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Abstract

The Renext package has been specified by IRSN. The main goal is to implement the statistical framework
known as ”méthode du renouvellement”. This is similar to the Peaks Over Threshold (POT) method but the
distribution of exceedances is not restricted to GPD. Data Over Threshold can be completed by historical
data. Some utility functions of the package are devoted to event analysis or to graphical analysis.



Chapter 1

Introduction

This document was produced using Renext 2.0-0. Function calls may have changed in subsequent versions of
the package.

Acknowledgments

We gratefully acknowledge the BEHRIG1 members for their major contribution to designing, documenting
and testing programs or datasets: Claire-Marie Duluc, Lise Bardet, Laurent Guimier and Vincent Rebour.
We also gratefully acknowledge Yann Richet who encouraged this project from its beginning and provided
assistance and many useful advices.

1.1 Goals

The Renext package has been specified and implemented by the french Institut de Radioprotection et de
Sûreté Nucléaire (IRSN). The main goal is to implement in the R environment [12] the statistical framework
known within the community of french-speaking hydrologists as Méthode du Renouvellement and devoted
to Extreme Values problems. This methodology appeared during the years 1980 and was well-accepted
both by practitioners and researchers. Although the lack of freely available software may have limited its
applicability, this method is still in use or referred to. The book in french by Miquel [9] still provides an
useful and frequently cited reference, while [11] gives a more recent presentation.

Although some connexions exist with the theory of Renewal Processes [3], it must be said that the
standard application of the ”Renouvellement” relies on the much simpler Homogeneous Poisson Process
(HPP) [4] and is then similar to Peaks Over the Threshold (POT) method. POT methods are widespread
and are described e.g. in the book of Coles [2] or that of Embrecht et al. [5]. There are several nice R packages
devoted to POT or extreme values: extRemes [6], ismev [10], evd [15], POT [13], evdbayes [14]. The package
nsRFA [16] also contains useful functions for Extreme Values modelling.

Yet Another POT package?
• Contrary to most POT packages, the distribution of exceedances is not restricted to be in the Gener-

alised Pareto Distributions (GPD) family and can be chosen within half a dozen of classical distributions
including Weibull or gamma. Though theory says that GPD distributions will be adequate for large
enough thresholds, this is not a counter indication to the use of other distributions. Fitting e.g. Weibull
or gamma exceedances might seem preferable to some practitioners and give good results for reasonably
large return levels letting asymptotic theory do its job for very large return levels.

1IRSN Bureau d’Expertise Hydrogéologique, Risques d’inondation et géotechnique.
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Figure 1.1: Events and levels. The random variable. Wi = Ti − Ti−1 can be called interevent.

• The package allows the use of historical data as explained in section 3.4. Such data can have consid-
erable importance in practical contexts since fairly large periods can be concerned.

Unlike most R packages Renext was not designed to implement innovative techniques arising from recent
research in statistics but rather well accepted ones, as used by practitioners. The present document is not
intended to be a manual of extreme values modelling but a presentation of the implemented tools with a
limited statistical description of these.

The general framework for estimation is Maximum Likelihood (ML) and a black-box maximisation can
be used with quite arbitrary distribution of exceedances. For the sake of generality the inference mainly
relies on the approximate delta method. The present version does not allow the use of explanatory variables.

The package allows extrapolation to fairly large return periods (centuries). Needless to say, such extrap-
olations must be handled with great care.

1.2 Context and assumptions

1.2.1 Assumptions

The general context is the modelling of a marked point process (Ti, Xi). Events (e.g. floods) occur at
successive random times Ti when a random variable ”level”Xi is observed (e.g. flow). We assume that only
large values of the level X are of interest. Thus even if the data are recorded on a regular basis (e.g. daily)
the data can be soundly pruned to remove small or even moderately large values of X.

Under some general assumptions the instants Ti corresponding to large enough levels Xi should be well
described by an Homogeneous Poisson Process. Recall that for HPP events the number N of events on a
time interval of length w has a Poisson distribution with mean µN = λ × w. Moreover the numbers of Ti
corresponding to disjoint intervals are independent. The parameter λ > 0 is called the rate and has the
physical dimension of an inverse time: it will generally be given in inverse years or events by year. Another
important property of the HPP is that the interevent random variables Wi = Ti−Ti−1 are independent with
the same exponential distribution with mean 1/λ.

Unless explicitly stated otherwise, we will make the following assumptions about the marked process

1. Events Ti occur according to a Homogeneous Poisson Process with rate λ.

2. Levels Xi form a sequence of independent identically distributed random variables with continuous
distribution FX(x) and density fX(x).

3. The levels sequence and events sequence are independent.

The distribution FX(x) will be chosen within a parametric family and depends on a vector of parameters
θX . This dependence can be enlightened using the notation FX(x; θX) when needed. The parameters of
the whole model consist in λ and a vector θX .

2
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Figure 1.2: In POT only levels Xi with Xi > u are modeled through exceedances Yi = Xi − u. The lower part
x < u of the distribution FX(x) remains unknown.

1.2.2 Return periods

The return period of a given level x is the mean time between two events Ti with levels exceeding x, that is
with Xi > x. Under the assumptions above, it is given by

T (x) =
1

λ [1− FX(x)]
(1.1)

Indeed the probability of {Xi > x} is 1 − FX(x) and the events with level exceeding x also form an HPP2

(thinned HPP) with rate λ [1− FX(x)]. The mean interevent is the inverse rate.
Note that a complete knowledge of the distribution is not required since only large levels x are of interest.

1.2.3 Peaks Over Threshold (POT)

In the Peaks Over Threshold (POT) approach, only the upper part of the distribution FX(x) is modelled.
More precisely, the interest is on the part X > u where u is a threshold. The steps are
• Fix a suitable threshold u,

• Consider only the observations with level Xi greater than u i.e. with Xi > u,

• Estimate the rate of the events Xi > u and fit a distribution exceedances Yi = Xi − u.
The distribution of X conditional to X > u is deduced from that of the exceedance Y by translation.

The threshold will often be chosen above the mode of X, leading to a decreasing density for the ex-
ceedance Y as suggested on figure 1.2. The distribution of Y typically has two parameters.

The determination of the threshold is a recognized difficulty in classical POT where only GPD exceedances
are used. The situation is much more complex when non-GPD exceedances are used. The family of GPD
distributions with a given shape parameter ξ can be said ”stable for exceedances”. With another threshold
v > u the estimation will use a smaller set of Xi but the underlying distribution of X conditional to X > v
is the same in the two cases. If a non-GPD distribution is used for the exceedances this is non-longer true.
For instance if the exceedances over u are Weibull with shape α > 0 and scale β = 1 i.e.

Pr {X > x | X > u} = exp {−(x− u)α} x > u

then the conditional distribution over a higher threshold v > u is given by

Pr {X > x | X > v } = exp {− [(x− u)α − (v − u)α]} x > v > u

The distribution of the exceedance X − v | X > v is not Weibull; it is a shifted version of the Left Truncated
Weibull (LTW), see B.3.8.

2The is due to the independence of the two sequences Xi and Ti.
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1.2.4 Link with other Extreme Values problems

Alternative approaches in Extreme Values modelling use time blocks of, say, one year and related by-block
data. Popular examples are
• block maxima: for each block, only the maximal value is used in the analysis.

• r-largest: for each block the largest r observations (i.e. the r largest order statistics) are recorded.
The number r may vary for different blocks.

Block maxima is obviously the special case r = 1 of the r-largest analysis. Using r > 1 largest observations
when available leads to a better estimation. The r-largest analysis is described in chap. 3 of Coles’s book [2].
Underlying the block data one would generally find a continuous time process (e.g. temperature, sea surge),
possibly observed at fixed times (e.g. high tide). The time-length of the blocks is generally chosen in order
to reach a limit behaviour ignoring autocorrelation or seasonality in the continuous process.

Although Renext primarily uses ”OT data” as described above, it is possible to make use of supplemen-
tary historical data, that is: r-largest observations within block(s). Indeed, using the marked point process
model above enables to derive properties of the block maxima or of the r-largest values. See section 3.4 for
the likelihood of a r-largest block and appendix page 28 for a general study of the max.

The notion of return period for the block framework differs from the one given above see discussion A.3
page 29. However, the difference between the two notions is confined to the small return periods context.

1.3 Data

1.3.1 Remarks

Model fitting functions in R usually have a formal argument specifying data with a data.frame object, the
model being typically given by a formula. Due to the presence of heterogeneous types of data within a given
“dataset”, the arguments of Renext functions will take a slightly more complex form. For instance, it will
generally be necessary to specify a duration or several block durations in complement to the vector of levels,
to specify where missing periods (gaps) occurred, etc.

Some of the package functions require the use of POSIX objects representing date and time. R base
package provides versatile functions to manage date/time or timestamps. See for instance the help of the
strptime function.

As most R packages do, Renext comes with a few datasets taken from relevant literature or from real
data examples. These datasets are usually given as lists objects with hopefully understandable element
names.

1.3.2 OT data

The data used will mainly consist in recorded levels Xi or levels exceeding a reasonably low known thresh-
old u0. The POT modelling of such data will typically use a higher threshold u > u0.

For instance the data Brest contain sea surge heights at high tide for the Brest gauging station. Only
values exceeding u0 = 30 cm are retained. More details about these data are provided in the package manual.
The data are provided as a list with several parts.

> library(Renext)

> data(Brest)

> names(Brest)

[1] "info" "describe" "OTinfo" "OTdata" "OTmissing"

As their names may suggest the list elements contain Over Threshold (OT) data and information.

> head(Brest$OTdata, n = 4)

4



date Surge comment

1 1846-01-13 23:59:39 35.989

2 1846-01-20 23:59:39 59.987

3 1846-01-23 23:59:39 45.986

4 1846-01-27 23:59:39 39.985

> str(Brest$OTinfo)

List of 4

$ start : POSIXt[1:1], format: "1845-12-31 23:59:39"

$ end : POSIXt[1:1], format: "2009-01-01"

$ effDuration: num 148

$ threshold : num 30

The OTdata element is a data.frame indicating Ti (in time order) and the corresponding levels Xi. Note that
the time part of the POSIX object may not be relevant. Here only the date part makes sense and the time
part is by convention "00:00". However on such a large period of time, it is affected by leap seconds, and
"00:00" might appear as "23:59" the day before.

The OTinfo list mentions an effective duration. This is less than the time range which can be computed
using the methods range and diff from the base package

> End <- Brest$OTinfo$end; Start <- Brest$OTinfo$start

> Dur <- as.numeric(difftime(End, Start, units = "days"))/365.25

> Dur

[1] 162.9979

> Dur-as.numeric(Brest$OTinfo$effDuration)

[1] 15.37785

The difference – more than 15 years – is due to gaps or missing periods. The missing periods are described
in the element OTmissing.

The Brest dataset has class "Rendata". This is an S3 class defined in Renext to describe objects
containing OTdata and possibly some extra information on missing periods or historical data. It has a
summary method

> class(Brest)

[1] "Rendata"

> summary(Brest)

o Dataset Surge Heights at Brest (France)

data 'Brest', variable 'Surge' (cm)

o OT data (main sample) from 1845-12-31 to 2009-01-01 (eff. dur. 147.62 years)

n Min. 1st Qu. Median Mean 3rd Qu. Max.

1289.00 30.02 33.65 38.31 41.76 46.58 143.90

o missing 'OT' periods, total 15.38 years

n Min. 1st Qu. Median Mean 3rd Qu. Max.

43.000000 0.002738 0.016430 0.038330 0.357600 0.086240 8.419000

o no 'MAX' historical data

o no 'OTS' historical data

The displayed information concerns the levels in the main OT sample and the possible gaps in this sample:
number, duration (in years).

A plot method also exists
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> plot(Brest)

which produces the plot on the left of figure 1.3.

