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Abstract

In stratified random sampling the problem of determining the optimal
size and allocation of units in strata is solved by considering the stratifica-
tion of the population as given. Conversely, the definition of the optimal
stratification of a sampling frame for a given survey is investigated without
choosing, as objective function, the sampling size required to satisfy given
precision constraints on the parameters of interest of a given survey. This
package allows the determination of the best stratification of a target pop-
ulation, the one that ensures the minimum sample size (or the minimum
fieldwork and interviewing costs) so to satisfy precision constraints in a
multivariate and multidomain case. The underlying algorithm is based on
a non deterministic evolutionary approach, making use of the genetic al-
gorithm paradigm. The specific functions for the execution of the genetic
algorithm are a modified version of those contained in the genalg package.
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1 Introduction

Let us suppose we need to design a sample survey, having a complete frame
containing information on the target population (identifiers plus auxiliary in-
formation). If our sample design is a stratified one, we need to choose how to
form strata in the population, in order to get the maximum advantage by the
available auxiliary information. In other words, we have to decide in which way
to combine the values of the auxiliary variables (from now on, the ’X’ variables)
in order to determine a new variable, called ’stratum’. To do so, we have to
take into consideration the target variables of our sample survey (from now on,
the ’Y’ variables): if, to form strata, we choose the X variables most correlated
to the Ys, the efficiency of the samples drawn by the resulting stratified frame
may be greatly increased. In order to handle the whole auxiliary information in
a homogenous way, we have to reduce continuous data to categorical (by mean
of a k-means clustering technique, for example). Then, for every set of candi-
date auxiliary variables Xs, we have to decide (i) what variables to consider as
active variables in strata determination, and (ii) for each active variable, what
set of values (in general, what aggregation of atomic values) have to be consid-
ered. Every combination of values of each active variable determine a particular
stratification of the target population, i.e. a possible solution to the problem of
’best’ stratification. Here, by best stratification, we mean the stratification that
ensures the minimum sample cost, sufficient to satisfy a set of precision con-
straints, set on the accuracy of the estimates of the survey target variables Ys
(constraints expressed as maximum allowable sampling variance on estimates in
different domains of interest). When the cost of data collection is uniform over
the strata, then the total cost is directly proportional to the overall sample size,
and the convenience of a particular stratification can be measured by the associ-
ated size of the sample, whose estimates are expected to satisfy given accuracy
levels. This minimum size can be determined by applying the Bethel algorithm,
with its Chromy variant. In general, the number of possible alternative strati-
fications for a given population may be very high, depending on the number of
variables and on the number of their values, and in these cases it is not possible
to enumerate them in order to assess the best one. A very convenient solution
to this, is the adoption of the evolutionary approach, consisting in applying a
genetic algorithm that may converge towards a near-optimal solution after a
finite number of iterations. The methodology is fully described in Ballin and
Barcaroli (2013), and a complete illustration of the package, together with a
comparison with the stratification package, is in Barcaroli (2014). Also a
complete application in a case of network data is reported in Ballin and Barcaroli
(2016). The implementation of the genetic algorithm is based on a modification
of the functions in the genalg package (see Willighagen (2005)). In particular,
the crossover operator ha been modified on the basis of the indications given by
O’Luing et al. (2017).
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2 Procedural steps

The optimization of the sampling design starts by making the sampling frame
available, defining the target estimates of the survey and establishing the preci-
sion constraints on them. It is then possible to determine the best stratification
and the optimal allocation. Finally, we proceed with the selection of the sample.
Formalizing, these are the required steps:

1. analysis of the frame data: identification of available auxiliary information;

2. manipulation of auxiliary information: in case auxiliary variables are of
the continuous type, they must be transformed into a categorical form;

3. construction of atomic strata: on the basis of the categorical auxiliary
variables available in the sampling frame, a set of strata can be constructed
by calculating the Cartesian product of the values of all the auxiliary
variables;

4. characterization of each atomic stratum with the information related to
the target variables: in order to optimise both strata and allocation of
sampling units in strata, we need information on the distributions of the
target variables (means and standard deviations);

5. choice of the precision constraints for each target estimate, possibly dif-
ferentiated by domain;

6. optimization of stratification and determination of required sample size
and allocation in order to satisfy precision constraints on target estimates;

7. analysis of the resulting optimized strata;

8. association of new labels to sampling frame units, each of them indicating
the new strata resulting by the optimal aggregation of the atomic strata;

9. selection of units from the sampling frame with a stratified random sample
selection scheme;

10. evaluation of the found optimal solution in terms of expected precision
and bias.

