, yval=FALSE, dnam=FALSE, rpro=FALSE,
cpro=FALSE, rres=FALSE, cres=FALSE, powr=0.5, size=0.2, lwd=1,
clrs=c("black","red","blue"), hideO=FALSE, frange=0.1, prettyaxis=FALSE, ...)



146

Arguments

Z

xval

yval

dnam

rpro
cpro
rres
cres

powr

size
1wd
clrs
hideO
frange

prettyaxis

Details

plotBubbles

input matrix, array (2 dimensions) or data frame.

x-values and/or labels for the columns of z. if xval=TRUE, the first row contains
x-values for the columns.

y-values and/or labels for the rows of z. If yval=TRUE, the first column contains
y-values for the rows.

logical: if TRUE, attempt to use dimnames of input matrix z as xval and yval. The
dimnames are converted to numeric values and must be strictly inreasing or decreasing.
If successful, these values will overwrite previously specified values of xval and yval
or any default indices.

logical: if TRUE, convert rows to proportions.

logical: if TRUE, convert columns to proportions.

logical: if TRUE, use row residuals (subtract row means).
logical: if TRUE, use column residuals (subtract column means).

power transform. Radii are proportional to z"powr. Note: powr=0.5 yields bubble
areas proportional to z.

size (inches) of the largest bubble.

line width for drawing circles.

colours (3-element vector) used for positive, negative, and zero values, respectively.
logical: if TRUE, hide zero-value bubbles.

number specifying the fraction by which the range of the axes should be extended.
logical: if TRUE, apply the pretty function to both axes.

additional arguments for plotting functions.

The function plotBubbles essentially flips the z matrix visually. The columns of z become the x-values
while the rows of z become the y-values, where the first row is displayed as the bottom y-value and the
last row is displayed as the top y-value. The function’s original intention was to display proportions-at-

age vs. year.

Author(s)

Jon Schnute, Pacific Biological Station, Nanaimo BC

See Also

genMatrix

Examples

plotBubbles(round(genMatrix (40,20),0),clrs=c("green","grey","red"));

data(CCA.qbr)

plotBubbles (CCA.qgbr, cpro=TRUE,powr=.5,dnam=TRUE, size=.15,
ylim=c(0,70) ,xlab="Year",ylab="Quillback Rockfish Age")



plotCsum 147

plotCsum Plot Cumulative Sum of Data

Description

Plot the cumulative frequency of a data vector or matrix, showing the median and mean of the distri-

bution.
Usage
plotCsum(x, add = FALSE, ylim = c(0, 1), xlab = "Measure",
ylab = "Cumulative Proportion", ...)
Arguments
X vector or matrix of numeric values.
add logical: if TRUE, add the cumulative frequency curve to a current plot.
ylim limits for the y-axis.
xlab label for the x-axis.
ylab label for the y-axis.

additional arguments for the plot function.

Author(s)
Rowan Haigh, Pacific Biological Station, Nanaimo BC

Examples

x <- rgamma(n=1000,shape=2)
plotCsum(x)

plotDens Plot Density Curves from a Data Frame, Matriz, or Vector

Description

Plot the density curves from a data frame, matrix, or vector. The mean density curve of the data
combined is also shown.

Usage
plotDens(file, clrs=c("blue","red","green","magenta","navy"), ...)
Arguments
file data frame, matrix, or vector of numeric values.
clrs vector of colours. Patterns are repeated if the number of fields exceeed the length of

clrs.

additional arguments for plot or lines.



148 plotFriedEggs

Details

This function is designed primarily to give greater flexibility when viewing results from the R-package
BRugs. Use plotDens in conjuction with samplesHistory("*" ,beg=0,plot=FALSE) rather than samplesDensity
which calls plotDensity.

Author(s)

Rowan Haigh, Pacific Biological Station, Nanaimo BC

Examples

z <- data.frame(yl=rnorm(50,sd=2),y2=rnorm(50,sd=1) ,y3=rnorm(50,sd=.5))
plotDens(z,1wd=3)

plotFriedEggs Render a Pairs Plot as Fried Eggs and Beer

Description

Create a pairs plot where the lower left half comprises either fried egg contours or smoke ring contours,
the upper right half comprises glasses of beer filled to the correlation point, and the diagonals show
frequency histograms of the input data.

Usage

plotFriedEggs (A, eggs=TRUE, rings=TRUE, levs=c(0.01,0.1,0.5,0.75,0.95),
pepper=200, replace=FALSE, jitt=c(1,1), bw=25, histclr=NULL)

Arguments
A data frame or matrix for use in a pairs plot.
eggs logical: if TRUE, fry eggs in the lower panels.
rings logical: if TRUE, blow smoke rings in the lower panels.
levs explicit contour levels expressed as quantiles.
pepper number of samples to draw from A to pepper the plots.
replace logical: if TRUE, sample A with replacement.
jitt argument factor used by function base::jitter when peppering. If user supplies
two numbers, the first will jitter x, the second will jitter y.
bw argument bandwidth used by function KernSmooth: : bkde2D.
histclr user-specified colour(s) for histogram bars along the diagonal.
Details

This function comes to us from Dr. Steve Martell of the Fisheries Science Centre at UBC. Obviously
many hours of contemplation with his students at the local pub have contributed to this unique rendition
of a pairs plot.

Note

If eggs=TRUE and rings=FALSE, fried eggs are served.

If eggs=FALSE and rings=TRUE, smoke rings are blown.

If eggs=TRUE and rings=TRUE, only fried eggs are served.
If eggs=FALSE and rings=FALSE, only pepper is sprinkled.



plotTrace 149

Author(s)

Steve Martell, University of British Columbia, Vancouver BC

See Also

plotBubbles, scalePar

KernSmooth: :bkde2D, grDevices: :contourLines, graphics: :contour

Examples

x=rnorm(5000,10,3); y=-x+rnorm(5000,1,4); z=x+rnorm(5000,1,3)
A=data.frame(x=x,y=y,z=2)
for (i in 1:3)
switch(i,
{plotFriedEggs (A, eggs=TRUE,rings=FALSE) ;
pause("Here are the eggs...(Press Enter for next)")},
{plotFriedEggs (A, eggs=FALSE,rings=TRUE) ;
pause("Here are the rings...(Press Enter for next)")},
{plotFriedEggs (A, eggs=FALSE,rings=FALSE) ;
cat("Here is the pepper alone.\n")} )

plotTrace Plot Trace Lines from a Data Frame, Matriz, or Vector

Description

Plot trace lines from a data frame or matrix where the first field contains x-values, and subsequent fields
give y-values to be traced over x. If input is a vector, this is traced over the number of observations.

Usage
plotTrace(file, clrs=c("blue","red","green","magenta","navy"), ...)
Arguments
file data frame or matrix of x and y-values, or a vector of y-values.
clrs vector of colours. Patterns are repeated if the number of traces (y-fields) exceeed the
length of clrs.
additional arguments for plot or lines.
Details

This function is designed primarily to give greater flexibility when viewing results from the R-package
BRugs. Use plotTrace in conjuction with samplesHistory("*",beg=0,plot=FALSE) rather than samplesHistory
which calls plotHistory.

Author(s)

Rowan Haigh, Pacific Biological Station, Nanaimo BC

Examples

z <- data.frame(x=1:50,yl=rnorm(50,sd=3) ,y2=rnorm(50,sd=1) ,y3=rnorm(50,sd=.25))
plotTrace(z,1lwd=3)



150 presentTalk

presentTalk Run a Presentation in R

Description

Start an R talk from a talk description file that launches a control GUI.

Usage
presentTalk(talk)
Arguments
talk talk xml file name
Details

presentTalk is a tool that facilitates lectures and workshops in R. The function allows the presen-
ter to show code snippets alongside their execution, making use of R’s graphical capabilities. When
presentTalk is called, a graphical user interface (GUI) is launched that allows the user to control the
flow of the talk (e.g., switching between talks or skipping to various sections of a talk.

The automatic control buttons allow the user to move forward or backward in the talk. The GO button
moves forward one tag segment, the Back button moves back to the previous tag segment. The blue
buttons allow movement among sections - Prev to the previous section, Restart to the start of the
current section, and Next to the next section. Drop down lists are provided for both indicating the
current section and slide number and as an additional interface for jumping between different sections
or slide numbers.