1.3.3 Missing periods or gaps

A common problem in POT modelling is the existence of gaps within the observation period. These can
result from many causes: damage or failure of the measurement system, human errors, strikes, wars, ...

Renext uses a natural description of the gaps within a dataset. They are stored as rows of a data.frame
with two POSIX columns start and end

> head(Brest$OTmissing, n = 4)

start end comment

1 1845-12-31 23:59:39 1846-01-03 23:59:39

2 1846-12-31 23:59:39 1847-01-20 23:59:39

3 1852-01-20 23:59:39 1852-02-07 23:59:39

4 1857-05-30 23:59:39 1859-11-23 23:59:39

Missing periods must be taken into account in the analysis. They should be displayed on timeplots showing
events, since it is important to make a distinction between periods with no events and gaps, see figure 1.3. An
important prerequisite to modelling is to ensure that the gaps occur independently from measured variables.
For instance, storms can damage gauging systems for wind or sea level thus creating a non-independent (or
endogenous) gap.

1.3.4 Historical data

As a possible complement to OTdata, we may have MAXdata that is: r-largest observations over one or
several blocks. Such data require a complementary information: the block duration(s) which must be given
in a chosen time unit.

The dataset Garonne is taken from Miquel’s book [9] and is described therein. The data concern the
french river La Garonne at the gauging station named Le Mas d’Agenais where many floods occurred during
the past centuries. The data consist in both OT data and historical data. The variable is the river flow
in m3/s as estimated from the river level using a rating curve. The precision is limited and many ties are
present among the flow values. The OT data contain flow values over the threshold u = 2500 m3/s. The
historical data are simply the 12 largest flows for a period of about 143 years and will be used later.

> data(Garonne)

> names(Garonne)

[1] "info" "describe" "OTinfo" "OTdata" "OTmissing" "MAXinfo"

[7] "MAXdata"

> Garonne$MAXinfo

start end duration

1 1769-12-31 23:59:39 1913-01-01 143.09

> head(Garonne$MAXdata, n = 4)

block date Flow comment

1 1 <NA> 7500 1 (1875)

2 1 <NA> 7400 2 (1770)

3 1 <NA> 7000 3 (1783)

4 1 <NA> 7000 4 (1855)

The Garonne dataset has class "Rendata". The plot method for this class

> plot(Garonne)

6
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Figure 1.3: Graphics produced using the plot method of the "Rendata" class. On the left, the Brest object
contains missing periods that are shown. On the right, the Garonne dataset contains information about an
historical period, displayed as a green rectangle.

produces a graphic displaying the historical period as on the right panel of figure 1.3. Note that the date
of the historical events are not known exactly and thus are as NA POSIXct objects. The historical levels are
thus displayed as horizontal segments, while vertical segments would be used for known dates. The plot
method for the class Rendata has a show.hist logical formal argument telling that historical periods should
be shown (default value TRUE) or not.

1.3.5 Aggregated data, counts

In some cases, the original data have been aggregated: the Tk are unknown and the Xk only have a block
indication. For instance, we may know only the year for each event, or the year and the month. In a such
scheme several events will fall in the same block. This situation is somewhat comparable to the r-largest
context, but the data are here all the levels Xk over a known threshold and not only the largest levels. The
difference is somewhat comparable to that between the two types of censoring (types I and II).

A difficulty with aggregated data is the treatment of missing information or missing data (gaps). There
is usually no reason that missing periods should correspond to years and ignoring all blocks with a gap leads
to a severe loss of information.

The use of aggregated data will be illustrated later in the discussion about barplotRenouv.
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Chapter 2

Descriptive tools

2.1 Functional plots

2.1.1 Principles

Widespread graphical tools in statistics are functional plots, such as exponential plot, Weibull or Gumbel plot.
In all cases, the plot is designed so that the theoretical distribution curve (exponential/Weibull/Gumbel)
shows as a straight line. For instance the relations for distribution functions

− log [1− FX(x)] = (x− µ)/σ (exponential)
− log [− logFX(x)] = (x− µ)/σ (Gumbel)

both show a linear relation between x and a transformed version φ(F ) of FX(x), e.g. φ(F ) = − log [1− F ]
for the exponential case. The functional plots are obtained by plotting [x, φ(F )] still using the values of the
probability F to display the unevenly spaced graduations on the y-axis. The Weibull plot is similar but also
uses a (log) transformation of x.

With a sample Xi of size n one uses non-parametric estimates F̃[i] of the values FX(X[i]) of the distribution
function at the order statistics X[i]. The n resulting points with ordinates F̃[i] can be plotted with the
transformed scale on the y-axis. Two classical options for the estimation and thus for the plotting positions
are

F̃[i] ≈ i/(n+ 1) F̃[i] ≈ (i− 0.3)/(n+ 0.4)

The first choice is motivated by the fact that i/(n + 1) is the expectation of FX(X[i]). The second option
uses an approximation of the median.

As many other packages do, Renext provides exponential and Weibull plotting functions, namely
expplot and weibplot

> expplot(x = Brest$OTdata$Surge, main = "expplot for \"Brest\"")

> weibplot(x = Brest$OTdata$Surge-30, main = "weibplot for \"Brest\" (surge - 30)")

producing the two plots on figure 2.1.
Note that the transformation φ(F ) must not depend on unknown parameters. Therefore the Weibull plot

produces a theoretical line only for the version with two parameters (shape and scale), and not for the three
parameter one (with location).

2.1.2 Exponential vs Gumbel

While hydrologists often favour Gumbel plots, the exponential plot may also be used. The latter is better
suited to the use of ”OTdata” i.e. data where only values over a threshold u0 are kept. Even if the original
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Figure 2.1: Exponential and Weibull plot for the Brest data. The variable Surge is used for the exponential
plot. The threshold 30 cm is subtracted from Surge for the Weibull plot. The later uses a log-scale for x.

observations Xi are Gumbel, the conditional distribution Xi | Xi > u0 will be close to an exponential for u0

large enough, see B.1.3. This can be illustrated with a few simple R commands

> library(evd); set.seed(136)

> X <- rgumbel(400); X <- X[X > 0.6] ## X is truncated Gumbel

> n <- length(X);

> Z <- sort(X); F <- (1:n)/(n+1) ## distribution function

> y.exp <- -log(1-F); y.gum <- -log(-log(F))

> plot(Z, y.exp, col = "red3", main = "exponential plot")

> plot(Z, y.gum, col = "SteelBlue3", main = "Gumbel plot")

The two plots are shown on figure 2.2. As a general fact the difference between exponential and Gumbel
plots is restricted to the small values since the exponential and Gumbel distribution functions are close for
large values.

2.2 Events and stationarity

Simple plots

The simplest plot for checking stationarity has points [Ti, Xi] and can be obtained with R functions of the
graphics package. The Ti and Xi will typically be available as two vectors of the same length or as two
columns of a same data.frame object. For the example datasets of Renext, the Ti and Xi are given as two
columns of the OTdata data frame

> data(Garonne)

> plot(Flow ~ date, data = Garonne$OTdata, type = "h", main = "Flows > 2500 m3/s")

The graphics shows that several successive years had no exceedance over 2500 m3/s during the second half
of the 1940-1950 decade. This could lead to further investigations using the subset function

> subset(Garonne$OTdata, date >= as.POSIXct("1945-01-01") & date <= as.POSIXct("1950-01-01"))
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Figure 2.2: Truncated or ”thresholded” Gumbel random sample. Due to the truncation, the sample distri-
bution is close to an exponential. The graduations for the y-axis are not in probability-scale.

date Flow comment

96 1945-01-29 3200

The graphics can be enhanced using the text function in the graphics package to annotate special events
or periods.

Uniformity

The gof.date function performs some tests to check the (conditional) uniformity of the events Ti as implied
by the HPP assumption. It is based on the fact that for a given interval of time (s, t) the events Ti falling in
the interval are jointly distributed as are the order statistics of a sample of the uniform distribution on (s, t).
The sample size n is then random. Alternatively, the n events falling in an interval (Tk, Tn+k+1) also have
this joint conditional distribution. In both cases a Kolmogorov-Smirnov (KS) test is well suited to check the
uniformity.

The gof.date function mainly works with a POSIX object containing the events Ti as in

> gof.date(date = Garonne$OTdata$date)

which produces the plot on the left of figure 2.4. The empirical cumulative distribution function (ECDF) is
compared to the uniform and the KS distance Dn is shown as a vertical segment. The displayed KS p-value
tells that uniformity should be rejected at the significance level of 0.1%. Though less clearly than above, the
plot points out that the years 1940-1950 had fewer events.

The gof.date function has optional args start and end to specify (and possibly restrict) the period on
which the test is performed. By default these are taken as the first and last event in date and therefore only
inner events are used in the ECDF.

Interevents

An important property of the HPP concerns the interevents Wi = Ti−Ti−1: the sequence Wi is independent
and have exponential distribution with rate λ. Thus an exponentiality test might be performed to check the
HPP assumption for observed data.
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Figure 2.3: Simple plot of events for the Garonne data.

The interevt function computes the interevents Wi as numbers of days. The function returns a list
with a interevt data.frame element containing the Wi in the duration column which can be used to check
exponentiality. This can be done either with a plot - see figure 2.4 or with the test of exponentiality of the
function gofExp.test

> ie <- interevt(date = Garonne$OTdata$date)

> names(ie)

[1] "interevt" "noskip"

> d <- ie$interevt$duration

> expplot(d, main = "Exponential plot for interevents")

> bt <- gofExp.test(d)

> bt

$statistic

[1] 193.9631

$df

[1] 149

$p.value

[1] 0.01557954

$method

[1] "Bartlett gof for exponential"

It seems unlikely to obtain a good exponential fit as far as events occurrence shows seasonality as is the case
here. A seasonality can no longer result from another distribution of interevents – that is from a non-Poisson
stationary renewal process. Increasing the threshold might improve the adequacy to the asumptions.

Missing periods or gaps

In practice the situation is somewhat more complex due to the possible existence of missing (or skipped)
periods where no events have been recorded. Event rates should then be computed using effective duration
that is: the total duration of measurement ignoring missing periods.
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Figure 2.4: Analysis of the events for the Garonne data set (OTdata). Left panel: test for the uniformity of
events with the KS distance shown as a vertical segment. Right panel : exponential plot for the interevents.

The functions gof.date and interevt can take this problem into consideration. The gof.date plot can
display the missing periods or ”gaps” provided that a suitable skip arg is given. For instance the following
commands produce the plot on the left of figure 2.5

> gof.Brest <- gof.date(date = Brest$OTdata$date, skip = Brest$OTmissing,

start = Brest$OTinfo$start, end = Brest$OTinfo$end)

> print(names(gof.Brest))

[1] "effKS.statistic" "effKS.pvalue" "KS.statistic" "KS.pvalue"

[5] "effnevt" "nevt" "rate" "effrate"

[9] "duration" "effduration" "noskip"

As their name may suggest, the returned list elements give the effective duration and the effective rate based
on the true non-missing periods. The noskip element contains detailed information about each non-skipped
period

> head(gof.Brest$noskip, n = 2)

start end duration nevt rate Dn KS

1 1846-01-.... 1846-12-.... 0.991102 17 17.152624 0.2586935 0.17172882

2 1847-01-.... 1852-01-.... 4.999316 48 9.601314 0.2057777 0.02929104

For each period the rate has been computed as well as a KS test of uniformity. The power of the test is
obviously limited for periods with few events.

The preceding call to gof.date corresponded to the default value of plot.type namely "skip" A draw-
back of the plot and KS test is that the comparison with the uniform is biased by the gaps. The KS
distance Dn between the empirical and theoretical distributions can be amplified by the gaps when there are
too few events or on the contrary be reduced by gaps when there are too much events. These two phenomena
can be seen by comparing the two plots of figure 2.5 although the two KS statistics and p-value are here
nearly identical. The right panel plot was produced using the non-default choice for the plot.type arg i.e.
plot.type= "omit", missing periods can be omitted on the plot and in the KS test computation.