In the following, we will illustrate each step starting from a real sampling frame,
the one that comes with the R package sampling (the dataframe swissmunic-

ipalities).

3 Analysis of the frame data and manipulation
of auxiliary information

As a first step, we have to define a frame dataframe containing the following
information:
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� a unique identifier of the unit (no restriction on the name, may be ’cod’);

� the (optional) identifier of the stratum to which the unit belongs;

� the values of m auxiliary variables (named from X1 to Xm);

� the (optional) values of p target variables (named from Y1 to Yp);

� the value of the domain of interest for which we want to produce estimates
(named ’domainvalue’).

By typing the following statements in the R environment:

> library(SamplingStrata)

> require(memoise)

> data(swissmunicipalities)

we get the swissmunicipalities dataframe, that contains 2896 observations
(each observation refers to a Swiss municipality). Among the others, there are
the following variables (data are referred to 2003):

� REG: Swiss region.

� Nom: municipality name.

� Surfacesbois: wood area.

� Surfacescult: area under cultivation.

� Alp: mountain pasture area.

� Airbat: area with buildings.

� Airind: industrial area.

� Pop020: number of men and women aged between 0 and 19.

� Pop2040: number of men and women aged between 20 and 39.

� Pop4065: number of men and women aged between 40 and 64.

� Pop65P: number of men and women aged between 65 and over.

� POPTOT: total population.

Let us suppose we want to plan a survey whose target estimates are the totals
of population by age class in each Swiss region. In this case, our Y variables
will be:

� Y1: number of men and women aged between 0 and 19.

� Y2: number of men and women aged between 20 and 39.

� Y3: number of men and women aged between 40 and 64.
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� Y4: number of men and women aged between 65 and over.

As for the auxiliary variables (Xs), we can use all of those characterising the
area use (wood, mountain or pasture, cultivated, industrial, with buildings).

Finally, we want to produce estimates not only for the whole country, but
also for each one of the seven different regions.

Function buildFrameDF permits to organize data in a suitable mode for next
processing:

> id = "Nom"

> X = c("POPTOT","Surfacesbois","Surfacescult","Alp","Airbat","Airind")

> Y = c("Pop020","Pop2040","Pop4065","Pop65P")

> domainvalue = "REG"

> swissframe <- buildFrameDF(swissmunicipalities,id,X,Y,domainvalue)

> str(swissframe)

'data.frame': 2896 obs. of 12 variables:

$ id : Factor w/ 2894 levels "Aadorf","Aarau",..: 2886 940 164 212 1349 2826 2406 1491 243 2510 ...

$ X1 : int 363273 177964 166558 128634 124914 90483 72626 59496 48655 40377 ...

$ X2 : int 2326 67 97 1726 1635 2807 1139 408 976 425 ...

$ X3 : int 967 31 93 1041 714 1827 1222 183 196 694 ...

$ X4 : int 0 0 0 0 0 0 0 0 18 0 ...

$ X5 : int 2884 773 1023 1070 856 972 812 524 463 523 ...

$ X6 : int 260 60 213 212 64 238 134 27 108 137 ...

$ Y1 : int 57324 32429 28161 19399 24291 18942 14337 9533 9127 8128 ...

$ Y2 : int 131422 60074 50349 44263 44202 28958 24309 18843 14825 11265 ...

$ Y3 : int 108178 57063 53734 39397 35421 27696 21334 18177 15140 13301 ...

$ Y4 : int 66349 28398 34314 25575 21000 14887 12646 12943 9563 7683 ...

$ domainvalue: int 4 1 3 2 1 4 5 6 2 2 ...

As the X variables are of the continuous type, first we have to reduce them
in a categorical (ordinal) form.