In addition to the automatic menu items, a user can add buttons to the GUI that accomplish similar
purposes.
Note

See the PBSmodelling User’s Guide for more information.

Author(s)
Alex Couture-Beil

See Also

See PBStalk-class for more details on PBSmodelling’s talk presentation classes.

Examples

wd <- getwd() #save current directory

talk_dir <- system.file("examples", package = "PBSmodelling" )
setwd( talk_dir )

presentTalk( "swisstalk.xml" )

#restore working directory once talk GUI is closed
setwd( wd )



promptOpenFile 151

promptOpenFile Deprecated: Display Dialogue: Open File

Description

Deprecated: use selectFile instead.

Usage
promptOpenFile(initialfile="", filetype=list(c("*","All Files")),
open=TRUE)
Arguments
initialfile file name of the text file containing the list.
filetype a list of character vectors indicating file types made available to users of the GUI. Each
vector is of length one or two. The first element specifies either the file extension or
"x" for all file types. The second element gives an optional descriptor name for the
file type. The supplied filetype list appears as a set of choices in the pull-down box
labelled “Files of type:””.
open logical: if TRUE display Open prompt, if FALSE display Save As prompt.
Value

The file name and path of the file selected by the user.

Note

*** This function is deprecated and will be removed in a future version. Use selectFile. ***

Author(s)

Alex Couture-Beil, Malaspina University-College, Nanaimo BC

See Also

selectFile

promptSaveFile Deprecated: Display Dialogue: Save File

Description

Deprecated: use selectFile instead.

Usage

promptSaveFile(initialfile="", filetype=list(c("*", "All Files")),
save=TRUE)



152 prompt WriteOptions

Arguments
initialfile file name of the text file containing the list.
filetype a list of character vectors indicating file types made available to users of the GUI. Each
vector is of length one or two. The first element specifies either the file extension or
"x" for all file types. The second element gives an optional descriptor name for the
file type. The supplied filetype list appears as a set of choices in the pull-down box
labelled “Files of type:”.
save logical: if TRUE display Save As prompt, if FALSE display Open prompt.
Value

The file name and path of the file selected by the user.

Note

*** This function is deprecated and will be removed in a future version. Use selectFile. ***

Author(s)
Alex Couture-Beil, Malaspina University-College, Nanaimo BC

See Also

selectFile

promptWriteOptions Prompt the User to Write Changed Options

Description

If changes have been made to PBS options, this function allows the user to choose whether to write PBS
options to an external file that can be loaded later by readPBSoptions.

Usage

promptWriteOptions(fname="")

Arguments

fname name of file where options will be saved.

Details

If there are options that have been changed in the GUI but have not been commited to PBSmodelling
memory in the global R environment, the user is prompted to choose whether or not to commit these
options.

Then, if any PBS options have been changed, the user is prompted to choose whether to save these
options to the file fname. (When a new R session is started or when a call to readPBSoptions or
writePBSoptions is made, PBS options are considered to be unchanged; when an option is set, the
options are considered to be changed).

If fname="", the user is prompted to save under the file name last used by a call to readPBSoptions or
writePBSoptions if available. Otherwise, the default file name "PBSoptions.txt” is used.



readList 153

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

writePBSoptions, readPBSoptions, setPBSoptions

Examples

## Not run:
promptWriteOptions() #uses default filename PBSoptions.txt

## End(Not run)

readList Read a List from a File in PBS Modelling Format

Description
Read in a list previously saved to a file by writeList. At present, only two formats are supported - R’s

native format used by the dput function or an ad hoc PBSmodelling format. The function readList
detects the format automatically.

For information about the PBSmodelling format, see writeList.

Usage

readList (fname)

Arguments

fname file name of the text file containing the list.

Author(s)

Alex Couture-Beil, Malaspina University-College, Nanaimo BC

See Also

packList, unpackList, writelList



154 resetGraph

readPBSoptions Read PBS Options from an FExternal File

Description

Load options that were saved using writePBSoptions, for use with openFile, getPBSoptions or inter-
faces such as loadC.

Usage

readPBSoptions (fname="PBSoptions.txt")

Arguments

fname file name or full path of file from which the options will be loaded.

Note

If an option exists in R memory but not in the saved file, the option is not cleared from memory.

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

writePBSoptions, getGUIoptions, openFile, getPBSoptions

resetGraph Reset par Values for a Plot

Description

Reset par () to default values to ensure that a new plot utilizes a full figure region. This function helps
manage the device surface, especially after previous plotting has altered it.

Usage

resetGraph(reset.mf=TRUE)

Arguments

reset.mf if TRUE reset the multi-frame status; otherwise preserve mfrow, mfcol, and mfg

Detalils

This function resets par () to its default values. If reset.mf=TRUE, it also clears the graphics device
with frame (). Otherwise, the values of mfrow, mfcol, and mfg are preserved, and graphics continues
as usual in the current plot. Use resetGraph only before a high level command that would routinely
advance to a new frame.



restorePar 155

Value

invisible return of the reset value par ()

Author(s)

Jon Schnute, Pacific Biological Station, Nanaimo BC

restorePar Get Actual Parameters from Scaled Values

Description

Restore scaled parameters to their original units. Used in minimization by calcMin.

Usage

restorePar (S, pvec)

Arguments
S scaled parameter vector.
pvec a data frame comprising four columns - c("val","min","max","active") and as
many rows as there are model parameters. The "active" field (logical) determines
whether the parameters are estimated (TRUE) or remain fixed (FALSE).
Details

Restoration algorithm: P = P, + (Praz — P,mn)(sm(’r—QS))2

Value

Parameter vector converted from scaled units to original units specified by pvec.

Author(s)

Jon Schnute, Pacific Biological Station, Nanaimo BC

See Also

scalePar, calcMin, GTO

Examples

pvec <- data.frame(val=c(1,100,10000) ,min=c(0,0,0) ,max=c(5,500,50000) ,
active=c (TRUE, TRUE, TRUE) )

S <- ¢(.5,.5,.5)

P <- restorePar(S,pvec)

print(cbind(pvec,S,P))



156 runExample

runDemos Interactive GUI for R Demos

Description
An interactive GUI for accessing demos from any R package installed on the user’s system. runDemos is
a convenient alternative to R’s demo function.

Usage

runDemos (package)

Arguments

package display demos from a particular package (optional).

Details

If the argument package is not specified, the function will look for demos in all packages installed on
the user’s system.

Note

The runDemos GUI attempts to retain the user’s objects and restore the working directory. However,
pre-existing objects will be overwritten if their names co-incide with names used by the various demos.
Also, depending on conditions, the user may lose working directory focus. We suggest that cautious
users run this demo from a project where data objects are not critical.

Author(s)
Alex Couture-Beil, Malaspina University-College, Nanaimo BC

See Also

runExamples for examples specific to PBSmodelling.

runExample Run a Single GUI Example Included with PBS Modelling

Description

Display a GUI to demonstrate one PBS Modelling example.
The example source files can be found in the R directory . ../library/PBSmodelling/examples.

Usage
runExample (ex, pkg="PBSmodelling")

Arguments
ex string specifying an example in the pkg directory examples.

pkg package with an examples subdirectory.



runExamples 157

Details

If no example is specified or if the example does not exist, a GUI pops up informing you of potential
choices. Note that the string choice is case-sensitive.

Some examples use external packages which must be installed to work correctly:
BRugs - LinReg, MarkRec, and CCA;

odesolve/PBSddesolve - FishRes;

PBSmapping - FishTows.

Note

The examples are copied from . ../library/PBSmodelling/examples to R’s current temporary working
directory and run from there.

Author(s)
Rowan Haigh, Pacific Biological Station, Nanaimo BC

See Also

runDemos, runExamples

runExamples Run GUI Examples Included with PBS Modelling

Description

Display an interactive GUI to demonstrate PBS Modelling examples.
The example source files can be found in the R directory .../library/PBSmodelling/examples.

Usage

runExamples ()

Details

Some examples use external packages which must be installed to work correctly:
BRugs - LinReg, MarkRec, and CCA;

odesolve/PBSddesolve - FishRes;

PBSmapping - FishTows.