12



1849 1899 1950 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

from 1845−12−31 to 2009−01−01

 

 

p−value =  0.000
Dn =  0.070

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

from 1845−12−31 to 2009−01−01

1848 1870 1887 1904 1922 1941 1966 1985 2002

p−value =  0.000
Dn =  0.071

Figure 2.5: Using the plot.type arg of gof.date leads to the left panel (default value or "skip"), or the
right one (value "omit"). Each missing period appears as a gray rectangle on the left graph and is flattened
as a line on the right graph.

> gof.Brest2 <- gof.date(date = Brest$OTdata$date,

skip = Brest$OTmissing, plot.type = "omit",

start = Brest$OTinfo$start, end = Brest$OTinfo$end)

The time axis now has unevenly spaced ticks since it is obtained by concatenating the successive non-missing
periods. More precisely, each retained time interval k begins at the first event Tfk of a continuous observation
period and ends at its last event T`k . Each of the vertical lines shows an interval (T`k , Tfk+1), which covers
a missing period and is cut out as shown on figure 2.6. The displayed information on the right panel of
figure 2.5 concerns effKS.pvalue and effKS.statistic of an ”effective” KS test performed on non-missing
periods. Provided that observation gaps occur independently from the events Ti, the interevents for couples
of successive events falling in the same non-missing period can be used in a modified KS test. In the HPP
case these interevents should be independent and identically distributed with exponential distribution thus
concatenating them should produce an HPP hence an uniform conditional distribution of events.

For the Brest example, the test tells us that the uniformity of events should be rejected while the plot
indicates that there were more events during the XIXth century than in during the XXth. Since large surges
tend to occur more frequently in winter, further investigation of the gaps distribution would be useful.

2.2.1 Aggregated (counts) data

The barplotRenouv function draws a barplot for counts data and performs a few tests adapted to this
context where events or interevents can no longer be used. The data used are n counts Ni for i = 1, 2, . . . , n.
These counts must be on disjoint intervals or ”blocks” with the same duration, e.g. one year. If events occur
according to an HPP the Ni form a sample of a Poisson distribution. The barplot compares the empirical
(or observed) frequencies to their theoretical counterparts i.e. the expectations. The theoretical distribution
is estimated using the sample mean as Poisson parameter (Poisson mean).

The Brest.years object contains aggregated data for one-year blocks. Some blocks are incomplete and
are listed in Brest.years.missing which can be used in barplotRenvouv
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Figure 2.6: With plot.type = "omit", the plot of gof.date only considers interevents for couples falling in the
same non-missing period and concatenates them. The time interval (T`k , Tfk+1) between the last event T`k of the
non-missing period k and the first event Tfk+1 of the following non-missing period is ”cut out”. The two events T`k
and Tfk+1 collapse into one event of the new Point Process. Note that a non-missing period with less than two events
is cut out since it contains no valid interevent.

> data(Brest.years); data(Brest.years.missing)

> bp40 <- barplotRenouv(data = Brest.years, threshold = 40,

na.block = Brest.years.missing, main = "threshold = 40 cm")

produces the graphic at the left of figure 2.7. Increasing the threshold

> bp50 <- barplotRenouv(data = Brest.years, threshold = 50,

na.block = Brest.years.missing, main = "threshold = 50 cm")

we get a barplot for the smaller sample at the right of figure 2.7. Note that the function guesses that the
first column represents a block indication which may not be true with other data. Therefore the normal use
would specify the blockname and varname formal arguments of barplotRenouv.

Great care is needed when the data contain missing periods since the number of events is then biased
downward.

Goodness-of -fit

A popular test for Poisson counts is called overdispersion test. It is based on the fact that expectation and
variance are equal in a Poisson distribution. The test statistic is

I = (n− 1)S2/N̄

where N̄ and S2 are the sample mean and variance. Under the null hypothesis I is approximately distributed
as χ2(n−1). The statistic I tends to take large values when the observations Ni come from an overdispersed
distribution such as the negative binomial. A one-sided test can therefore be used for a negative binomial
alternative.

A Chi-square Goodness-of-fit test is also available to check the goodness-of-fit of the Nk to a Poisson
distribution. In this test, the counts values Nk are summarized in a tabular format retaining m distinct
values or group of adjacent values, together with the corresponding frequencies. The test statistic is

D2 =
m∑
k=1

(Ok − Ek)2 /Ek

where Ok and Ek are the observed and expected frequencies for the class k. For instance, the first class k = 1
can be N = 0 meaning that O1 and E1 are the number of intervals with no events recorded. Asymptotically
(for large n)

D2 ∼ χ2(m− p− 1)
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Figure 2.7: The two barplots produced with barplotRenouv. A bar height represents a number of blocks
(here years) with the number of events given in abscissa.

where p is the number of parameters estimated from data, here p = 1 (for the mean of N). A one-sided test
will reject the Poisson hypothesis when D2 is too large1.

A classical drawback of this test is that classes with a small expected count Ei should be grouped, in
order to reach a minimal total of (say) 5.

> bp40$tests

statistic df p.value

disp 181.4726 113 4.652672e-05

chi2 21.5105 5 6.485040e-04

> bp50$tests

statistic df p.value

disp 131.022727 113 0.1181542

chi2 5.722912 3 0.1258975

For the dataset Brest.years, using a threshold of 50 cm leads to acceptable tests (at the 10% level), while
40 cm seems too small. For the chi-square test, more details (e.g. grouping) are available.

> bp50$freq

obs. theo. group

0 31 24.3452997 1

1 27 37.5857258 2

2 31 29.0135427 3

3 18 14.9309460 4

4 4 5.7628213 5

5 1 1.7793974 5

6 2 0.4578567 5

7 0 0.1244104 5

1That is: D2 > χ2
α
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The values of N have been grouped in odrer to reach a minimal expected number of 5 for each group.
Note that for a fairly high threshold, the statistic N will generally take only the two values 0 and 1. Then

the chi-square test which requires at least three classes will not be available.
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Chapter 3

The Renouv function

3.1 Fitting POT for La Garonne

For the dataset Garonne, the OT data contain flow values over the threshold u = 2500 m3/s. We can fit
a POT model with any threshold u > 2500. As in [9] we fit an exponential and a two parameters Weibull
distribution using OT data only. The Renouv needs on input the levels given in a vector x, the effective
duration effDuration – normally in years – and the threshold

> fit.exp <- Renouv(x = Garonne$OTdata$Flow,

effDuration = 65, threshold = 2500,

distname.y = "exponential",

main = "exponential")

> fit.exp$estimate

lambda rate

2.3230769231 0.0009160231

The result is mainly a list within which an estimate element gives the maximum likelihood estimates. The
first element named "lambda" is the event rate expressed in events by year. The other elements are the ML
estimates of the distribution for exceedances, with names corresponding to the probability functions – here
one name "rate" for the exponential distribution parameter. Many other results are returned

> names(fit.exp)

[1] "call" "x.OT" "y.OT" "effDuration" "threshold"

[6] "distname.y" "p.y" "parnames.y" "fixed.y" "trans.y"

[11] "est.N" "cov.N" "est.y" "cov.y" "corr.y"

[16] "estimate" "fixed" "df" "p" "sigma"

[21] "cov" "corr" "history.MAX" "history.OTS" "funs"

[26] "transFlag" "infer.method" "pct.conf" "ret.lev" "pred"

[31] "KS.test" "expon.test"

> class(fit.exp)

[1] "Renouv"

The list is in fact an object with (S3) class "Renouv". It is possible to display the results using the summary
method, which would be invoked here simply by summary(fit.exp). A few other S3 methods are available.
For instance, coef extracts the estimated coefficients, and the ubiquitous plot method can be used to re-draw
a return level plot from the fitted object. The predict can be used to compute return levels corresponding
to given return periods.

The distname.y formal in Renouv is used to change the distribution for exceedances Yi = Xi − u.
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Figure 3.1: Return level plots for the example Garonne with two distributions for exceedances.

> fit.weibull <- Renouv(x = Garonne$OTdata$Flow,

effDuration = 65, threshold = 2500,

distname.y = "weibull",

main = "Weibull")

> fit.weibull$estimate

lambda shape scale

2.323077 1.139363 1145.889216

> fit.weibull$sigma

lambda shape scale

0.18904932 0.07229351 86.17717237

The estimated parameters of the Weibull distribution and their standard deviation (list item sigma) show
that the shape is close to 1.0, which corresponds to the exponential distribution. The two fits produced
return level plots shown on figure 3.1.

3.2 Return level plot

3.2.1 Description

Renext uses a return level plot which may be qualified as exponential, and differs from the usual one which
uses Gumbel scales. The main difference is that the exponential plot uses a log scale for return periods while
the Gumbel plot uses a log-log scale. In both cases, the theoretical return level curve (exponential/Gumbel)
shows as a straight line.

The difference between the two plots is restricted to the small levels/return periods, since the exponential
and Gumbel distribution functions are close for large values. As it was advocated in the discussion about
functional plots page 8, the exponential return level plot is better suited to the use of ”OTdata” i.e. data
where only values over a threshold u0 are kept, even if the the original observations Xi are Gumbel see B.1.3.
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Note that the return level plot is similar to the classical exponential plot, but with the two axes x, y
exchanged. A concave (downward) RL plot indicates a distribution with a tail ”lighter than the exponential”
or even with finite end-point such as GPD with ξ < 0.

The displayed confidence limits are in all case pointwise and bilateral, and correspond to the confidence
percents displayed which can be changed in the call. In most cases the confidence limits are approximate
and obtained by using the delta method briefly described later. For some special cases with exponential
distribution an exact inference is possible and used. The infer.method element in the list returned by
Renouv provides information about this.

3.2.2 Plot method for Renouv objects

Once created with the Renouv function, an object of class "Renouv" can be used to (re)draw a return level
plot and change some options. Useful changes concern the main title using the main argument, or axes labels
xlab, ylab. Axis limits can also be set. For the return levels, this is done using the usual ylim argument.
For the return periods, the limits are set using Tlim or problim. The first possibility works with a vector
containing two return periods (in years); the second need a vector with two probabilities.

The two following code chunks produce the return level plots shown on figure 3.2. On left panel, we
change the return periods axis limits.

> plot(fit.weibull, Tlim = c(1, 100), main = "return periods from 0 to 100 years")

On the right panel we change both axes and the confidence level.

> plot(fit.weibull,

Tlim = c(1, 100), ylim = c(3000, 10000),

pct.conf = 95,

main = "return levels and 95% limits")

Note that chosen percentage for the confidence limits pct.conf = 95 must correspond to a value available in
the object description and must otherwise be changed by refitting using fitRenouv with a suitable pct.conf
argument.

3.3 Computational details

3.3.1 Maximum Likelihood theory

Estimation and inference in Renext mainly rely on the Maximum Likelihood (ML) theory. A relevant
presentation can be found chapter 2 of Coles’s book [2] or in the Further reading references therein.

The standard application context of ML is when an ordinary sample i.e. n independent random variables
Xi with the same distribution depending of an unknown vector θX with density fX(x; θX). The likelihood
function L is the joint density of the sample i.e.

L =
n∏
i=1

fX(Xi; θX)

and the estimator θ̂X is the value of θX maximising L. In some special cases the maximisation of L can have
an explicit solution, but a numerical optimisation will generally be required. The ML theory warrants1 the
asymptotic unbiasedness and asymptotic normality : when n is large θ̂X has its expectation approximately
equal to the true unknown θX , and it is approximately normally distributed.

The ML theory applies to more general situations where observations are no longer independent or can
have different marginal distributions. This occurs when order statistics are used in the estimation as historical
data.