A suitable way to do so, is to apply a k-means clustering method (see Har-
tigan and Wong (1979)) by using the function var.bin:

> library(SamplingStrata)

> swissframe$X1 <- var.bin(swissmunicipalities$POPTOT, bins=18)

> swissframe$X2 <- var.bin(swissmunicipalities$Surfacesbois, bins=3)

> swissframe$X3 <- var.bin(swissmunicipalities$Surfacescult, bins=3)

> swissframe$X4 <- var.bin(swissmunicipalities$Alp, bins=3)

> swissframe$X5 <- var.bin(swissmunicipalities$Airbat, bins=3)

> swissframe$X6 <- var.bin(swissmunicipalities$Airind, bins=3)

Now, we have six different auxiliary variables of the categorical type, the first
with 18 different modalities, the others with 3 modalities.

We write the dataframe to a tab delimited file:

> write.table (swissframe, "swissframe.txt", row.names=FALSE,col.names=TRUE, sep="\t", quote=FALSE)
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In any case, this dataframe comes with the package SamplingStrata: it can be
made available by executing:

> library(SamplingStrata)

> data(swissframe)

> head(swissframe)

progr REG X1 X2 X3 X4 X5 X6 id Y1 Y2

1 1 4 18 3 2 1 3 3 Zurich 57324 131422

2 2 1 17 1 1 1 3 2 Geneve 32429 60074

3 3 3 17 1 1 1 3 3 Basel 28161 50349

4 4 2 17 2 3 1 3 3 Bern 19399 44263

5 5 1 17 2 2 1 3 2 Lausanne 24291 44202

6 6 4 16 3 3 1 3 3 Winterthur 18942 28958

Y3 Y4 domainvalue

1 108178 66349 4

2 57063 28398 1

3 53734 34314 3

4 39397 25575 2

5 35421 21000 1

6 27696 14887 4

4 Construction of atomic strata and association
of the information related to target variables

The strata dataframe reports information regarding each stratum in the
population. There is one row for each stratum. The total number of strata is
given by the number of different combinations of Xs values in the frame. For
each stratum, the following information is required:

1. the identifier of the stratum (named ’stratum’ or ’strato’), concatenation
of the values of the X variables;

2. the values of the m auxiliary variables (named from X1 to Xm) corre-
sponding to those in the frame;

3. the total number of units in the population (named ’N’);

4. a flag (named ’cens’) indicating if the stratum is to be censused (=1) or
sampled (=0);

5. a variable indicating the cost of interviewing per unit in the stratum
(named ’cost’);

6. for each target variable y, its mean and standard deviation, named respec-
tively ’Mi’ and ’Si’);

7. the value of the domain of interest to which the stratum belongs (’DOM1’).
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For example:

> data(strata)

> head(strata)

stratum N X1 X2 X3 M1 M2 S1

1 1 2246 x11 x21 x31 148.1598 443.0137 95.41435

2 2 2972 x11 x21 x32 184.2041 513.8995 81.26956

3 3 1905 x11 x22 x31 193.8927 488.8046 79.66667

4 4 3125 x11 x22 x32 181.3437 597.1925 82.77032

5 5 1733 x12 x21 x31 109.9850 418.2234 88.20289

6 6 1060 x12 x21 x32 114.7943 489.8292 52.71574

S2 cens cost DOM1

1 202.4569 0 1 tot

2 214.9999 0 1 tot

3 261.1876 0 1 tot

4 226.5086 0 1 tot

5 179.1571 0 1 tot

6 166.0292 0 1 tot

If in the frame dataframe are also present the values of the target Y variables
(from a census, or from administrative data), it is possible to automatically
generate the strata dataframe by invoking the buildStrataDF function. Let
us consider again the swissframe dataframe that we have in built in previous
steps. On this frame we can apply the function buildStrataDF:

> swissstrata <- buildStrataDF(swissframe)

Computations have been done on population data

The function takes as unique argument the name of the frame, and also writes
out in the working directory the strata file, always named ’strata.txt’. This is
the structure of the created dataframe:

> head(swissstrata)