Note

The examples are copied from . ../library/PBSmodelling/examples to R’s current temporary working
directory and run from there.

Author(s)

Alex Couture-Beil, Malaspina University-College, Nanaimo BC

See Also

runDemos, runExample



158 selectDir

scalePar Scale Parameters to [0,1]

Description

Scale parameters for function minimization by calcMin.

Usage
scalePar (pvec)
Arguments
pvec a data frame comprising four columns - c("val","min","max","active") and as
many rows as there are model parameters. The "active" field (logical) determines
whether the parameters are estimated (TRUE) or remain fixed (FALSE).
Details

1 1 . — 2 y prnu'n
Scaling algorithm: S = Zasin,/ 5

maz—Pmin

Value

Parameter vector scaled between 0 and 1.

Author(s)

Jon Schnute, Pacific Biological Station, Nanaimo BC

See Also

restorePar, calcMin, GTO

Examples

pvec <- data.frame(val=c(1,100,10000) ,min=c(0,0,0) ,max=c(5,500,50000),
active=c (TRUE, TRUE, TRUE) )

S <- scalePar (pvec)

print(cbind(pvec,S))

selectDir Display Dialogue: Select directory

Description

Display the default directory chooser prompt provided by the Operating System.

Usage

selectDir(initialdir=getwd(), mustexist=TRUE, title="",
usewidget=NULL)



selectFile

Arguments
initialdir
mustexist
title

usewidget

Value

159

initially selected directory
if logical value is TRUE, only a existing directory can be selected
title for the prompt window

store the selected directory in the named entry widget

The directory path selected by the user

Author(s)

Alex Couture-Beil

See Also

selectFile

Examples

## Not run:

dir(selectDir(title="select a directory to list contents of"))

#integration with widget via doAction
createWin( c( "entry foo mode=character",
"button text=\"select dir\"
func=doAction action=\"selectDir(usewidget="foo )\"" ), astext=TRUE )

## End(Not run)

selectFile

Display Dialogue: Open or Save File

Description

Display the default Open or Save prompt provided by the Operating System.

Usage

selectFile(initialfile="", initialdir=getwd(),
filetype=list(c("*","All Files")), mode="open", multiple=FALSE,

title="", defaultextension="", usewidget=NULL)
Arguments
initialfile initially selected file
initialdir initially directory the dialog opens
filetype a list of character vectors indicating file types made available to users of the GUI. Each

vector is of length one or two. The first element specifies either the file extension or
"x" for all file types. The second element gives an optional descriptor name for the
file type. The supplied filetype list appears as a set of choices in the pull-down box
labelled “Files of type:”.



160 setFileOption

mode string: if "save" display Save As prompt, if "open" display Open prompt.

multiple if TRUE the open prompt can select multiple files. This has no effect for the save
prompt.

title title for the prompt window

defaultextension

default file extension if none is provided by the user

usewidget store the selected file in the named entry widget

Value
The file name and path of the file(s) selected by the user.

Author(s)

Alex Couture-Beil

See Also

selectDir

Examples

## Not run:
# Open a filename, and return it line by line in a vector
scan(promptOpenFile () ,what=character(),sep="\n")

# Illustrates how to set filetype.
promptOpenFile("intial_file.txt", filetype=list(c(".txt", "text files"),
c(".r", "R files"), c("x", "All Files")))

#integration with widget via doAction
createWin( c( "entry foo mode=character",
"button text=\"select file\"
func=doAction action=\"selectFile(usewidget="foo )\"" ), astext=TRUE )

## End(Not run)

setFileOption Set a PBS File Path Option Interactively

Description
Set a PBS option by browsing for a file. This function provides an alternative to using setPBSoptions
when setting an option that has a path to a file as its value.

Usage

setFileOption(option)

Arguments

option name PBS option to change



setGUloptions 161

Note

If all the required arguments are missing, it is assumed that the function is being called by a GUI widget.

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

setPathOption, setPBSoptions

Examples

## Not run:
setPathOption("editor")

## End(Not run)

setGUIoptions Set PBS Options from Widget Values

Description

Set PBS options from corresponding values of widgets in a GUI.

Usage

setGUIoptions (option)

Arguments

option the name of a single option or the string "=".

Details

A GUI may have PBS options that it uses, which have corresponding widgets that are used for entering
values for these options. These are declared by declareGUIoptions.

If the option argument is the name of an option, setGUIoptions transfers the value of this option from
a same-named widget into PBS options global R environment database.

If the option argument is "*", then all the options that have been declared by declareGUIoptions will
be transferred in this fashion.

To use this function in a window description file, the option argument must be specified as the action
of the widget that calls setGUIoptions — action=editor or action=* for example.

Note

If all the required arguments are missing, it is assumed that the function is being called by a GUI widget.

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC



162 setPathOption

See Also

declareGUIoptions, getGUIoptions, setPBSoptions,

Examples

## Not run:
setGUIoptions("editor")

## End(Not run)

setPathOption Set a PBS Path Option Interactively

Description

Set a PBS option by browsing for a directory. This function provides an alternative to using setPBSoptions
when setting an option that has a path as its value.

Usage

setPathOption(option)

Arguments

option name PBS option to change

Note

If all the required arguments are missing, it is assumed that the function is being called by a GUI widget.

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

setFileOption, setPBSoptions

Examples

## Not run:
setPathOption("myPath")

## End(Not run)



setPBSext 163

setPBSext Set a Command Associated with a File Name Extension

Description

Set a command with an associated extension, for use in openFile. The command must specify where
the target file name is inserted by indicating a "%£".

Usage

setPBSext (ext, cmd)

Arguments

ext string specifying the extension suffix.

cmd command string to associate with the extension.
Note

These values are not saved from one PBS Modelling session to the next.

Author(s)

Alex Couture-Beil, Malaspina University-College, Nanaimo BC

See Also

getPBSext, openFile, clearPBSext

setPBSoptions Set A User Option

Description

Options set by the user for use by other functions.

Usage

setPBSoptions(option, value, sublist=FALSE)

Arguments
option name of the option to set.
value new value to assign this option.
sublist if value is a sublist (list component) of option, this list component can be changed

individually using sublist=TRUE.



164 set WidgetColor

Note

A value .PBSmod$.options$.optionsChanged is set to TRUE when an option is changed, so that the

user doesn’t always have to be prompted to save the options file.

By default, .PBSmod$.options$.optionsChanged is not set or NULL.

Also, if an option is set to "" or NULL then it is removed.

.initPBSoptions () is now called first (options starting with a dot ”.” do not set .optionsChanged).
Author(s)

Alex Couture-Beil, Malaspina University-College, Nanaimo BC

See Also

getPBSoptions, writePBSoptions, readPBSoptions

setwdGUI Browse for Working Directory and Optionally Find Prefix

Description
Allows the user to browse a directory tree to set the working directory. Optionally, files with given
suffixes can be located in the new directory.

Usage
setwdGUI ()

Examples

createWin( "button text=\"Change working directory\" func=setwdGUI", astext=TRUE )

setWidgetColor Update Widget Color

Description

Update the foreground and background colors of a widget

Usage
setWidgetColor( name, radioValue, winName = .PBSmod$.activeWin, ... )
Arguments
name the name of the widget
radioValue if specified, modify a particular radio option, as identified by the value, rather than
the complete set (identified by the common name)
winName window from which to select the GUI widget. The window that most recently receive

user input is used by default if winname is not supplied

YR

any combination of "fg”, "bg”, "disablefg”, "disablebg”, "entryfg”, entrybg”, "noeditfg”,
"noeditbg” arguments, depending on type of widget - see details



set WidgetColor 165

Details

The setWidgetColor function allows dynamic updating of widget colors during program execution. How-
ever, two factors determine whether dynamic color updating is possible for a particular widget: (i) the
type of widget, and (ii) the nature of the Tk implementation in the underlying widget library. Thus, a
given widget may not support all combinations of colour variables. The following widgets support the
corresponding options:

button: fg, bg, disablefg

check: fg, bg, disablefg, entryfg, entrybg
data: entryfg, entrybg, noeditfg, noeditbg
droplist: fg, bg

entry: entryfg, entrybg, noeditfg, noeditbg
label: fg, bg

matrix: entryfg, entrybg, noeditfg, noeditbg
object: entryfg, entrybg, noeditfg, noeditbg
progressbar: fg, bg

radio: fg, bg

slide: fg, bg

spinbox: entryfg, entrybg

text: fg, bg

vector: entryfg, entrybg, noeditfg, noeditbg

These options are described in the PBSmodelling User Guide under Appendix A.