1Under suitable regularity conditions.
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Figure 3.2: Changing the settings of the return level plot.

The general principle of the Renouv function is to allow a large choice of distributions, yet trying to take
advantage of the specific distribution/independence when possible. In most cases the maximisation of the
likelihood is obtained using optim function of the stats package. When historical data are used they are
considered as a complement to the ordinary data (exceedances) and two optimisations might be used.

3.3.2 Estimation and inference

The model uses a parameter vector θ =
[
λ, θ′X

]′ of length p formed with the HPP rate λ and the parameter
vector θX for the levels distribution.

When no historical data are used, the observed data consist in N events [Ti, Xi] on a given period. Since
events Ti and levels Xi are independent the likelihood is

L =
(λw)N

N !
e−λw︸ ︷︷ ︸

events

×
N∏
i=1

fX(Xi; θX)︸ ︷︷ ︸
levels

where w is the time-length (i.e. the effective duration), and the log-likelihood is

logL = N log(λw)− λw − log(N !) +
N∑
i=1

log fX(Xi; θX) (3.1)

The ML estimation consists in two simple ML estimations: one for the events (rate estimation) and the other
for levels. The ML estimate of the unknown rate λ is

λ̂ =
N

w
=

number of events
duration

Its variance is Var[λ̂] = λ/w ≈ λ̂/w. Note that the number of events N is a sufficient statistic for λ: the
events Ti are not used and the whole information they provide about λ is contained in N . The ”X-part” of
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ML concerns an ordinary sample. The ML estimate θ̂X may be available in closed form in some cases (e.g.
exponential).

When no historical data are used, it can be said that λ and θX are orthogonal parameters. This is no
longer true when historical data are used: the likelihood then takes a less favourable form (see below).

In a few cases with no historical data and favourable distribution (e.g. Weibull) it is possible to use the
expected information matrix. But the general treatment in Renext is based on the observed information
and the numerical derivatives. More precisely, the information matrix is obtained as the numerical hessian
at convergence. The hessian can either be the element hessian returned by the optim function, or result
form the use of the hessian function from numDeriv package: see the manual for more details.

3.3.3 Delta method

The delta method can be used to infer about a function2 ψ = ψ(θ) of the parameter θ. For instance ψ(θ)
can be the return period of a given level x (see 1.1). The transformed parameter estimate is ψ̂ = ψ(θ̂).
As a general result in the ML framework the transformed parameter estimate is asymptotically unbiased
E[ψ̂] ≈ ψ(θ) and asymptotically normal with variance

Var[ψ̂] ≈ δ′Var[θ̂] δ

where δ is the gradient vector

δ =
∂ψ

∂θ
=
[
∂ψ

∂θ1
,
∂ψ

∂θ2
, . . . ,

∂ψ

∂θp

]′
evaluated at θ̂, see chap. 2 of Coles’s book [2].

Renext uses this approach with ψ taken as the level (or quantile) x(T ) corresponding to a given return
period T . However the return level is related to a chosen probability of non-exceedance p (e.g. p = 0.95)
which can be converted into a return period. Thus the relation is

T =
1

λ× (1− p)
FX(x) = p

Since λ is unknown it is replaced by its ML estimation λ̂ and T is regarded as known. Thus the uncertainty
about λ (usually small) is ignored in the relation between p and T . The gradient of the quantile function is
computed numerically using a finite difference approximation.

3.3.4 Goodness-of-fit

As a general tool to assess the fit, the Kolmogorov-Smirnov (KS) test is computed in all cases.
The KS test normally requires a completely specified distribution for the null hypothesis while the fitted

distribution is used here – thus generating a bias. In some special cases (normal, exponential) the bias could
be corrected using an adaptation depending on the distribution as in Lilliefors test for the normal. However
since the number of estimated parameters is small (usually 1 or 2 for the ”exceedances part”) the bias will
be small provided that the number of exceedances is large enough, say 50 or more.

For some distributions such as exponential a specific test may be available. In the current version
distribution-specific tests are limited to Bartlett’s test of exponentiality.

Rounded measurements often lead to ties in the sample, which would without precaution generate a
warning in the KS test. This can be avoided by ”jitterizing” i.e. adding a small random noise to the observed
values.

The graphical analysis of the fit using the return level plot is generally instructive. For exponential or
Weibull exceedances, classical exponential or Weibull plot can also be drawn using the expplot and weibplot
functions.

2Smooth enough.
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Figure 3.3: Unobserved level can provide information on an historical period (left) or on missing periods (right).

Note that when historical data are given, they are used during the estimation but not included in the
empirical distribution in the KS test. In this case, the interpretation of the test needs further investigations.

3.4 Using historical data

3.4.1 Two types of historical data

Renext can use two kinds of historical data: classical historical data or “MAX” data, and Over a Threshold
Supplementary data, or “OTS” data. In both cases, the data are structured in blocks and can be used only
as complement to the main OT data which must continue to be provided.

MAX data complement the main OT data by r-largest blocks. Each block corresponds to a time interval
of known duration w during which the r largest values are available. Blocks are assumed to be mu-
tually disjoint and disjoint from the OT period. Neither the duration of blocks nor the number r of
observations are assumed to be constant; hence each block b has a specified duration wb and a number
rb of largest values.

OTS data complement the main OT data with other Over the Threshold data recorded on blocks with
known duration and known exceedances. Again, blocks are assumed to be mutually disjoint and
disjoint from the OT period and other historical blocks. For each such block b with known duration
wb, we must have a threshold ub and all observations with levels exceeding ub. The number rb of such
observations may be zero, in which case we may say that ub is an unobserved level. The historical
threshold ub can not be smaller than the main threshold.

Unobserved levels (OTS data blocks with no observations) occur in some contexts where it is granted, or
at least believed, that a given level say xU was never exceeded during a period of time. For instance it can
be granted that a river never flood over a given benchmark level during the last five centuries, or that the
arch of a bridge was never reached since the construction. Such information has obviously a great potential
impact on the estimation since it typically concerns very long periods, much longer than the observation
period. If such an information exists, it can be used with the Renouv function. Note that the unobserved
level can concern missing periods for OT data: although no data are available we may still know that no
very high level occurred, see figure 3.3.

3.4.2 Likelihood

MAX data

Consider an historical “MAX” block of length wH. Let Z1 > Z2 > · · · > Zr be the r largest observations.
Their log-likelihood can be proved to be

logL = r log(λwH) +
r∑
i=1

log fX(Zi; θX)− λwH [1− FX(Zr; θX)] (3.2)
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When several blocks exist, they provide independent random vectors of observations with possibly different r
and the log-likelihood is obtained by summing over blocks.

OTS data

The likelihood for an“OTS”block with threshold uH is simpler to derive. According to the POT assumptions3,
the levels greater than uH occur according to an HPP thinning the original HPP. This thinned process has
rate [1− FX(uH)]× λ because at each OT event, the level uH can be exceeded with probability 1− FX(uH).
Let wH be as before the block duration, and let Z1 > Z2 > · · · > Zr be the r observations, with possibly
r = 0. Up to an additive constant, the log-likelihood is

logL = r log(λwH) + r log[1− F (uH; θX)] +
r∑
i=1

log fX(Zi; θX)− λwH [1− FX(uH; θX)] (3.3)

This expression can be compared to (3.2). Replacing the block threshold uH by the minimum observed
value Zr in the last formula leads to (3.2) with an extra term added, namely r log[1− F (uH)].

When an OTS block contains no observation i.e. when r = 0, the log-likelihood (3.3) is simply

logL = −λwH [1− FX(uH; θX)] (3.4)

This is easily checked: on a period of length wH, the number of levels > uH is Poisson with mean µ :=
[1− FX(uH)]× λ× wH. Hence the probability to observe no level > uH is: e−µµ0/0! = e−µ. Note that when
only one OTS block is used with no observation and with uH equal to the main threshold, the change in the
log-likelihood is −λwH since then FX(uH) = 0. This change is equivalent to that which would result from
adding wH to the effective duration for the main OT sample.

Remark

Assume that we have only one historical block of type “MAX” and that it only contains the maximum Z1

i.e. has r = 1. The contribution of the block to the log-likelihood (3.2) is

logL = log(λwH) + log fX(Z1; θX)− λwH [1− FX(Z1; θX)]

At the right hand side, the third term is identical to (3.4) with an unobserved level uH = Z1 and a period
length wH. The sum of the two first terms at right side is the extra contribution that would be added to the
log-likelihood of the OT data if a new OT observation with level Z1 had been done without changing the main
OT period duration. Therefore, the same likelihood/results are obtained in the two following approaches
• Specify an historical MAX block of length wH with r = 1 and level Z1.

• Join the observed maximum Z1 to the OT levels Xi, and specify that the level uH := Z1 was never
reached during a OTS block of length wH.

The second approach might seem natural to practitioners.

3.4.3 Example: using Garonne data

Specifying historical data

As we said before, the Garonne dataset4 contains historical data of type MAX, which can be used in the
estimation. The data are described in the section 1.3.4 page 6. The historical data corresponds here to one
block, and the following levels

> Garonne$MAXdata$Flow

3See section 1.2.1 page 2.
4Provided as an object of class "Rendata".
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[1] 7500 7400 7000 7000 7000 6600 6500 6500 6400 6300 6300 6200

The duration is given in Garonne$MAXinfo$duration with value 143.09 years.
As a general rule, the historical data must be passed as a list of numeric vectors, each vector corresponding

to one block. The (effective) durations are given as a numeric vector with the same length as the list. For
the “MAX” case, the formal arguments to use are MAX.data (list) and MAX.effDuration (numeric vector).

Since the data corresponds here to one block, the list MAX.data contains only one vector and the vector
MAX.effDuration is of length one. The two following fits produce the return level plots shown in figure 3.4.

> fit.exp.H <- Renouv(x = Garonne$OTdata$Flow,

effDuration = 65, threshold = 2500,

MAX.data= list(Garonne$MAXdata$Flow),

MAX.effDuration = Garonne$MAXinfo$duration,

distname.y = "exponential",

main = "Garonne data, \"exponential\" with MAXdata")

> fit.weib.H <- Renouv(x = Garonne$OTdata$Flow,

effDuration = 65, threshold = 2500,

MAX.data= list(Garonne$MAXdata$Flow),

MAX.effDuration = Garonne$MAXinfo$duration,

distname.y = "weibull",

main = "Garonne data, \"Weibull\" with MAXdata")

The exponential fit is only slightly modified by the use of historical data. As said before, the parameter
λ and θX are no longer orthogonal when historical data are used

> fit.exp.H$corr

lambda rate

lambda 1.0000000 0.1705331

rate 0.1705331 1.0000000

Plotting positions

The historical data are displayed on the return level plot (see figure 3.4) as follows.
Consider a MAX block with r largest observations Zk in decreasing order and with duration wH. Using

the ”non historical” data, we can give a prediction ÑH for the unknown number NH of events on the historical
period. A natural choice is ÑH = λ̃ wH where λ̃ is the events rate on the OT period. Then the point Zk will
be associated to the probability of exceedance 1− F̃ = k/(ÑH + 1). For the largest value Z1, we thus have
1 − F̃ = 1/(ÑH + 1). When several historical blocks are available, the same principle can be used block by
block.

For OTS data the principle is the same, except for an OTS block with no observation – that is, for
the unobserved level case. Then the unobserved level (or the never exceeded threshold) uH is shown as an
horizontal segment with return periods ranging from 0 to wH.

Fitting from Rendata objects

Recall that a S3 class "Rendata" is defined in Renext in order to represent composite data with optional
historical data. An object of class "Rendata" contains an OT sample, but also embeds useful pieces of
information such as the effective duration for the OT sample or the variable name. It seems sensible to
use these indications in a POT model by simultaneously passing them as formal arguments to the fitting
function. For instance, when the OT sample of a "Rendata" object is used in a fit, the effective duration
could consistently be taken from this object.