STRATO N M1 M2 M3 M4

1 1*1*1*1*1*1 184 48.31522 49.40217 61.44022 28.40761

2 1*1*1*1*1*2 1 98.00000 106.00000 116.00000 43.00000

3 1*1*1*2*1*1 2 57.00000 64.00000 70.00000 50.00000

4 1*1*2*1*1*1 11 77.72727 81.18182 92.36364 47.00000

5 1*2*1*1*1*1 9 58.22222 61.55556 66.77778 36.22222

6 1*2*1*2*1*1 8 61.00000 68.00000 84.62500 58.37500

S1 S2 S3 S4 COST CENS DOM1 X1 X2

1 26.81536 28.49831 32.63062 14.63922 1 0 1 1 1

2 0.00000 0.00000 0.00000 0.00000 1 0 1 1 1

3 4.00000 0.00000 1.00000 15.00000 1 0 1 1 1

4 15.24998 18.69768 17.03084 11.12736 1 0 1 1 1
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5 25.46360 20.27100 24.89881 15.49751 1 0 1 1 2

6 24.56624 19.48076 26.35307 26.55625 1 0 1 1 2

X3 X4 X5 X6

1 1 1 1 1

2 1 1 1 2

3 1 2 1 1

4 2 1 1 1

5 1 1 1 1

6 1 2 1 1

It is worth while noting that the total number of different atomic strata is 641,
lower than the dimension of the Cartesian product of the Xs (which is 4374):
this is due to the fact that not all combinations of the value of the auxiliary
variables are present in the sampling frame. Variables ’cost’ and ’cens’ are
initialised respectively to 1 and 0 for all strata. It is possible to give them
different values:

1. for variable ’cost’, it is possible to differentiate the cost of interviewing per
unit by assigning real values;

2. for variable ’cens’, it is possible to set it equal to 1 for all strata that are
of the ’take-all’ type (i.e. all units in that strata must be selected).

The swissstrata dataframe comes together with SamplingStrata package, it
can be made available by typing:

> data(swissstrata)

On the contrary, if there is no information in the frame regarding the target vari-
ables, it is necessary to build the strata dataframe starting from other sources,
for instance a previous round of the same survey, or from other surveys. In this
case, we need to read sample data by executing:

> samp <- read.delim("samplePrev.txt")

The only difference is that computed mean and variances of the Ys are sampling
estimates, whose reliability should be evaluated by carefully considering their
sampling variances. In addition to the naming constraints previously introduced,
this case requires that a variable named ’WEIGHT’ is present in the samp
dataframe. Then we can execute this function in this way:

> strata <- buildStrataDF(samp)

The result is much the same than in the previous case: the function creates a
new dataframe, strata, and writes out in the working directory the strata file,
named ’strata.txt’.

Note that in all cases, for each target variable Y, mean and standard devia-
tion are calculated excluding NAs.
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5 Choice of the precision constraints for each
target estimate

The errors dataframe contains the accuracy constraints that are set on
target estimates. This means to define a maximum coefficient of variation for
each variable and for each domain value. Each row of this frame is related
to accuracy constraints in a particular subdomain of interest, identified by the
DOM1 value. In the case of the Swiss municipalities, we have chosen to define
the following constraints:

> data(swisserrors)

> swisserrors

DOM CV1 CV2 CV3 CV4 domainvalue

1 DOM1 0.08 0.12 0.08 0.12 1

2 DOM1 0.08 0.12 0.08 0.12 2

3 DOM1 0.08 0.12 0.08 0.12 3

4 DOM1 0.08 0.12 0.08 0.12 4

5 DOM1 0.08 0.12 0.08 0.12 5

6 DOM1 0.08 0.12 0.08 0.12 6

7 DOM1 0.08 0.12 0.08 0.12 7

This example reports accuracy constraints on variables Y1, Y2, Y3 and Y4 that
are the same for all the 7 different subdomains (Swiss regions) of domain level
DOM1. Of course we can differentiate the precision constraints region by region.
It is important to underline that the values of ’domainvalue’ are the same than
those in the frame dataframe, and correspond to the values of variable ’DOM1’
in the strata dataframe. Once having defined dataframes containing frame data,
strata information and precision constraints, it is worth while to check their
internal and reciprocal coherence. It is possible to do that by using the function
checkInput:

> checkInput(swisserrors,swissstrata,swissframe)

Input data have been checked and are compliant with requirements

For instance, this function controls that the number of auxiliary variables is the
same in the frame and in the strata dataframes; that the number of target
variables indicated in the frame dataframe is the same than the number of
means and standard deviations in the strata dataframe, and the same than
the number of coefficient of variations indicated in the errors dataframe.