Be aware that Tk uses gray for the highlight color during a selection operation. This means that when
the background colour is also gray, there is no visual clue that the value has been selected for a copy
operation.

Author(s)

Alex Couture-Beil and Allen R. Kronlund

Examples

createWin("label \"hello world\" name=hello", astext=TRUE)
setWidgetColor( "hello", bg="lightgreen", fg="purple" )

createWin("vector names=v length=3 values=\"1 2 3\"", astext=TRUE)
setWidgetColor( "v[1]", entrybg="lightgreen", entryfg="purple" )
setWidgetColor( "v[2]", entrybg="green", entryfg="purple" )
setWidgetColor( "v[3]", entrybg="forestgreen", entryfg="purple" )



166 set WidgetState

setWidgetState Update Widget State

Description

Update the read-only state of a widget.

Usage

setWidgetState( varname, state, radiovalue, winname, warn=TRUE )

Arguments
varname the name of the widget
state "normal” or ”disabled” and for some widgets "readonly” as described under Details
below.
radiovalue if specified, disable a particular radio option, as identified by the value, rather than
the complete set (identified by the common name)
winname window from which to select the GUI widget. The window that most recently receive
user input is used by default if winname is not supplied.
warn if TRUE, display a warning if readonly is converted to disabled (only applies for widgets
that don’t accept readonly)
Details

The setWidgetState function allows dynamic control of widget functioning during program execution.
The function serves as a wrapper for the tkconfigure function available in the underlying Tk libraries
used by PBS Modelling. Thus, setWidgetState is only available for those widgets that use Tk library
widgets.

The state of the following PBS Modelling widgets can be set to "normal” or ”disabled”: button, check,
data, droplist, entry, matrix, object, radio, slide, spinbox, table, text, and vector. When the state
variable is set to ”disabled”, values displayed in the widget cannot be changed or copied except in the
case of the object and table widgets which permit the values to be copied.

The data, entry, matrix, and vector widgets support a "readonly” state that allows values displayed in the
widget to be copied but not changed. The displayed value can be selected using the keyboard or mouse.
However, the copy and paste operations can only be accomplished via Ctrl-C and Ctrl-V, respectively,
not the mouse.

Be aware that Tk uses gray for the highlight color during a selection operation. This means that when
the background colour is also gray, there is no visual clue that the value has been selected for a copy
operation.

Exceptions to the behavior determined by state include the object, table and text widgets. There is no
“readonly” state applicable to these widgets. Nevertheless, the values displayed can be copied even when
the state is "disabled”.

Individual radio widgets grouped by the name variable of a radio declaration can be updated by specifying
radiovalue in the call to setWidgetState.

The state of individual elements in the data, matrix, and vector widgets can be updated by indexing.
For the vector and matrix widgets any element can be addressed by appending the desired index to the
widget name using square brackets (e.g., "myVec[2]” or "myMatrix[2,3]”). The data widget is indexed
differently than the matrix widget by adding "d” after the brackets (e.g., "myData[1,1]d”). This change
in syntax is required for internal coding of PBS Modelling.



setWinAct 167

Author(s)

Alex Couture-Beil and Allen R. Kronlund

Examples

## Not run:

winDesc <- c('vector length=3 name=vec labels="normal disabled readonly" values="1 2 3"',
"matrix nrow=2 ncol=2 name=mat", "button name=but_name" );

createWin(winDesc, astext=TRUE)

setWidgetState( "vec[1]", "normal" )
setWidgetState( "vec[2]", "disabled" )
setWidgetState( "vec[3]", "readonly" )
setWidgetState( "mat", "readonly" )

setWinVal( list( mat = matrix( 1:4, 2, 2 ) ) )

#works for buttons too
setWidgetState( "but_name", "disabled" )

## End(Not run)

setWinAct Add a Window Action to the Saved Action Vector

Description

Append a string value specifying an action to the first position of an action vector.

Usage

setWinAct(winName, action)

Arguments
winName window name where action is taking place.
action string value describing an action.

Details

When a function is called from a GUI, a string descriptor associated with the action of the function is
stored internaly (appended to the first position of the action vector). A user can utilize this action as a
type of argument for programming purposes. The command getWinAct () [1] yields the latest action.

Sometimes it is useful to “fake” an action. Calling setWinAct allows the recording of an action, even if
a button has not been pressed.

Author(s)

Alex Couture-Beil, Malaspina University-College, Nanaimo BC



168 setWinVal

setWinVal Update Widget Values

Description

Update a widget with a new value.

Usage

setWinVal(vars, winName)

Arguments
vars a list or vector with named components.
winName window from which to select GUI widget values. The default takes the window that
has most recently received new user input.
Details

The vars argument expects a list or vector with named elements. Every element name corresponds to
the widget name which will be updated with the supplied element value.

The vector, matrix, and data widgets can be updated in several ways. If more than one name is
specified for the names argument of these widgets, each element is treated like an entry widget.

If however, a single name describes any of these three widgets, the entire widget can be updated by
passing an appropriately sized object.

Alternatively, any element can be updated by appending its index in square brackets to the end of the
name. The data widget is indexed differently than the matrix widget by adding ”d” after the brackets.
This tweak is necessary for the internal coding (bookkeeping) of PBS Modelling. Example: "foo[1,1]14d".

Author(s)

Alex Couture-Beil, Malaspina University-College, Nanaimo BC

See Also

getWinVal, createWin

Examples

## Not run:
winDesc <- c("vector length=3 name=vec",
"matrix nrow=2 ncol=2 name=mat",
"slideplus name=foo");
createWin(winDesc, astext=TRUE)
setWinVal (list(vec=1:3, "mat[1,1]"=123, foo.max=1.5, foo.min=0.25, f00=0.7))

## End(Not run)



show( 169

showO Convert Numbers into Text with Specified Decimal Places

Description
Return a character representation of a number with added zeroes out to a specified number of decimal
places.

Usage

showO(x, n, add2int=FALSE, round2n=FALSE)

Arguments
X numeric data (scalar, vector, or matrix).
n number of decimal places to show, including zeroes.
add2int if TRUE, add zeroes to integers after the decimal.
round2n if TRUE, round x first to n decimal places.

Value

A scalar/vector of strings representing numbers. Useful for labelling purposes.

Note

By default, this function does not round or truncate numbers. It simply adds zeroes if n is greater than
the available digits in the decimal part of a number. The user can choose to round the numbers first by
setting argument round2n = TRUE.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

pado, GTO

Examples

frame ()

#do not show decimals on integers
addLabel (0.25,0.75,show0(15.2,4))
addLabel (0.25,0.7,show0(15.1,4))
addLabel (0.25,0.65,show0(15,4))

#show decimals on integers

addLabel (0.25,0.55,show0(15.2,4,TRUE))
addLabel(0.25,0.5,show0(15.1,4,TRUE))
addLabel (0.25,0.45,show0(15,4,TRUE))



170 showArgs

showAlert Display a Message in an Alert Window

Description

Display an alert window that contains a specified message and an OK button for dismissing the window.

Usage

showAlert (message, title="Alert", icon="warning")

Arguments

message message to display in alert window

title title of alert window

icon icon to display in alert window; options are "error", "info", "question", or "warning".
Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

getYes

Examples

## Not run:
showAlert ("Hello World!")

## End(Not run)

showArgs Display Expected Widget Arqguments

Description

For each widget specified, display its arguments in order with their default values. The display list can
be expanded to report each argument on a single line.

Usage

showArgs (widget, width=70, showargs=FALSE)

Arguments
widget vector string of widget names; if not specified (default), the function displays informa-
tion about all widgets in alphabetical order.
width numeric width used by strwrap to wrap lines of the widget usage section.
showargs logical:, if TRUE, the display also lists each argument on single line after the widget

usage section.



showHelp 171

Value

A text stream to the R console. Invisibly returns the widget usage lines.