The Renouv can indeed be used by giving an x formal with class "Rendata" instead of a numeric vector.
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Figure 3.4: Return level plots for the example Garonne with two distributions for exceedances and historical
data.

> fitWithObj <- Renouv(x = Garonne)

Note that the threshold for the main OT is taken from the Rendata object, and will generally be too small
for the POT modelling. It can be changed

> fitWithObj1 <- Renouv(x = Garonne, threshold = 3000)

Similarly, the effective duration of the object could be shortcut by giving a effDuration formal argument in
the call. The distribution of the exceedances can be set in the usual way. In all cases, the summary method
should be invoked on the fitted object.

Using "Rendata" objects passed as x formals can simplify the task of fitting many datasets files if these
are read with the readXML function.

3.5 Fixing parameter values

3.5.1 Problem

In some situations one may want to fix one or several parameters in the distribution of exceedances and still
perform a ML estimation for the remaining parameters. For instance, the shape of a Weibull distribution
can be fixed while the scale is to be estimated. This can be viewed as a radical bayesian scheme with the
fixed parameters receiving an ’ultra-informative’ Dirac prior.

Renext supports fixed parameters, with some limitations. In the current version, the HPP rate parameter
λ can not be fixed, and at least one parameter must be estimated in the exceedance part. Thus
the full model must have at least two non-fixed parameters.

The specification of the fixed parameter is done using the fixed.par.y formal argument in Renouv. Its
value must be a named list with names in the distribution parnames. As a general rule5, the non-fixed
(estimated) parameters must be given using the start.par.y arg with a similar list value.

5In some special cases, this is unnecessary but harmless.
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3.5.2 Example

The fixed parameter option can work with or without historical data in the same manner.

> fit.weib.fixed.H <-

Renouv(x = Garonne$OTdata$Flow,

effDuration = 65, threshold = 2500,

MAX.data = list(Garonne$MAXdata$Flow),

MAX.effDuration = Garonne$MAXinfo$duration,

distname.y = "weibull",

fixed.par.y = list(shape = 1.2),

start.par.y = list(scale = 2000),

trace = 0,

main = "Garonne data, \"Weibull\" with MAXdata and fixed shape")

> fit.weib.fixed.H$estimate

lambda shape scale

2.381501 1.200000 1236.908831

With some distributions such as the SLTW some parameters must be fixed. Here the shift parameter delta
is fixed to δ = 2000 m3/s meaning that we believe that exceedances over u− δ = 500 are Weibull, even if we
only know exceedances over the threshold u = 2500 m3/s.

> fit.SLTW.H <-

Renouv(x = Garonne$OTdata$Flow,

effDuration = 65, threshold = 2500,

MAX.data = list(Garonne$MAXdata$Flow),

MAX.effDuration = Garonne$MAXinfo$duration,

distname.y = "SLTW",

fixed.par.y = list(delta = 2000, shape = 1.2),

start.par.y = list(scale = 2000),

main = "Garonne data, \"SLTW\" with MAXdata, delta and shape fixed")

When some parameters are fixed the covariance contains structural zeros, and consequently the correlation
matrix contains non-finite coefficients.

> fit.SLTW.H$cov

lambda delta shape scale

lambda 0.03492748 0 0 -2.285479

delta 0.00000000 0 0 0.000000

shape 0.00000000 0 0 0.000000

scale -2.28547896 0 0 5680.117408
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Figure 3.5: Return level plots for the example Garonne with two distributions with fixed parameters (and
historical data).
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Appendix A

The “renouvellement” context

A.1 Marked point process

The méthode du renouvellement uses a quite general marked process [Ti, Xi] for events and levels. As
in 1.2.1 the two sequences ”events” and ”levels” are assumed to be independent, and the Xi are assumed to
be independent and identically distributed with continuous distribution FX(x).

An alternative equivalent description of the events occurrence is through the associated counting pro-
cess N(t). This describes the joint distribution for the the numbers of events N(tk)−N(sk) on an arbitrary
collection of disjoint intervals (sk, tk). Although the most important and clearest context is the HPP, the the-
ory can be extended to cover non-poissonian Lévy counting processes N(t) e.g. Negative Binomial. However,
the Negative Binomial Lévy Process implies the presence of multiple (simultaneous) events.

A.2 Some results

A.2.1 Compound maximum

Consider an infinite sequence of independent and identically distributed random variables Xk with continuous
distribution FX(x). The maximum

Mn = max(X1, X2, . . . , Xn)

has a distribution function given by FMn
(x) = FX(x)n. Now let N be a random variable independent of the

Xk sequence and taking non-negative integer values. The ”compound maximum”

M = max(X1, X2, . . . , XN )

is a random variable with a mixed type distribution: it is continuous with a probability mass corresponding
to the N = 0 case which can be considered as leading to the certain value M = −∞. The distribution of
M can be derived from that of Xk and N . Using Pr (M 6 x | N = n) = FX(x)n and the total probability
formula we get

FM (x) =
∞∑
n=0

FX(x)n Pr {N = n} = hN [FX(x)] (A.1)

where hN (z) = E
(
zN
)

is the generating function of N .
When N has a Poisson distribution with mean µN = λw the generating function is given by hN (z) =

exp{−µN [1− z]} and
FM (x) = exp{−λw [1− FX(x)]} (A.2)
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When FX(x) is GPD it can be shown that M is1 GEV see later.
For large return levels x, we have FX(x) ≈ 1. The generating function hN (z) for z = 1 has a value

hN (z) = 1 and a first derivative h′N (z) = E(N), leading to

1− FM (x) ≈ E(N) [1− FX(x)] (A.3)

Equivalently
FM (x) ≈ FX(x)E(N) (A.4)

which tells that for large return levels, the distribution of M is approximately that of the maximum of E(N)
independent Xk. Both formula (A.3) and (A.4) tell that the distribution of N only influences large return
periods through its expectation. Consequently there is little point in choosing a non-Poisson distribution
for N as far as the interest is focused on large return periods.

From formula (A.4) and the asymptotic behaviour of the maximum of n independent and identically
distributed random variables (see B.1 later), it appears that when E(N) is large the distribution of M will
generally be close to a suitably scaled GEV distribution.

A.2.2 Special cases

A case with special interest is when N is Poisson with mean µN = λw and X has a Generalised Pareto
Distribution (GPD). Then M follows2 a Generalised Extreme Values (GEV) distribution.

Consider first the exponential case FX(x) = 1− e−(x−µ)/σ for x > µ. Then (A.2) writes as

FM (x) = exp
{
−λw e−(x−µ)/σ

}
which using simple algebra can be identified as the Gumbel distribution function with parameters µ? =
µ+ σ log(λw) and σ? = σ.

In the general case where FX(x) corresponds to the GPD, FX(x) = 1− [1 + ξ(x− µ)/σ]−1/ξ
+ we have for

x > µ

FM (x) = exp
{
−λw [1 + ξ(x− µ)/σ]−1/ξ

+

}
which can be identified as GEV(µ?, σ?, ξ) with parameters µ? and σ? depending on µ and σ.

Using this formalism we can derive the distribution of the maximum of the Xk on an arbitrary period of
length w.

A.3 Return periods

In the general marked process context described above, the return period of a given level x can be defined
using the thinned process [Ti, Xi] of events with level exceeding x i.e. with Xi > x. The return period will
be the expectation TX(x) of the interevent in the thinned process. In the rest of this section, we assume
that events occur according to a HPP with rate λ > 0. Due to the independence of events and levels, the
thinned event process also is an HPP with rate λ(x) = λ[1− FX(x)]. The return period is then given by

TX(x) =
1

λ [1− FX(x)]

Actually the interevent distribution is exponential with expectation 1/λ(x).
Still using the same probabilistic framework, we may consider the sequence of annual maxima or more

generally the sequence Mn of maxima for successive non-overlapping time blocks with the same duration
w > 0. The random variables Mn are independent with a common distribution FM (x) that can be determined

1Up to its probability mass
2Up to its probability mass in −∞

29



as it was done in the last section. In this ”block” context, the return period of a level x naturally expresses as
a (non-necessarily integer) multiple of the block duration. Thus if FM (x) = 0.70 i.e. if the level x if exceeded
with 30% chance within a block, the return period is 1/0.3 ≈ 3.33 expressed in block duration unit. More
generally, the block return period of the level x will be computed as

TM (x) =
w

1− FM (x)
=

block duration
prob. that M exceeds x

(A.5)

A major difference between the two return periods TX(x) and TM (x) is that the level x can be exceeded
several times within the same block, especially for small x. This difference may make ambiguous some
statements about yearly return periods or yearly risks. For instance, the level x with a 100 years return
period TX(x) is very likely to be exceeded twice or more within a given century3.

Using the relation (A.2) between the distributions FX(x) and FM (x), the relation (A.5) becomes

TM (x) =
w

1− exp {−λw [1− FX(x)]}
(A.6)

In practice, the interest will be focused on large levels x. In the expression at the denominator we may then
use the approximation 1−e−z ≈ z for small z, leading to TM (x) ≈ TX(x). Moreover the inequality 1−e−z 6 z
for z > 0 shows that TM (x) > TX(x) for all x. Using 1−e−z ≈ z−z2/2, we even find a better approximation
for moderately large levels x

TM (x) ≈ TX(x) +
w

2
The presence of the half-block length w/2 can be viewed as a rounding effect.

3Within a given century, the number N(x) of events with levels Xi > x is then Poisson with mean 1. Thus Pr{N(x) = 0} ≈
0.37 and Pr{N(x) > 1} ≈ 0.26.
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Appendix B

Distributions

B.1 Asymptotic theory and the GEV distribution

B.1.1 An important result

A central result of Extreme Values theory is the Fisher-Tippett-Gnedenko theorem below. The following
conventions or definitions are used.
• Two probability distributions F (x) and G(x) are of same type when G(x) = F (ax + b) for some

constants a > 0 and b. All distributions of a given type are often written as F0([x−µ]/σ) where F0(z)
is a chosen representant of the type, µ (location) and σ > 0 (shape) are parameters. The parameters
µ and σ are not necessarily the mean nor the standard deviation.

• The notation z+ is for the positive part of a number z, that is z+ = max(z, 0).

Theorem (Fisher-Tippett-Gnedenko). Let Xn be a sequence of independent and identically distributed
random variables, and let Mn = max(X1, X2, . . . , Xn). If there exists two sequences bn and an > 0 such
that (Mn−bn)/an has a limiting distribution G(z) then that limiting distribution must be one of the following
three types

G(z) = exp{−e−z} Gumbel or type I
G(z) = exp{−z−α+ } Fréchet or type II
G(z) = exp{−(−z)α+} Weibull (reversed) or type III

where α > 0 is a parameter for types II or III.

For each type, the distribution depends on µ and σ > 0 and possibly of α > 0. E.g. the general Gumbel
distribution is

G(x) = exp {− exp [−(x− µ)/σ]}

The third distribution corresponds to values z 6 0 and is often called Weibull. This may create a confusion
with the ordinary Weibull described later. A preferable appellation is reversed Weibull.

Each of the three possible limiting distributions is max-stable i.e. is closed for the maximum of indepen-
dent and identically distributed random variables. For example if Xi are independent with the same Gumbel
distribution, then their maximum Mn is also of Gumbel type.