If we try to determine the total size of the sample required to satisfy these
precision constraints, considering the current stratification of the frame (the 641
atomic strata), we can do it by simply using the function bethel. This function
requires a slightly different specification of the constraints dataframe:

> cv <- swisserrors[1,]

> cv
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DOM CV1 CV2 CV3 CV4 domainvalue

1 DOM1 0.08 0.12 0.08 0.12 1

because the bethel function does not permit to differentiate precision con-
straints by subdomain. In any case, the result of the application of the Bethel
algorithm (see Bethel (1989)) is:

> sum(bethel(swissstrata,cv))

[1] 893

That is, the required amount of units to be selected, with no optimization of
sampling strata. In general, after the optimization, this number is sensibly
reduced.

6 Optimization of frame stratification

Once the strata and the constraints dataframes have been prepared, it is
possible to apply the function that optimises the stratification of the frame,
that is optimizeStrata. This function operates on all subdomains, identifying
the best solution for each one of them. The fundamental parameters to be
passed to optimizeStrata are:

1. errors: the (mandatory) dataframe containing the precision levels ex-
pressed in terms of maximum allowable coefficients of variation that regard
the estimates on target variables of the survey

2. strata: the (mandatory) dataframe containing the information related to
’atomic’ strata, i.e. the strata obtained by the Cartesian product of all
auxiliary variables Xs. Information concerns the identifiability of strata
(values of Xs) and variability of Ys (for each Y, mean and standard devi-
ation in strata)

3. cens: the (optional) dataframe containing the ’take-all’ strata, those
strata whose units must be selected in whatever sample. It has same
structure than strata dataframe

4. strcens: flag (TRUE/FALSE) to indicate if ’take-all’ strata do exist or
not. Default is FALSE

5. initialStrata: This is the initial limit on the number of strata for each
solution. Default is the number of atomic strata. In cases of more than a
domain, it has to be given as a vector, where each element indicates the
number of initial strata in each domain. If the parameter addStrataFac-
tor is equal to zero, then initialStrata is equivalent to the maximum
number of strata to be obtained in the final solution.
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6. addStrataFactor: this parameter indicates the probability that at each
mutation the number of strata may increase with respect to the current
value. Default is 0.01

7. minnumstr: indicates the minimum number of units that must be allocated
in each stratum. Default is 2

8. iter Indicated the maximum number of iterations (= generations) of the
genetic algorithm. Default is 20

9. pops The dimension of each generations in terms of individuals. Default
is 50

10. mut_chance (mutation chance): for each new individual, the probability
to change each single chromosome, i.e. one bit of the solution vector. High
values of this parameter allow a deeper exploration of the solution space,
but a slower convergence, while low values permit a faster convergence,
but the final solution can be distant from the optimal one. Default is 0.05

11. elitism_rate: this parameter indicates the rate of better solutions that
must be preserved from one generation to another. Default is 0.2.

12. highvalue: parameter for genetic algorithm. Its default value should not
be changed

13. suggestions: optional parameter for genetic algorithm that indicates one
possible solution (maybe from previous runs) that will be introduced in
the initial population. Default is NULL.

14. realAllocation : if FALSE, the allocation is based on INTEGER values;
if TRUE, the allocation is based on REAL values. Default is FALSE.

15. writeFiles : indicates if at the end of the processing the resulting strata
will be outputted in a delimited file. Default is TRUE.