Author(s)

Alex Couture-Beil, Malaspina University-College, Nanaimo BC

showHelp Display HTML Help Pages for Packages in Browser

Description
Display the help pages for installed packages that match the supplied pattern in an HTML browser
window.

Usage

showHelp(pattern="methods", ...)

Arguments
pattern string pattern to match to package names

allows user to specify two additional arguments:
remote - character string giving a valid URL for the R_HOME directory on a remote
location;
update - logical: if TRUE, attempt to update the package index to reflect the currently
available packages. (Not attempted if remote is non-NULL.)

Details

The specified pattern is matched to R-packages installed on the user’s system. The code uses the utils
function browseURL to display the HTML Help Pages using a browser that the system associates with
html extensions. (See help for browseURL for other operating systems.

Value

A list is invisibly returned, comprising:

Apacks all packages installed on user’s system
Spacks selected packages based on specified pattern
URLs path and file name of HTML Help Page

Help pages are displayed in a separate browser window.

Note

The connection time for browsers (at least in Windows OS) is slow. If the HTML browser program is
not already running, multiple matching pages will most likely not be displayed. However, subsequent
calls to showHelp should show all matches.

Author(s)

Rowan Haigh, Pacific Biological Station, Nanaimo BC



172 showRes

See Also

viewCode, showPacks

showPacks Show Packages Required But Not Installed

Description
Show the packages specified by the user and compare these to the installed packages on the user’s system.
Display packages not installed.
Usage
showPacks (packs=c ("PBSmodelling", "PBSmapping","PBSddesolve",
"rgl","deSolve","akima","deldir","sp","maptools","KernSmooth"))
Arguments

packs string vector of package names that are compared to installed packages.

Value

Invisibly returns a list of Apacks (all packages installed on user’s system), Ipacks (packages in packs
that are installed), and Mpacks (packages that are missing).

Author(s)

Jon Schnute, Pacific Biological Station, Nanaimo BC

showRes Show Results of Expression Represented by Text

Description

Evaluate the supplied expression, reflect it on the command line, and show the results of the evaluation.

Usage

showRes (x, cr=TRUE, pau=TRUE)

Arguments

X an R expression to evaluate

cr logical: if TRUE, introduce extra carriage returns

pau logical: if TRUE, pause after expression reflection and execution
Value

The results of the expression are return invisibly.



showVignettes 173

Author(s)

Jon Schnute, Pacific Biological Station, Nanaimo BC

Examples

showRes ("x=rnorm(100) " ,pau=FALSE)

showVignettes Display Vignettes for Packages

Description

Create a GUI that displays all vignettes for installed packages. The user can choose to view the source
file for building the vignette or the final .pdf file.

Usage

showVignettes (package)

Arguments

package character string specifying package name that exists in the user’s R library

Details

If the argument package is not specified, the function will look for vignettes in all packages installed on
the user’s system. The user can choose to view the source file for building the vignette (usually *.Rnw
or *.Snw files) or the final build from the source code (*.pdf).

showVignettes uses the PBSmodelling function openFile to display the .Rnw and .pdf files using
programs that the system associates with these extensions. On systems that do not support file extension
associations, the function setPBSext can temporarily set a command to associate with an extension.

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

showHelp, openFile, setPBSext, getPBSext



174 talk-class

sortHistory Sort an Active or Saved History

Description
Utility to sort history. When called without any arguments, an interactive GUI is used to pick which
history to sort. When called with hisname, sort this active history widget. When called with file and
outfile, sort the history located in file and save to outfile.

Usage

sortHistory(file="", outfile=file, hisname="")

Arguments

file file name of saved history to sort.

outfile file to save sorted history to.

hisname name of active history widget and window it is located in, given in the form WINDOW.HISTORY.
Details

After selecting a history to sort (either from given arguments, or interactive GUI) the R data editor
window will be displayed. The editor will have one column named \"new\” which will have numbers
1,2,3,...,n. This represents the current ordering of the history. You may change the numbers around to
define a new order. The list is sorted by reassigning the index in row i as index i.

For example, if the history had three items 1,2,3. Reordering this to 3,2,1 will reverse the order; changing
the list to 1,2,1,1 will remove entry 3 and create two duplicates of entry 1.

Author(s)
Alex Couture-Beil, Malaspina University-College, Nanaimo BC

See Also

importHistory, initHistory

talk-class S4: Present Talk Classes

Description

The function presentTalk is a tool that facilitates lectures and workshops in R. It allows the presenter
to show code snippets alongside their execution, making use of R’s graphical capabilities.

For presentTalk to work, six S4 class objects are created:

talk...... root element that constitutes a talk;

section. . .branch element that defines a section within a talk;
text...... leaf element that specifies text to be printed on the R console;
file...... leaf element that specifies files to be opened by the OS;
code...... leaf element that specifies R code to be executed;

break..... leaf element that specifies where to allow a break in the talk.



talk-class 175

The leaf elements, also termed primitive elements, occur in isolation and cannot contain other elements.
Therefore, only two levels of nesting are supported: sections within a talk and primitives within a section.
See Appendix B in the PBSmodelling User’s Guide for more information.

Detalils

This function uses a convenience function called xm1GetAttr (from the package XML) that retrieves the
value of a named attribute in an XML node.

The function presentTalk translates the XML code into a list structure called . presentTalk below the
global object .PBSmod. The GUI is represented as a list structure called presentwin under .PBSmod, as
for all GUI objects in PBSmodelling.

Slots Available

talk

name character string giving the name of the talk (required)

sections list list of sections within the talk

files list list of files within the talk

section

name character string giving the name of the section (required)

items list list of the four primitive (leaf-element) S4 classes

button logical should GUI have a button that selects section?

col integer column in lower section of GUI to place button

section_id integer specify if section does not immediately follow a talk

text

text character text to display on the R console

"break" logical break the presentation after displaying the text specified?

file

name character string giving the name in the GUI for a group of files to open (required)
filename character individual file names associated with the group name in the GUI
"break" logical break the presentation after opening the group of files?

button logical should GUI add a button that opens this group of files?

col integer column in lower section of GUI to place button

code

show logical show the code snippet in the R console?

print logical print the results of running the R code?

code character the actual chunk of R code

"break" character string describing where to introduce breaks in the code segment
eval logical evaluate the R code?

break

.xData NULL allows a break in the talk for user interaction on the R console.

Creating S4 Objects

Objects can be created by calls of the form:

new("talk", name=name)

new("section",

name = node$attributes["name"],
button = as.logical(zxmlGetAttr(node,"button",FALSE)),
col = as.integer (xmlGetAttr(node,"col",2)))

new("text",



176 testAlpha

text = xmlValue (node),

"break" = as.logical(xmlGetAttr(node,"break",TRUE)))
new("file",

name = xmlGetAttr (node, "name",""),

"break" = as.logical(xmlGetAttr(node,"break",TRUE)),

filename = xmlValue(node),

button = as.logical(zxmlGetAttr(node,"button",FALSE)),

col = as.integer (xmlGetAttr(node,"col",3)))
new("code",

show = as.logical(xmlGetAttr(node,"show",TRUE)),

print = as.logical(xmlGetAttr(node,"print",TRUE)),

code = xmlValue (node),

"break" = tolower (xmlGetAttr(node,"break","print")))

new ("break")

Author(s)

Alex Couture-Beil

See Also

presentTalk for presenting a talk in R.
xmlGetAttr for retrieving the value of a named attribute in an XML node.
setClass for creating a class definition.

PBSoptions-class for a complicated S4 class implementation.

testAlpha Test Various Alpha Transparency Values

Description

Display how the alpha transparency for rgb() varies.

Usage
testAlpha(alpha=seq(0,1,len=25), fg="blue", bg="yellow",
border="black", grid=FALSE, ...)
Arguments
alpha numeric vector of alpha transparency values values from 0 to 1.
fg forground colour of the top shape that varies in trnasparency.
bg background colour (remains constant) of the underlying shape.
border border colour (which also changes in transparency) of the foreground polygon.
grid logical: if TRUE, lay a grey grid on the background colour.

additional graphical arguments to send to the the ploting functions.