The three possible limit distributions are fairly different. Some mathematical criteria allow to say whether
a given distribution of Xk is in the domain of attraction of Gumbel, Fréchet or (reversed) Weibull. Some
usual examples are found in the book of Kotz and Nadarajah [8] (appendix to chap. 1) and table B.1 gives
the domains of attraction for the main distributions used in Renext. Broadly speaking, distributions with
exponentially decaying upper tail (such as normal, exponential, gamma) fall in the domain of attraction of
Gumbel. The Fréchet domain attracts heavy-tailed distributions (Pareto, Cauchy).
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distribution of Xi limit of Mn

exponential Gumbel
Weibull Gumbel
gamma Gumbel
GPD ξ = 0 Gumbel
GPD ξ > 0 Fréchet
GPD ξ < 0 reversed Weibull
log-normal Gumbel
mixture of exponentials Gumbel
Pareto Fréchet
Cauchy Fréchet

Table B.1: Limit distribution for the maximum of a large number of independent levels Xi.

B.1.2 Generalised Extreme Values

The three types of the theorem above can be considered as special cases of the Generalised Extreme Value
distribution depending of a shape parameter ξ

G(z) = exp
{
− [1 + ξ z]−1/ξ

+

}
The sign of the shape parameter ξ is essential. When ξ > 0 we retrieve the Fréchet above up to a translation
of z. For ξ < 0 we get the reversed Weibull up to a translation of z. When ξ = 0 the power [1 + ξ z]−1/ξ is
to be replaced by its limit for ξ → 0 which is e−z and G(z) is the Gumbel distribution function above.

Using a linear transform z = (x− µ)/σ with arbitrary µ and σ > 0 all distributions of the GEV type are
obtained as

F (x) = exp

{
−
[
1 + ξ

x− µ
σ

]−1/ξ

+

}
(B.1)

This distribution is named GEV with scale parameter µ and shape parameter σ > 0, and it will be denoted
as GEV(µ, σ, ξ). It is defined on the set of values x for which the bracketed expression within [ ] in (B.1) is
non-negative that is

ξ < 0 ξ = 0 ξ > 0

−∞ < x 6 µ− σ/ξ −∞ < x < +∞ µ− σ/ξ 6 x < +∞

Grouping the three distributions may be thought of as a purely formal trick. However, since the GEV
distribution is regular at ξ = 0 we have a parametric family in the usual sense, with a parameter ξ. Thus
it makes sense to estimate the parameter ξ without specifying its sign, or to give a confidence interval
including the value ξ = 0. Note that the support of the distribution depends on the parameters and thus
that Maximum Likelihood (ML) theory must be invoked with care.

B.1.3 Implication in POT

The Fisher-Tippett-Gnedenko theorem suggests that the GEV distribution should be systematically used to
describe block maxima.

The implication in POT and the marked process context is less clear. When a large enough threshold u
is chosen, the observations Xi exceeding u might be thought of as maxima of unobserved independent
variables, suggesting the use of a three parameter GEV distribution with censoring Xi > u. Fortunately, the
conditional GEV is approximately a Generalised Pareto Distribution (GPD) with only two parameters, thus
the standard POT can be used, see B.3.2.

This justification is strengthened by the compound maximum results given in A.2 and the special
cases A.2.2.
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B.2 Probability distributions in POT

B.2.1 Levels vs exceedances

POT methods fit a distribution to the exceedances Yi = Xi−u over a fixed threshold u. The exceedances are
positive by construction and might contain small values since the threshold will generally be taken greater
than the mode of X.

In the rest of this section the letter X will be used for a level while Y is used for a positive exceedance
random variable. The densities and distribution functions of X will be denoted as fX(x) and FX(x) while
the Y subscript is used for Y . Thus

fX(x) = fY (x− u) fY (y) = fX(y + u)

For the distribution fitted in POT the threshold u is not a parameter to be estimated. Yet the probability
functions for levelX can have a location parameter. R functions used for Y can also have a location parameter
with suitable default value for it.

B.2.2 Some indicators

The coefficient of variation CV of a positive random variable Y is the ratio of the standard deviation to the
mean

CV =
√

Var(Y )/E(Y )

Comparing this theoretical CV to its empirical equivalent is often instructive. For an exponential distribution
we have CV = 1; a mixture of several exponentials corresponds to CV > 1.

B.2.3 Some useful probability functions

Several probability functions provide useful insights about the upper tail of a given distribution. Their name
is related to survival analysis where the random variable of interest is the lifetime Y of a subject or item.
The relation with POT is: increasing the POT threshold u is equivalent to selecting subjects still alive at
”time” u.

The survival function value S(y) is the probability Pr{Y > y} = 1− F (y). The hazard function h(v) is
defined by

h(v) dv = Pr [v < Y 6 v + dv | Y > v] v > 0

corresponding to the notion of instantaneous death rate. An usual equivalent definition is h(v) = f(v)/S(v).
In survival analysis hazards are usually non-decreasing since a decreasing hazard would mean a ”rejuvenation”
effect. Yet in POT modelling, distributions often have decreasing hazards. A decreasing hazard implies the
presence of a thick upper tail since rejuvenating subjects tend then to have a very long life.

The mean residual life MRL (or mean excess life) is defined as

MRL(v) = E (Y − v | Y > v) v > 0

While a decreasing MRL(v) may seem natural, a distribution with long tail such as GPD can have an
increasing mean residual life.

Another meaningful function is the cumulative hazard H(y)

H(y) = − logS(y) =
∫ y

0

h(z) dz y > 0

Increasing and decreasing hazards h(y) are respectively equivalent to convex and concave cumulative hazards
H(y). When the distribution function F (y) is plotted on an exponential plot, the ordinate used is in factH(x),
see page 8. The concavity of the resulting curve is that of H(y), and hence is related to the variation of h(y).
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Distributions with increasing hazard h(y) will give a convex (upward concave) curve on the exponential plot
while a decreasing h(y) leads to a concave (downward) one. The same effect is observed for the exponential
return level plot but with axes exchanged hence with opposite concavity.

An alternative to the quantile function qX(p) of X is the following return level function. Consider an
independent and identically distributed sequence Xi with survival SX(x); for a given m > 1 the value xm
that is exceeded on average once every m observations is given by the equation

SX(xm) = 1/m m > 1 (B.2)

and it can be called the return level with period m (or m-return level). This is an increasing function of m
with limit for large m the upper end-point of the distribution of X. For many distributions the solution
of (B.2) exist in closed form. In the POT context where levels Xi are observed on a rate of λ events by
years, the value of m in (B.2) is to be divided by the rate λ to obtain the corresponding period T . Then xm
is the return level corresponding to period T := m/λ.

Since 1/m = SX(xm), we have logm = HX(xm). Thus plotting points [logm, xm] i.e. points [m, xm]
with a log scale for the first axis (return periods) is equivalent to plotting points [x, HX(x)], but with the
two axes exchanged.

B.3 Distributions in Renext

B.3.1 Exponential

Definition

The exponential distribution has a survival function S(y) and a density f(y) given by

S(y) = e−νy f(y) = ν e−νy y > 0 (B.3)

where ν > 0 is a parameter called rate.

Properties

The equation S(y) = 1/m giving the ”m years return level” has the explicit solution ym = log(m)/ν.
The exponential distribution has constant hazard rate – a fact known as the ”memorylessness property”.

It therefore also has a constant mean residual life.
The exponential is a special case of several families: Weibull (with shape α = 1), GPD (with shape ξ = 0)

and gamma (with shape α = 1).
The exponential distribution is closely related to Gumbel distribution. If Y is exponential then V =

− log Y is Gumbel.

Estimation and inference

The exponential distribution has a well known ML inference from an ordinary sample Yi of size n.
The ML estimator for ν is the inverse of the sample mean ν̂ = 1/Ȳ . Up to a scaling factor the exponential

distribution is nothing but the χ2(2) with two degrees of freedom. More precisely 2ν Yi ∼ χ2(2). Multiplying
the sum

∑
i Yi = n Ȳ by 2ν gives a ”pivotal” quantity V = 2ν × n Ȳ having a χ2(2n) distribution. Since

V = 2n ν/ν̄, an exact confidence interval at the level 1− α for ν is obtained as

χ2
1−α/2

2n
× ν̂ 6 ν 6

χ2
α/2

2n
× ν̂

where χ2
α is the upper quantile for the χ2(2n) distribution1. Exact confidence intervals are similarly derived

for the distribution F (y) with given y or for a m-return level ym with m given.
1Pr

˘
χ2(2n) > χ2

α

¯
= α
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Goodness-of-fit

A specific goodness-of-fit test for the exponential distribution is sometimes called Bartlett’s (or Moran’s)
test of exponentiality. The test statistic Bn involves the sample mean Y as well as the sample mean log Y
of the logged Yi

Bn = bn ×
{

log Ȳ − log Y
}

bn = 2n× {1 + (n+ 1)/(6n)}−1

Under the null hypothesis we have approximately Bn ∼ χ2(n− 1) and a two-sided test is in order.
Remind that the goodness-of-fit can also be evaluated using a graphical analysis with an exponential

plot.

Use in Renext

The exponential can be used in Renext under the two names "exponential" and "exp". In both cases,
the rate parameter ν of (B.3) is named rate. In the Renouv function, the choice of the distribution name
among the two possible ones for the exponential has consequences.

• Using distname.y = "exponential" (which corresponds to the default value), the estimation and
inference will be specific to the exponential. The test of exponentiality is computed and displayed
by the summary method for the fitted object. When no historical data are used, the exact inference
described above is used both for the parameter and the return levels.

• Using distname.y = "exp", the distribution of the stats package is used in black-box mode, as it
would be with any other available distribution. Thus the inference on the parameter and the return
levels is based on the asympotic normality and the delta method.

The first possibility should obviously be preferred. In the second case, the likelihood is maximised numerically,
and an initial value must be given using the start.par.y argument.

B.3.2 Generalised Pareto GPD

Definition

The Generalised Pareto Distribution (GPD) depends on three parameters µ (location), σ > 0 (scale) and ξ
(shape). When ξ 6= 0, the survival function S(y) and the density function f(y) are given by

S(x) =
[
1 + ξ

(x− µ)
σ

]−1/ξ

+

f(x) =
1
σ

[
1 + ξ

(x− µ)
σ

]−1/ξ−1

+

x > µ (B.4)

while the limit for ξ → 0 is to be used for ξ = 0

S(x) = e−(x−µ)/σ f(x) =
1
σ
e−(x−µ)/σ x > µ

which is a shifted exponential distribution with rate 1/σ.
The distribution is defined for the values x with x > µ and 1 + ξ (x− µ)/σ > 0, that is

ξ < 0 ξ = 0 ξ > 0

µ 6 x 6 µ− σ/ξ µ 6 x < +∞ µ 6 x < +∞

The value of the shape parameter ξ has a very strong influence, see figure B.1.

� When ξ < 0 the distribution has a finite upper end-point. As a special case, the uniform distribution
is obtained with ξ = −1. The density function is decreasing for −1 < ξ < 0.

� When ξ > 0 the density is decreasing. The distribution tail thickens as ξ increases.

For most practical applications, the range of values for ξ is (−0.5, 0.5).
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µ µ− σ/ξµ− σ/ξ x

−1 < ξ < 0

ξ < −1

ξ = −1
(uniform)

ξ < 0 ξ > 0

ξ = 0 (exponential)

ξ > 0

xµ

Figure B.1: GPD densities for ξ < 0 (left) and ξ > 0 (right). In the ξ < 0 case, the parameters are chosen in order
to give the same support, i.e. µ and −σ/ξ are kept constant.

µ u

u

GPD(µ, σ, ξ)

area = 1− F (u)

area = 1

GPD(u, σ?, ξ)

Figure B.2: “Stability for exceedances” of the GPD family.

Properties

The GPD has a finite expectation when ξ < 1 and a finite variance when ξ < 1/2 then given by

E(X) = µ+
σ

1− ξ
Var(X) =

σ2

(1− ξ)2(1− 2ξ)

The shape parameter ξ can be related to the coefficient of variation of Y = X − µ by CV(Y ) = 1/
√

1− 2ξ.
Note that ξ > 0 gives CV(Y ) > 1.