In the case of the Swiss municipalities, this is a possible choice of the value of
the parameters:

> solution <- optimizeStrata(

+ errors = swisserrors,

+ strata = swissstrata,

+ cens = NULL,

+ strcens = FALSE,

+ initialStrata = as.numeric(table(swissstrata$DOM1)),

+ addStrataFactor = 0.00,

+ minnumstr = 2,

+ iter = 40,

+ pops = 10,

+ mut_chance = 0.05,

+ elitism_rate = 0.2,
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+ highvalue = 1e+08,

+ suggestions = NULL,

+ realAllocation = TRUE,

+ writeFiles = TRUE)

*** Domain : 1 1

Number of strata : 119

GA Settings

Population size = 10

Number of Generations = 40

Elitism = 2

Mutation Chance = 0.05

> sum(ceiling(solution$aggr_strata$SOLUZ))

[1] 334

Note how the initialStrata parameter is set: by giving the number of the
strata in each domain. Another possibility is to set a pre-determined value for
each domain, for instance equal in each domain, as c(5,5,5,5,5,5,5,5).

The execution of optimizeStrata produces the solution of 7 different op-
timization problems, one for each domain. We have reported in Figure 1 the
convergence plot regarding the third domain. The results of the execution are
contained in the list ’solution’, composed by two elements:

1. solution$indices: the vector of the indices that indicates to what ag-
gregated stratum each atomic stratum belongs;

2. solution$aggr_strata: the dataframe containing information on the op-
timal aggregated strata.

Figure 1: This graph illustrates the convergence of the solution to the final one
starting from the initial one (i.e. the one related to the atomic strata). Along
the x-axis are reported the executed iterations, from 1 to the maximum, while
on the y-axis are reported the size of the sample required to satisfy precision
constraints. The upper (red) line represent the average sample size for each
iteration, while the lower (black) line represents the best solution found until
the i-th iteration.
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7 Adjustment of the final sampling size

After the optimization step, the final sample size is the result of the allocation
of units in final strata. This allocation is such that the precision constraints are
expected to be satisfied. Actually, three possible situations may occur:

1. the resulting sample size is acceptable;

2. the resulting sample size is to high, it is not affordable with respect to the
available budget;

3. the resulting sample size is too low, the available budget permits to in-
crease the number of units.

In the first case, no action is required. In the second case, it is necessary
to reduce the number of units, by equally applying the same reduction rate
in each stratum. In the third case, we could either to set more tight precision
constraints, or proceed to increase the sample size by applying the same increase
rate in each stratum. This increase/reduction process is iterative, as by applying
the same rate we could find that in some strata there are not enough units to
increase or to reduce. The function ’adjustSize’ permits to obtain the desired
final sample size. Let us suppose that the obtained sample size is not affordable.
We can reduce it by executing the following code:

> adjustedStrata <- adjustSize(size=200,strata=solution$aggr_strata,cens=NULL)
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193

193

Final adjusted size: 193

> sum(adjustedStrata$SOLUZ)

[1] 193

Instead, if we want to increase the size because the budget allows to do this,
then this is the code:

> adjustedStrata <- adjustSize(size=400,strata=solution$aggr_strata,cens=NULL)

404

404

Final adjusted size: 404

> sum(adjustedStrata$SOLUZ)

[1] 404

The difference between the desired sample size and the actual adjusted size
depends on the number of strata in the optimized solution. Consider that the
adjustment is performed in each stratum by taking into account the relative
difference between the current sample size and the desired one: this produces
an allocation that is expressed by a real number, that must be rounded. The
higher the number of strata, the higher the impact of the rounding in all strata
on the final adjusted sample size.

8 Analysis of results

We want to analyse what kind of aggregation of the atomic strata the genetic
algorithm did produce. To do so, we apply the function updateStrata, that
assigns the labels of the new strata to the initial one in the dataframe strata,
and produces:

1. a new file named ’newstrata.txt’ containing all the information in the
strata dataframe, plus the labels of the new strata;

2. a table, contained in the dataset ’strata aggregation.txt’, showing in which
way the auxiliary variables Xs determine the new strata.