Value

Invisibly returns the compound RGB matrix for fg, alpha, bg, and border.



testCol 177

Author(s)

Jon Schnute, Pacific Biological Station, Nanaimo BC

See Also

testCol, testPch, testLty, testLwd

testCol Display Colours Available Using a Set of Strings

Description

Display colours as round patches in a plot. Useful for programming purposes. Colours can be specified
in any of 3 different ways:

(i) by colour name,

(ii) by hexadecimal colour code created by rgb(), or

(iii) by calling one of the colour palettes.

Usage

testCol (cnam=colors () [sample(length(colors()),15)1)

Arguments
cnam vector of colour names to display. Defaults to 15 random names from the color palette
to use as patterns.
Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

pickCol, testAlpha, testPch, palettes

Examples

# mix and match patterns
testCol(c("sky","fire","sea","wood"))

# display transparencies of blue
testCol(rgb(0,0,1,seq(0.05,1,0.05)))

# display colours of the rainbow
testCol(rainbow(64,end=0.75))

# display basic palette colours
testCol(1l:length(palette()))

# mix colour types
testCol(c("#9e7ad3", "purple", 6))



178 testLwd

testLty Display Line Types Available

Description

Display line types available.

Usage
testLty(newframe=TRUE, n=1:18, ...)

Arguments
newframe if TRUE, create a new blank frame, otherwise overlay current frame.
n vector of line type numbers.
additional arguments for function lines.
Note

Quick representation of line types for reference purposes.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

testLwd, testPch, testCol

testLwd Display Line Widths

Description
Display line widths. User can specify particular ranges for 1lwd. Colours can also be specified and are
internally repeated as necessary.

Usage
testLwd(lwd=1:20, col=c("black","blue"), newframe=TRUE)

Arguments
1lwd line widths to display. Ranges can be specified.
col colours to use for lines. Patterns are repeated if length(lwd) > length(col).
newframe if TRUE, create a new blank frame, otherwise overlay current frame.

Author(s)

Rowan Haigh, Pacific Biological Station, Nanaimo BC

Examples

testLwd(3:15,col=c("salmon", "aquamarine","gold"))



testPch 179

testPch Display Plotting Symbols or Octal Strings

Description
Display plotting symbols or octal strings. User can specify particular ranges (increasing continuous
integer) for pch.

Usage

testPch(pch=1:100, ncol=10, grid=TRUE, newframe=TRUE, octal=FALSE, ...)

Arguments
pch symbol codes or octal string numbers.
ncol number of columns in display (can only be 2, 5, or 10). Most sensibly this is set to 10.
grid logical: if TRUE, grid lines are plotted for visual aid.
newframe logical: if TRUE reset the graph, otherwise overlay on top of the current graph.
octal logical: if TRUE, show octal strings (backslash characters) used in text statements (e.g.,
"30\272C" = 30°C).
additional arguments for functions points or text.
Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

testLty, testlwd, addLabel

Examples

testPch(123:255)
testPch(1:25,ncol=5)
testPch(41:277,0ctal=TRUE)

testWidgets Display Sample GUIs and their Source Code

Description

Display an interactive GUI to demonstrate the available widgets in PBS Modelling. A text window
displays the window description file source code. The user can modify this sample code and recreate the
test GUI by pressing the button below.

The Window Description Files can be found in the R directory
.../library/PBSmodelling/testWidgets.

Usage

testWidgets ()



180 test Widgets

Details

Following are the widgets and default values supported by PBS Modelling. For detailed descriptions, see
Appendix A in ‘PBSModelling-UG.pdf’ located in the R directory .../library/PBSmodelling/doc.

button text="Calculate" font="" fg="black" bg="" disablefg=NULL
width=0 name=NULL function="" action="button" sticky=""
padx=0 pady=0

check name mode="logical" checked=FALSE text="" font="" fg="black"
bg="" disablefg=NULL function="" action="check" edit=TRUE
sticky="" padx=0 pady=0

data nrow ncol names modes="numeric" rowlabels="" collabels=""
rownames="X" colnames="Y" font="" fg="black" bg="" entryfont=""
entryfg="black" entrybg="white" noeditfg="black" noeditbg="gray"
values="" byrow=TRUE function="" enter=TRUE action="data"

edit=TRUE width=6 borderwidth=0 sticky="" padx=0 pady=0

droplist name values=NULL choices=NULL labels=NULL selected=1
add=FALSE font="" fg="black" bg="white" function="" enter=TRUE
action="droplist" edit=TRUE mode="character" width=20
sticky="" padx=0 pady=0

entry name value="" width=20 label=NULL font="" fg="" bg=""
entryfont="" entryfg="black" entrybg="white" noeditfg="black"
noeditbg="gray" edit=TRUE password=FALSE function="" enter=TRUE
action="entry" mode="numeric" sticky="" padx=0 pady=0

grid nrow=1 ncol=1 toptitle="" sidetitle="" topfont="" sidefont=""
topfg=NULL sidefg=NULL fg="black" topbg=NULL sidebg=NULL bg=""
byrow=TRUE borderwidth=1 relief="flat" sticky="" padx=0 pady=0

history name="default" function="" import="" fg="black" bg=""
entryfg="black" entrybg="white" text=NULL textsize=0 sticky=""
padx=0 pady=0

image file=NULL varname=NULL subsample=NULL sticky="" padx=0 pady=0

include file=NULL name=NULL

label text="" name="" mode="character" font="" fg="black" bg=""
sticky="" justify="left" anchor="center" wraplength=0 width=0
padx=0 pady=0

matrix nrow ncol names rowlabels="" collabels="" rownames=""
colnames="" font="" fg="black" bg="" entryfont="" entryfg="black"
entrybg="white" noeditfg="black" noeditbg="gray" values=""
byrow=TRUE function="" enter=TRUE action="matrix" edit=TRUE
mode="numeric" width=6 borderwidth=0 sticky="" padx=0 pady=0

menu nitems=1 label font="" fg="" bg=""

menuitem label font="" fg="" bg="" function action="menuitem"



test Widgets 181

notebook tabs name=NULL selected=1 tabpos="top" font="" fg=NULL
bg=NULL width=0 height=0 homogeneous=FALSE arcradius=2
tabbevelsize=0 function=NULL action="notebook" sticky="we"
padx=0 pady=0

null bg="" padx=0 pady=0

object name rowshow=0 font="" fg="black" bg="" entryfont=""
entryfg="black" entrybg="white" noeditfg="black" noeditbg="gray"
vertical=FALSE collabels=TRUE rowlabels=TRUE function=""
enter=TRUE action="data" edit=TRUE width=6 borderwidth=0
sticky="" padx=0 pady=0

progressbar name value=0 maximum=100 style="normal" width=NULL
height=NULL vertical=FALSE fg=NULL bg=NULL relief="sunken"
borderwidth=2 sticky="" padx=0 pady=0

radio name value text="" font="" fg="black" bg="" function=""
action="radio" edit=TRUE mode="numeric" selected=FALSE
sticky="" padx=0 pady=0

slide name from=0 to=100 value=NA showvalue=FALSE
orientation="horizontal" font="" fg="black" bg="" function=""
action="slide" sticky="" padx=0 pady=0

slideplus name from=0 to=1 by=0.01 value=NA font="" fg="black"
bg="" entryfont="" entryfg="black" entrybg="white" function=""
enter=FALSE action="slideplus" sticky="" padx=0 pady=0

spinbox name from to by=1 value=NA label="" font="" fg="black"
bg="" entryfont="" entryfg="black" entrybg="white" function=""
enter=TRUE edit=TRUE action="droplist" width=20 sticky=""
padx=0 pady=0

table name rowshow=0 font="" fg="black" bg="white" rowlabels=""
collabels="" function="" action="table" edit=TRUE width=10
sticky="" padx=0 pady=0

text name height=8 width=30 edit=FALSE scrollbar=TRUE fg="black"
bg="white" mode="character" font="" value="" borderwidth=1
relief="sunken" sticky="" padx=0 pady=0

vector names length=0 labels="" values="" vecnames="" font=""
fg="black" bg="" entryfont="" entryfg="black" entrybg="white"
noeditfg="black" noeditbg="gray" vertical=FALSE function=""
enter=TRUE action="vector" edit=TRUE mode="numeric" width=6
borderwidth=0 sticky="" padx=0 pady=0

window name="window" title="" vertical=TRUE bg="#D4D0C8"
fg="#000000" onclose="" remove=FALSE

Author(s)

Alex Couture-Beil, Malaspina University-College, Nanaimo BC



182 updateGUI

See Also

createWin, showArgs

unpackList Unpack List Elements into Variables

Description

Make local or global variables (depending on the scope specified) from the named components of a list.