For m > 1 the return level with period m of (B.2) is

xm = µ+ σ
[
mξ − 1

]
/ξ

It can be remarked that for any fixed m the value xm is increasing with respect to each of the three parameters
µ, σ and ξ and the same is true for the expectation. Thus increasing any of the three parameters leads to a
distribution with greater values.

The GPD can be said to be ”stable for exceedance” in the following sense. If X ∼ GPD(µ, σ, ξ) then for
u > µ

X | X > u ∼ GPD(u, σ?, ξ)

with σ? = σ + ξ(u− µ). In other words, the upper tail of a GPD density is a (unnormalized) GPD density
see figure B.2.
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When ξ < 1 the GPD corresponds to a linear mean residual life

E (X − v | X > v) =
σ + ξ v

1− ξ

This may be used for threshold determination in POT: replacing the expectation by a sample mean we can
check that the mean excess life is linear: see Coles’s book [2], chap. 4.

If X is a random variable with a distribution in the domain of attraction of a GEV distribution – as in
the Fisher-Tippett-Gnedenko theorem, the GPD can be shown to be the limiting distribution of Y = X − u
conditional to X > u when u is large. Moreover the parameter ξ of the GPD coincides with that of the
attracting GEV, see theorem 4.1 in Coles [2]. This property provides a justification for the traditional
exclusive use of the GPD for exceedances of POT models. An illustration for the Gumbel case ξ = 0 is given
page 9.

The GPD distribution has an infinite variance when ξ > 1/2. In practice, the values used are generally
in the range −0.3 6 ξ 6 0.3.

Estimation and inference

In the POT context the parameter µ is known. Moments estimator for σ and ξ are readily available.
For the ordinary sample (no historical data) case, Renext relies on the evd package [15] and its fpot

estimation function.
Note that ML estimators may fail to exist for the GPD in some situations.

Use in Renext

The GPD can be used in Renext under the name "gpd". The parameters of (B.4) are named as in the evd
package

σ ↔ scale ξ ↔ shape

Note that the parameter µ is used with the name "location" in the distribution functions, but should not
be used in the POT context: it must then be equal to its default value 0, since the distribution is fitted on
the exceedances Yi.

B.3.3 Weibull

Definition

The Weibull distribution has a survival function S(y) and a density function f(y) given by

S(y) = e−(y/β)α f(y) =
α

β

[
y

β

]α−1

e−(y/β)α y > 0 (B.5)

where α > 0 is the shape parameter and β > 0 the scale parameter.

Properties

The properties of the Weibull depend on the shape parameter α > 0.
• when 0 < α < 1 with decreasing hazard rate and increasing mean residual life MRL,

• when α = 1 the distribution is exponential with constant hazard rate and constant MRL.

• when α > 1 with increasing hazard rate and decreasing MRL.
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see reference [1].
The return level of period m > 1 is given by ym = β [logm]1/α, confirming that the exponential return

level curve [logm, ym] is convex (concave upwards) for 0 < α < 1 and (downwards) concave for α > 1.
The Weibull distribution is closely related to the exponential. When Y is Weibull with shape α the

random variable Z = Y 1/α has an exponential distribution. Thus when Y follows a Weibull distribution
V = − log Y has a Gumbel distribution.

Estimation and inference

The ML estimation is carried out by concentrating the scale parameter out of the likelihood. It can be
shown that with a suitable re-parameterisation the concentrated likelihood is a log-concave function having an
unique maximum easily obtained through a one-parameter maximisation. Moreover the expected information
matrix can be given in closed form. These tips are used in Renext.

Goodness-of-fit

Specific tests exist for Weibull distributions but are not yet in Renext. The fit can be controlled graphically
with a Weibull plot such as produced by the weibplot function.

Use in Renext

The Weibull distribution can be used in Renext under the name "weibull". The parameters of (B.5) are
named as in the stats package from which the distribution functions are taken

β ↔ scale α↔ shape

It is not necessary to provide initial values for the ML estimation since specific initial values are used then
in Renouv.

B.3.4 Gamma

Definition

The gamma distribution has density

f(y) =
1

Γ(α)βα
yα−1e−y/β y > 0 (B.6)

where Γ(α) denotes the Euler’s gamma function, β > 0 is the scale parameter and α > 0 is the shape
parameter. The distribution function F (y) and the survival S(y) do not have a simple expression.

Properties

Expectation and variance are given by

E(Y ) = αβ Var(Y ) = αβ2

Note that α is related to the coefficient of variation by CV = 1/
√
α.

The properties of the distribution depend on the shape parameter α > 0.
• for 0 < α < 1 the hazard rate is decreasing and the mean residual life MRL is increasing,

• for α = 1 the distribution is the exponential with constant hazard and constant MRL,

• for α > 1 the hazard rate is increasing and the MRL is decreasing.
see reference [1].

The gamma distribution is not frequently used to describe extremes. However in the decreasing hazard
case 0 < α < 1, it can be considered as a continuous mixture of exponentials.

It can be shown that the gamma distribution falls in the domain of attraction of the Gumbel distribution.
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Estimation

The ML estimation using an ordinary sample Yi can be done using a numerical optimisation with moment
estimators as initial values. These are readily available.

As in the Weibull case, it is possible to concentrate the likelihood and thus to solve a one-parameter
maximisation problem. Moreover the maximisation can be reduced to that of a concave function, and the
expected information matrix can be computed. However these improvements are not implemented yet in
Renext.

Use in Renext

The gamma distribution can be used in Renext under the name "gamma". The parameters of (B.6) are
named as in the stats package from which the distribution functions are taken

β ↔ scale α↔ shape

It is not necessary to provide initial values for the ML estimation since specific initial values are used then
in Renouv.

B.3.5 Log-normal

Definition

The log-normal distribution is the distribution of eV where V is normal. It has density

f(y) =
1

σ
√

2πy
exp

{
− 1

2σ2
[log y − µ]2

}
y > 0 (B.7)

where µ and σ > 0 are the parameter of the normal distribution of log Y . The distribution function F (y)
and the survival S(y) do not have simple expression.

Note that these parameters are not the location nor the scale parameter since they are in the logged
scale.

Properties

The expectation and variance of the log-normal distribution are

E(Y ) = eµ+σ2/2 Var(Y ) = (eσ
2
− 1) e2µ+σ2

and the coefficient of variation is
√
eσ2 − 1.

For the log-normal distribution neither the hazard h(y) nor the mean residual life MRL(y) are monotonous
functions. The mean residual life MRL(y) is reputed2 to be decreasing for large values of y.

Estimation and inference

The ML estimation from an ordinary sample is straightforward using the log transformation which leads to
the normal case. Exact inference is also available for the parameters.

However, exact inference for the return levels or return periods is more complicated. Hence the standard
numerical ”delta method” is used in Renext.

Goodness-of-fit

The fit of the log-normal distribution can be assessed using the logged values and a normality test (e.g.
Shapiro-Wilk). Since the log-normal is not frequently used in POT, such a test is not in computed in
Renext.

2No proof of this assertion was found.
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Use in Renext

The log-normal distribution can be used in Renext under the name "lnorm". The parameters of (B.7) are
named as in the stats package from which the distribution functions are taken

µ↔ meanlog σ ↔ sdlog

It is not necessary to provide initial values for the ML estimation since specific initial values are used then
in Renouv.

B.3.6 Mixture of exponentials

Definition

The mixture of exponentials is a distribution with density (or survival) function obtained as a weighed mean
of exponential densities (or survivals) with different rates. For a mixture of two exponentials, the survival
function S(y) and density f(y) are given by

S(y) = α1 e
−λ1y + (1− α1) e−λ2y f(y) = α1λ1 e

−λ1y + (1− α1)λ2 e
−λ2y y > 0 (B.8)

and the parameters are α1, λ1 and λ2 must verify

0 < α1 < 1 0 < λ1 < λ2 (B.9)

It can be preferable to use the alternative parameter vector [α1, λ1, δ]′ with δ := λ2−λ1, since the constraint
λ1 < λ2 is replaced then by the simple constraint δ > 0.

The usual interpretation of a mixture applies: the distribution is that of a random variable that would
be randomly chosen from the exponential with rate λ1 or from the exponential with rate λ2 the respective
probabilities being α1 and 1 − α1. In survival analysis the mixture components correspond to two death
rates that may result from two causes of mortality or from the existence of two sub-populations.

Properties

The expectation and uncentered moments have a simple form

E(Y γ) = α1/λ
γ
1 + (1− α1)/λγ2

for any γ > 0. The coefficient of variation is always greater than 1.
For large values of y, the survival S(y) no longer depends on the greatest rate λ2 since

S(y) ∼
y→+∞

α1 e
−λ1y (B.10)

The survival analysis context provides a simple interpretation: after a large time y, the sub-population with
smaller death rate λ1 dominates, and the mean residual life therefore increases.

It can be shown that the hazard rate function h(y) is decreasing with a limit λ1, and that the mean excess
life is increasing with a finite limit 1/λ1. This ”rejuvenation effect” results from the progressive extinction of
the population having the highest death rate λ2. The cumulative hazard H(y) is concave, see figure B.3.

The quantile function is not available in closed form and must be computed numerically.

Estimation and inference

Note that the model would be unidentifiable if the second constraint of (B.9) was omitted since the distri-
bution is invariant under the transformation

[α1, λ1, λ2]→ [1− α1, λ2, λ1]
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Figure B.3: Exponential plot for the distribution function of a mixture of two exponentials. The curve shows the
cumulative hazard H(y) = − log[1− F (y)]. The slope of the tangent to the curve at the origin is the weighed mean
rate λ = α1λ1 + (1− α1)λ2. The slope of the asymptote is λ1. Note that λ1 < λ < λ2.

For an ordinary sample Yi the ML estimation can be done using Expectation-Maximisation (EM) algorithm.
In this approach, each data Yi is associated to a latent variable Zi with value z = 1 or z = 2 indicating the
group (or sub-population) for observation i and consequently the rate λz.

In Renext the standard log-likelihood maximisation is used. Initial values are computed using the
moments when possible, or using (B.10): regressing log [1− F (y)] against y for large values of y give − logα1

(intercept) and λ1 (slope), see figure B.3. Then λ2 can be deduced from the sample mean. However care is
needed since these estimates may not fulfil the constraints requirements.

Generalisation

A mixture of m exponentials (m > 2) can be defined with

S(y) =
m∑
i=1

αi e
−λiy f(y) =

m∑
i=1

αiλi e
−λiy y > 0

with constraints 0 < αi < 1,
∑
i αi = 1 and 0 < λ1 < λ2 < · · · < λm Since the parameter αm can be dropped

as in the m = 2 case, the distribution depends on 2m− 1 free parameters. The behaviour for large y results
from (B.10) which still applies.

The mixture of exponentials is sometimes called hyper-exponential distribution.

Use in Renext

The mixture of exponential distributions can be used in Renext under the name "mixexp2", and is currently
limited to m = 2 exponentials. The distribution functions (including the quantile function) are provided by
Renext and use the following names for the parameters of (B.8)

α1 ↔ prob1 λ1 ↔ rate1 δ = λ2 − λ1 ↔ delta

It is not necessary to provide initial values for the ML estimation since specific initial values are used then
in Renouv.

The ML-based inference for the mixture of exponentials is well known to be difficult, and bayesian
inference might be a valuable alternative.

B.3.7 Transformed Exponential distributions

Definition

This rather informal family of distributions is sometimes used in hydrology. Although we will only consider
in practice the two functions φ(x) = x2 and φ(x) = log x both for x > 0, a slightly more general framework

41



can be proposed as follows. Let φ(x) be a regular and strictly increasing function defined for x > x0 and let
u be a known value u > x0. When a random variable X is such that

φ(X)− φ(u) ∼ Exp

we may say that X has a transformed exponential distribution. The values of this distribution are the real
numbers x with x > u. Note that the transformation needs to be one-to-one, because the distribution of X
must be determinable from that of Z = φ(X)− φ(u). Then

X = ψ (Z + φ(u))

where ψ(z) is the reciprocal function of φ(x). As an example, the square transformation can be applied only
for x > 0.