Usage

unpackList (x, scope="L")

Arguments
X named list to unpack.
scope If "L", create variables local to the parent frame that called the function. If "G", create
global variables.
Value

A character vector of unpacked variable names.

Author(s)

Alex Couture-Beil, Malaspina University-College, Nanaimo BC

See Also

packList, readlList, writelList

Examples

x <- list(a=21,b=23);
unpackList (x);
print(a);

updateGUI Update Active GUI With Local Values

Description

Update the currently active GUI with values from R’s memory at the specified location.

Usage

updateGUI (scope = "L")

Arguments

scope either "L" for the parent frame, "G" for the global environment, or an explicit R
environment



vbdata 183

Details
If the characteristics of the local R objects do not match those of the GUI objects, the update will fail.

Value

Invisibly returns a Boolean vector that specifies whether the objects in the local R environment match
items in the active GUI.

Author(s)
Rob Kronlund, Pacific Biological Station, Nanaimo BC

See Also

getWinVal, setWinVal

Examples

#law of free food: http://www.phdcomics.com/comics.php?f=1223

createWin( c(
"vector names=\"foodquality hunger cost\" values=\"0.6 0.8 0.1\" width=10",
"entry name=taste edit=F label=taste:" ), astext=TRUE )

getWinVal( scope="L" )

taste <- foodquality * hunger / cost

updateGUI ()

vbdata Data: Lengths-at-Age for von Bertalanffy Curve

Description

Lengths-at-age for freshwater mussels (Anodonta kennerlyi).

Usage

data(vbdata)

Format

A data frame with 16 rows and 2 columns c("age","len").

Detalils

Data for demonstartion of the von Bertalanffy model used in the calcMin example.

Source

Fisheries and Oceans Canada - Mittertreiner and Schnute (1985)

References

Mittertreiner, A. and Schnute, J. (1985) Simplex: a manual and software package for easy nonlinear
parameter estimation and interpretation in fishery research. Canadian Technical Report of Fisheries
and Aquatic Sciences 1384, xi + 90 pp.



184 view

vbpars Data: Initial Parameters for a von Bertalanffy Curve

Description
Starting parameter values for Linf, K, and t0 for von Bertalanffy minimization using length-at-age data
(vbdata) for freshwater mussels (Anodonta kennerlyi).

Usage

data(vbpars)

Format
A matrix with 3 rows and 3 columns c("Linf","K","t0"). Each row contains the starting values,
minima, and maxima, respectively, for the three parameters.

Detalils

Data for demonstration of the von Bertalanffy model used in the calcMin example.

References

Mittertreiner, A. and Schnute, J. (1985) Simplex: a manual and software package for easy nonlinear
parameter estimation and interpretation in fishery research. Canadian Technical Report of Fisheries
and Aquatic Sciences 1384, xi + 90 pp.

view View First/Last/Random n Elements/Rows of an Object

Description
View the first or last or random n elements or rows of an object. Components of lists will be subset
using iterative calls to view.

Usage

view(obj, n=5, last=FALSE, random=FALSE, print.console=TRUE, ...)

Arguments
obj object to view.
n first (default)/last/random n elements/rows of obj to view.
last logical: if TRUE, last n elements/rows of obj are displayed.
random logical: if TRUE, n random elements/rows (without replacement) of obj are displayed.

print.console logical: if TRUE, print the results to the console (default).
The results are also returned invisibly should the user wish to assign the output to an
object.

additional arguments (e.g., replace=TRUE if specifying random=TRUE).



viewCode 185

Value

Invisibly returns the results of the call to view.

Note

If random=TRUE, random sampling will take place before the last operator is applied.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

Generic functions head and tail exist in the package utils.

viewCode View Package R Code

Description

View the R code of all functions in a specified package installed on the user’s system.

Usage

viewCode (pkg="PBSmodelling", funs, output=4, ...)

Arguments
pkg string name of a package installed on the user’s computer.
funs string vector of explicit function names from pkg to view.
output numeric value: 1 = function names only, 2 = function names with brief description, 3
= functions and their arguments, and 4 = function R-code (default).
allows user to specify two additional arguments for output=2:
remote - character string giving a valid URL for the R_HOME directory on a remote
location;
update - logical: if TRUE, attempt to update the package index to reflect the currently
available packages. (Not attempted if remote is non-NULL.)
Also, if user specifies pat=TRUE, then funs, if specified, are treated like patterns.
Details

If funs is not specified, then all functions, including hidden (dot) functions are displayed.
If the package has a namespace, functions there are also displayed.

Value

Invisibly returns source code of all functions in the specified package. The function invokes openFile to
display the results.

Author(s)
Rowan Haigh, Pacific Biological Station, Nanaimo BC



186 writeList

See Also

showHelp, view

writelist Write a List to a File in PBS Modelling Format

Description

Write an ASCII text representation in either "D" format or "P" format. The "D" format makes use of
dput and dget, and produces an R representation of the list. The "P" format represents a simple list in
an easy-to-read, ad hoc PBSmodelling format.

Usage

writelList(x, fname, format="D", comments="")

Arguments

X R list object to write to an ASCII text file.

fname file name of the text file containing the list.

format format of the file to create: "D" or "P".

comments vector of character strings to use as initial-line comments in the file.
Details

The "D" format is equivalent to using R’s base functions dput and dget, which support all R objects.

The "P" format only supports named lists of vectors, matrices, arrays, and data frames. Scalars are
treated like vectors. Nested lists are not supported.

The "P" format writes each named element in a list using the following conventions: (i) \$ followed by
the name of the data object to denote the start of that object’s description; (ii) \$\$ on the next line to
describe the object’s structure - object type, mode(s), names (if vector), rownames (if matrix or data),
and colnames (if matrix or data); and (iii) subsequent lines of data (one line for vector, multiple lines
for matrix or data).

Arrays with three or more dimensions have dim and dimnames arguments. Dim is the dimension of the
data, a vector as returned by dim(some_array), and dimnames is a vector of length sum(dim(some_array)+1)
and is constructed as follows:

foreach dimension d first append the name of the dimension d then append all labels within
that dimension

Multiple rows of data for matrices or data frames must have equal numbers of entries (separated by
whitespace).

Using "P" formatting, array data are written the same way that they are displayed in the R console:
nrow=dim() [1], ncol=dim() [2]

repeated by scrolling through successively higher dimensions, increasing the index from left to right
within each dimension. The flattened table will have dim() [2] columns.

For complete details, see “PBSmodelling-UG.pdf” in the R directory .../library/PBSmodelling/doc.

Author(s)
Alex Couture-Beil, Malaspina University-College, Nanaimo BC



writePBSoptions 187

See Also

packList, readList, unpackList

Examples

## Not run:

test <- list(a=10,b=euro,c=view(WorldPhones) ,d=view(USArrests))
writelList(test,"test.txt",format="P",

comments=" Scalar, Vector, Matrix, Data Frame")
openFile("test.txt")

## End(Not run)
##Example of dimnames for Arrays

dimnames (Titanic)
writeList( list( Titanic ), format="P")

writePBSoptions Write PBS Options to an External File

Description
Save options that were set using setPBSoptions, setPBSext, or interfaces such as loadC. These options
can be reloaded using readPBSoptions.

Usage

writePBSoptions (fname="PBSoptions.txt")

Arguments

fname file name or full path of file to which the options will be saved.
Note

Options with names starting with "." will not be saved.
Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

readPBSoptions, setPBSoptions, setPBSext, promptWriteOptions



Index

+Topic arith
calcFib, 96
calcGM, 96
+xTopic array
genMatrix, 119
xTopic character
convSlashes, 108
doAction, 112
evalCall, 114
showArgs, 170
showPacks, 172
viewCode, 185
+Topic classes
PBSoptions-class, 142
talk-class, 174
+Topic color
pickCol, 143
testAlpha, 176
testCol, 177
testLty, 178
testLlwd, 178
testPch, 179
+Topic datasets
CCA.gbr, 99
vbdata, 183
vbpars, 184
+Topic data
clipVector, 105
+Topic device
chooseWinVal, 100
clearRcon, 104
expandGraph, 115
getChoice, 120
resetGraph, 154
showHelp, 171
+Topic documentation
openUG, 138
+Topic file
findPrefix, 117
findProgram, 118
openExamples, 134
openFile, 135
openPackageFile, 136
openProjFiles, 137
packList, 139

188

promptOpenFile, 151
promptSaveFile, 151
readlist, 153
selectDir, 158
selectFile, 159
unpackList, 182
writelList, 186
xTopic graphs
plotACF, 144
plotDens, 147
plotTrace, 149
xTopic hplot
drawBars, 113
plotAsp, 145
plotBubbles, 145
plotCsum, 147
plotFriedEggs, 148
+Topic interface
compileC, 107
loadC, 131
xTopic iplot
addArrows, 94
addLabel, 94
addLegend, 95
*Topic list
exportHistory, 116
importHistory, 128
packList, 139
parseWinFile, 140
readlist, 153
sortHistory, 174
unpackList, 182
writelList, 186
*Topic methods
clearAll, 103
clearPBSext, 104
clearWinVal, 105
focusWin, 118
getOptions, 122
getOptionsFileName, 122
getOptionsPrefix, 123
getPBSext, 124
getPBSoptions, 124
getWinAct, 125
getWinFun, 125



INDEX

getWinVal, 126
loadOptions, 132
loadOptionsGUI, 133
PBSoptions-class, 142
setPBSext, 163
setPBSoptions, 163
setWidgetColor, 164
setWidgetState, 166
setWinAct, 167
setWinVal, 168
updateGUI, 182

+Topic nonlinear
calcMin, 97

xTopic optimize
calcMin, 97
GTO, 127
restorePar, 155
scalePar, 158

+Topic package
openUG, 138
PBSmodelling, 141
showPacks, 172
viewCode, 185

+Topic print
pado, 140
showO0, 169
view, 184

+Topic programming
compileC, 107
evalCall, 114
loadC, 131

xTopic utilities
chooseWinVal, 100
cleanProj, 102
cleanWD, 102
clipVector, 105
closeWin, 106

compileDescription, 108

createVector, 109
createWin, 110
doAction, 112
findPat, 116
getChoice, 120
initHistory, 129
isWhat, 131
pause, 141
runDemos, 156
runExample, 156
runExamples, 157
showArgs, 170
showHelp, 171
showRes, 172
showVignettes, 173
testCol, 177

testLty, 178
testLwd, 178
testPch, 179
testWidgets, 179

addArrows, 94, 95

addHistory (initHistory), 129

addLabel, 94, 94, 95, 179
addLegend, 94, 95, 95

backHistory (inttHistory), 129
break-class (talk-class), 174

calcFib, 96
calcGM, 96

calcMin, 97, 98, 128, 155, 158, 183, 184

CCA.qgbr, 99
chooseWinVal, 100, 121, 127
cleanProj, 102
cleanWD, 102, 105
clearAll, 103

clearHistory (initHistory), 129
clearPBSext, 104, 105, 124, 135, 163

clearRcon, 104
clearWinVal, 105, 105, 126
clipVector, 105
closeWin, 106, 110

code-class (talk-class), 174

compileC, 107, 132

compileDescription, 108, 110, 141

convSlashes, 108
createVector, 106, 109, 110

createWin, 106, 108, 109, 110, 113, 141, 168,

182

declareGUIoptions, 111, 121, 162
doAction, 112, 114, 156, 137

drawBars, 113

environment, 110
evalCall, 113, 114
expandGraph, 115

exportHistory, 116, 129, 130

file-class (talk-class), 174

findPat, 116
findPrefix, 117
findProgram, 118

findSuffix (findPrefiz), 117
firstHistory (initHistory), 129

focusRgui (clearRcon), 104
focusWin, 118

forwHistory (initHistory), 129

genMatrix, 119, 146

189



190

getChoice, 101, 120, 127
getGUIoptions, 112, 121, 154, 162
getOptions, 122, 143
getOptionsFileName, 122, 143
getOptionsPrefix, 123, 143
getPBSext, 104, 124, 125, 135, 163, 173
getPBSoptions, 124, 154, 164
getWinAct, 113, 125

getWinFun, 125
getWinVal, 101, 105, 110, 121, 126, 168, 183
getYes, 127, 170

GTO, 98, 127, 155, 158, 169

head, 185
importHistory, 116, 128, 130, 174
initHistory, 110, 116, 129, 129, 174
isWhat, 131

jumpHistory (initHistory), 129

lastHistory (initHistory), 129
loadC, 107, 131
loadOptions, 123, 132, 148
loadOptionsGUI, 133, 143

openExamples, 134, 156, 137

openFile, 104, 124, 134, 135, 136-138, 15/, 163,

173
openPackageFile, 134, 136, 137
openProjFiles, 134, 136, 137
openUG, 138

packList, 139, 153, 182, 187
pad0, 140, 169
palettes, 177
parseWinFile, 108, 110, 126, 140
pause, 141
PBSmodelling, 141
PBSmodelling-package (PBSmodelling), 141
PBSoptions-class, 122, 123, 133, 176
PBSoptions-class, 142
PBStalk-class, 150
pickCol, 143, 177
plotACF, 144
plotAsp, 114, 145
plotBubbles, 119, 145, 149
plotCsum, 147
plotDens, 147
plotFriedEggs, 148
plotTrace, 149
presentTalk, 150, 176
print,PBSoptions-method
(PBSoptions-class), 142
promptOpenFile, 129, 151

INDEX

promptSaveFile, 116, 151
promptWriteOptions, 112, 121, 152, 187

readlist, 139, 153, 182, 187
readPBSoptions, 121, 125, 153, 154, 164, 187
resetGraph, 115, 154
restorePar, 98, 128, 155, 158

rmHistory (initHistory), 129
runDemos, 156, 157

runExample, 156, 157
runExamples, 156, 157, 157

saveOptions, 123

saveOptions (loadOptions), 132

saveOptionsAs (loadOptions), 132

saveOptionsGUI (loadOptionsGUI), 133

scalePar, 98, 128, 149, 155, 158

section-class (talk-class), 174

selectDir, 158, 160

selectFile, 151, 152, 159, 159

setClass, 176

setFileOption, 160, 162

setGUIoptions, 112, 121, 161

setOptions (getOptions), 122

setOptionsFileName (getOptionsFileName),
122

setOptionsPrefix (getOptionsPrefiz), 123

setPathOption, 161, 162

setPBSext, 104, 124, 135-137, 163, 173, 187

setPBSoptions, 153, 161, 162, 163, 187

setwdGUI, 164

setWidgetColor, 164

setWidgetState, 166

setWinAct, 167

setWinVal, 101, 110, 121, 126, 168, 183

show,PBSoptions-method (PBSoptions-class),
142

showO, 169

showAlert, 127, 170

showArgs, 170, 182

showHelp, 138, 171, 173, 186

showPacks, 172, 172

showRes, 172

showVignettes, 173

sortHistory, 174

Sys.which, 118

tail, 185

talk-class, 174
testAlpha, 176, 177
testCol, 144, 177, 177, 178
testLty, 177, 178, 179
testlwd, 177, 178, 178, 179
testPch, 177, 178, 179
testWidgets, 179



INDEX 191

text-class (talk-class), 174

unpackList, 139, 153, 182, 187
updateGUI, 182

vbdata, 183, 184
vbpars, 184

view, 184, 186
viewCode, 138, 172, 185

widgets (testWidgets), 179
writelist, 139, 153, 182, 186
writePBSoptions, 135, 153, 154, 164, 187

xmlGetAttr, 176