The survival function is given by

SX(x) = exp
{
−ν [φ(x)− φ(u)]

}
x > u

where ν > 0 is the rate of the exponential distribution. The density comes by derivation.

Properties

The properties of the distribution obviously depend on the choice of the transformation.

• For the square transformation φ(x) = x2 we get a shifted and truncated Weibull distribution as
described below. It may be called square-exponential or (in french) loi en carrés.

• With the logarithmic transformation φ(x) = log x we get a shifted version of the Pareto (heavy tailed)
distribution called Lomax distribution and described below in B.3.9. It may be called log-exponential.

The quantile function is available in closed form provided that the reciprocal function ψ(z) is such. This is
actually the case for the two transformations considered.

Estimation and inference

As far as an ordinary sample Xi is used, the ML estimator ν̂ of the rate ν is available using the mean of the
transformed random variables Zi = φ(Xi)− φ(u)

1/ν̂ = Z = φ(X)− φ(u)

Exact inference on ν is deduced from the exponential case.

Use in Renext

The package allows the use of two transformed exponential distributions with the Renouv function, where u
is necessarily taken as the threshold. The value given for the transformation formal argument trans.y can
be either "square" or "log". In both cases, the exponential distribution must be specified by giving the
value "exponential" to the distribution argument distname.y.

B.3.8 Shifted Left Truncated Weibull (SLTW) distribution

Definition

We call (shifted) left truncated Weibull (SLTW) the following distribution for a random variable Y > 0.
It depends on three parameters δ > 0 (shift or location), β > 0 (scale) and α > 0 (shape) and has survival
function

S(y) = exp
{
−
[(

y + δ

β

)α
−
(
δ

β

)α]}
y > 0 (B.11)
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Figure B.4: ”Square exponential” densities, i.e. SLTW densities with shape α = 2. Only the part y > 0 of the
Weibull densities is used and the normalisation is on the interval y > 0.

The density comes by derivation. This is the conditional distribution X − δ | X > δ where X has Weibull
distribution with shape α and scale β.

For α = 2 we can rewrite the survival as

S(y) = exp
{
−ν
[
(y + δ)2 − δ2

]}
y > 0

thus the distribution is identical to the square-exponential described previously.
This three parameter family can be used for exceedances in POT, but in a general framework there is

no natural choice for δ > 0 in relation with a physical threshold u, though the two quantities have the same
physical dimension. For some applications of POT where the random variable is positive δ is sometimes
chosen as the threshold δ = u.

Properties

The three parameter family is (by construction) stable by exceedance over a threshold > 0. The moments
or even the expectation are not easily computed in the general case.

For α 6 1 the mode of Y is always y = 0. For α > 1 the mode of Y is the positive part y?+ of the shifted
mode y? of the Weibull i.e. y? = (α− 1)1/α β − δ. Thus for a fixed α and δ we can have a mode varying
with β.

The quantile function is available in closed form. The hazard and the MRL for this distribution are merely
truncations of their equivalent for the Weibull distribution, e.g. the hazard is decreasing for 0 6 α < 1 and
increasing for α > 1.

For α > 0 and large δ, the distribution is close to the exponential since the Weibull distribution is in the
domain of attraction of the Gumbel distribution for which the exceedances over a large threshold tend to be
exponentially distributed.

Using the notation ρ = α/βα we can rewrite the survival as

S(y) = exp {−ρ [φα(y + δ)− φα(δ)]} y > 0 (B.12)

where φα(z) is the Box-Cox transformation defined for z > 0 by

φα(z) =

{
(zα − 1)/α α > 0
log z α = 0

(B.13)

The function φα(z) is strictly increasing with limit +∞ when z → +∞ and it is regular with respect to α
for α = 0. Thus if α and β both tend to zero in such way that ρ tends to a limit ρ? > 0 the distribution
tends to the Lomax distribution described below. The limit survival is (B.12) with α = 0 and ρ = ρ?.
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Estimation

In most contexts, the shift parameter δ should be known and given.
Note that when both α and δ are known and when the estimation is from an ordinary sample Yi of size n,

the ML estimator ρ̂ = α/βα of ρ is available using the mean of the transformed Yi

1/ρ̂ = φα(Y + δ)− φα(δ)

Exact inference on ρ or on the quantiles is then easily deduced from the exponential case.

Use in Renext

The SLTW distribution is provided in Renext under the name SLTW. The relevant probability functions
share the three following formal arguments for the parameters, in correspondence with (B.11)

delta ↔ δ shape ↔ α scale ↔ β

Note that the parameter named scale is not a scale parameter in the usual statistical sense; the name only
refers to the original Weibull distribution.

No specific inference method is implemented in the Renext POT fitting. A special case is when δ is equal
to the (known) threshold u and when moreover α is known. Indeed, we then fit an exponential distribution
to a transformed version φα(X) of the level X ≡ Y + u. We thus can use in the special case where α = 2
(square transformation) and the limit case where α = 0 (log transformation) as explained above in B.3.7. In
the Renouv function, one must then use distname.y = "exponential"; the transformation argument must
be respectively trans.y = "square" and trans.y = "log".

B.3.9 Lomax

Definition

The Lomax distribution depends on two parameters δ > 0 (scale) and ρ > 0 (shape) with survival function

S(y) =
[

δ

y + δ

]ρ
=
[
1 +

y

δ

]−ρ
y > 0 (B.14)

This distribution is also known as Pareto distribution of the second kind [7]. When Y is a random variable
following this distribution, X = Y + δ is Pareto with minimum x0 = δ and shape ρ that is

SX(x) =
[x0

x

]ρ
x > x0

The Pareto distribution with minimum x0 and shape ρ is a special case of GPD(µ, σ, ξ) with location µ = x0,
shape ξ = 1/ρ (positive) and the extra constraint σ/ξ = x0. The Lomax distribution is the special case
of the Generalised Pareto GPD(µ, σ, ξ) with µ = 0, σ = δ/ρ and ξ = 1/ρ, thus implying a positive shape
parameter ξ.

We can rewrite the distribution function of Y in the form (B.12) above, with φα(z) ≡ log z, i.e. with the
Box-Cox transformation (B.13) for α = 0. Therefore, the Lomax distribution can be considered as a limit
case of the Shifted Left Truncated Weibull SLTW. We may speak of log-exponential distribution although
the expression is ambiguous.

Properties

The quantile function is available in closed form. The expectation is finite only for ρ > 1 and the variance
is finite only for ρ > 2. In this case

E(Y ) =
δ

ρ− 1
Var(Y ) =

ρ δ2

(ρ− 1)2(ρ− 2)
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and CV(Y ) =
√
ρ/(ρ− 2) > 1. Only cases with ρ > 2 seem practicable.

The Lomax distribution has a decreasing hazard rate and a linearly increasing Mean Residual Life. It
can be shown that this distribution is a (continuous) gamma mixture of exponentials. More precisely, the
survival of (B.14) can be written as

S(y) =
∫ +∞

0

g(λ) e−λy dλ

where g(λ) is the density of the gamma distribution with shape α := ρ and scale β := 1/δ. The survival
S(y) is thus the weighed mean of the exponential survivals e−λy with the weight function g(λ).

Estimation

When the two parameters δ > 0 and ρ > 0 are unknown, the ML estimators from an ordinary sample Yi can
be found using a one-dimensional optimisation by concentrating the shape parameter out of the likelihood.
However, this possibility is not (yet) used in Renext.

When δ is known, the estimation boils down to that of the exponential distribution.

Use in Renext

This distribution is provided in Renext under the name lomax. The names of the formal arguments for the
parameters in the probability functions are

scale ↔ δ shape ↔ ρ

This distribution can be used in Renouv, thus providing a simple mean to impose the constraint ξ > 0 for
exceedances assumed to follow GPD(0, σ, ξ). However, the distribution is used in black-box mode and initial
values must be given for the two parameters.

Estimation and exact inference are possible in the case where the shift δ is taken as the (known) threshold
i.e. δ = u. The exponential distribution should then be used with a logarithmic transformation as explained
above in B.3.7. The two formal arguments and values to use in the Renouv call are distname.y = "expo-
nential" and trans.y = "log". Note that ρ is then obtained with the name "rate", and its estimated
value will be greater than 1.

B.3.10 Other distributions

It is possible to use a quite arbitrary distribution within the Renouv function provided the probability
functions3 are available in R and satisfy the conditions stated in the help of the Renouv function.

3Density, distribution and quantile functions are required.
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tiques et probabilités appliquées. Springer-Verlag, 2007.

[12] R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2010. ISBN 3-900051-07-0.

[13] Ribatet, Mathieu. POT: Generalized Pareto Distribution and Peaks Over Threshold, 2009. R package
version 1.1-0.

[14] Stephenson, Alec and Ribatet, Mathieu. evdbayes: Bayesian Analysis in Extreme Value Theory, 2008.
R package version 1.0-7.

[15] Stephenson, Alec G. evd: Extreme value distributions. R News, 2(2):0, June 2002.

[16] Viglione, Alberto. nsRFA: Non-supervised Regional Frequency Analysis, 2009. R package version 0.6-9.

46



Index

axes limits in return level plot, 19

Bartlett’s test of exponentiality, 35
blocks, 4, 13

chi-square goodness-of-fit test, 14
coefficient of variation, 33
compound maximum, 28
cumulative hazard, 33

delta method, 2, 19, 21
domain of attraction, 31

effective duration, 11, 12
exact inference, 34, 44
Expectation-Maximisation, 41
exponential distribution, 10, 34–35
exponential plot, 8, 19, 21, 33, 35

Fisher-Tippett-Gnedenko theorem, 31
fixed parameter values, 25–26, 44
Fréchet distribution, 31

gamma distribution, 38–39, 45
gaps, see missing periods
Generalised Extreme Value, see GEV distribution
Generalised Pareto Distribution, see GPD (distribu-

tion)
GEV distribution, 29, 32
goodness-of-fit, 14–16, 21–22
GPD (distribution), 29, 35–37
Gumbel distribution, 29, 31
Gumbel plot, 8, 18

hazard function, 33
hessian, 21
historical data, 4, 6, 19, 22–24
hyper-exponential distribution, 41

interevent, 2, 10–11

jitter, 21

Kolmogorov-Smirnov test, 10, 12, 21

leap seconds, 5
left truncated Weibull, 3
levels vs exceedances, 33
log-exponential distribution, 42, 44
log-normal distribution, 39–40
loi en carrés, 42, 43
Lomax distribution, 44–45

marked point process, 2
max-stable distribution, 31
MAXdata, 6, 22–23
maximum likelihood, 19–20
mean residual life, 33
missing periods, 5, 6, 11
mixture of exponentials, 38, 40–41, 45
Moran’s test of exponentiality, 35
MRL, see mean residual life

negative binomial, 28

optim function, 20
OTdata, 4
OTSdata, 23
overdispersion index, test, 14

Pareto distribution, 44
Pareto distribution of the second kind, 44
plotting position, 8, 24
POSIX objects, 4
POT (Peaks Over Threshold), 3
predict method, 17

r largest order statistics, 4, 22
rate, Poisson process, 2
Rendata class, 5
Renouv class, 17
return level, 34
return level plot, 18–19
return period, 3, 29–30
reversed Weibull distribution, 31

shifted left truncated Weibull, see SLTW
SLTW distribution, 26, 42
square-exponential distribution, 42, 43
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survival function, 33

thinning (Poisson Process), 3, 23
threshold, 3
ties, 21
transformed exponential, 41–42

uniform distribution, 35
unobserved level, 22

Weibull distribution, 18, 37–38, 43
Weibull plot, 21, 38
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