The function is invoked in this way:

> newstrata <- updateStrata(swissstrata, solution, writeFiles = TRUE)

Now, the atomic strata are associated to the aggregate strata defined in the op-
timal solution, by means of the variable LABEL. If we want to analyse in detail
the new structure of the stratification, we can look at the ’strata aggregation.txt’
file:
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> strata_aggregation <- read.delim("strata_aggregation.txt")

> head(strata_aggregation)

DOM1 AGGR_STRATUM X1 X2 X3 X4 X5 X6

1 1 1 1 1 1 1 1 1

2 1 1 3 2 1 2 1 1

3 1 2 1 1 1 1 1 2

4 1 2 12 1 1 1 2 2

5 1 3 1 1 1 2 1 1

6 1 3 7 1 1 1 2 1

In this structure, for each aggregate stratum the values of the X’s variables in
each contributing atomic stratum are reported. It is then possible to understand
the meaning of each aggregate stratum produced by the optimization.

9 Updating the frame and selecting the sample

Once the optimal stratification has been obtained, to be operational we need
to accomplish the following two steps:

1. to update the frame units with new stratum labels (combination of the
new values of the auxiliary variables Xs);

2. to select the sample from the frame.

As for the first, we execute the following command:

> framenew <- updateFrame(swissframe, newstrata, writeFiles=TRUE)

The function updateFrame receives as arguments the indication of the dataframe
in which the frame information is memorised, and of the dataframe produced
by the execution of the updateStrata function. The execution of this function
produces a dataframe framenew, and also a file (named ’framenew.txt’) with
the labels of the new strata produced by the optimisation step. The allocation
of units is contained in the ’soluz’ column of the dataset ’outstrata.txt’. At this
point it is possible to select the sample from the new version of the frame:

> sample <- selectSample(framenew, solution$aggr_strata, writeFiles=TRUE)

*** Sample has been drawn successfully ***

334 units have been selected from 110 strata

==> There have been 18 take-all strata

from which have been selected 54 units

that produces two .csv files:

1. ’sample.csv’ containing the units of the frame that have been selected,
together with the weight that has been calculated for each one of them;
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2. ’sample.chk.csv’ containing information on the selection: for each stratum,
the number of units in the population, the planned sample, the number of
selected units, the sum of their weights that must equalise the number of
units in the population.

10 Evaluation of the found solution

In order to be confident about the quality of the found solution, the function
evalSolution allows to run a simulation, based on the selection of a desired
number of samples from the frame to which the stratification, identified as the
best, has been applied. The user can invoke this function also indicating the
number of samples to be drawn:

> evalSolution(framenew, solution$aggr_strata, nsampl=50, writeFiles=TRUE)

For each drawn sample, the estimates related to the Y’s are calculated. Their
mean and standard deviation are also computed, in order to produce the CV
related to each variable in every domain. These CV’s are written to an external
csv file:

> expected_cv <- read.csv("expected_cv.csv")

> expected_cv

CV1 CV2 CV3 CV4 dom

1 0.07190928 0.07813983 0.07070580 0.06119707 DOM1

2 0.06983200 0.07427062 0.07301346 0.07593018 DOM2

3 0.08254377 0.08025347 0.08403149 0.08611832 DOM3

4 0.05921370 0.05943453 0.06000904 0.06917095 DOM4

5 0.07496021 0.07029730 0.07501772 0.06961198 DOM5

6 0.09468677 0.08894798 0.08848720 0.08826290 DOM6

7 0.07458308 0.07522628 0.07170373 0.09134940 DOM7

These values are on average compliant with the precision constraints set (see
also Figure 2).

Moreover, the estimates of each drawn sample are compared to the known
values in the population. The distribution of the differences are reported in the
boxplots of Figure 3. It can be seen that the average of the estimates are on
average close to the value zero for all the Y ’s in all domains.

11 Handling ’take-all’ strata in the optimization
step

As input to the optimization step, together with proper sampling strata, it
is also possible to provide ’take-all’ strata. These strata will not be subject to
optimisation as the proper strata, but they will contribute to the determination
of the best stratification, as their presence in a given domain will permit to
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Figure 3: Distribution of the differences between sample estimates and true
values of the parameters in the different domains
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satisfy precision constraint with a lower number of units belonging to sampling
strata.

In order to correctly execute the optimizaton and further steps, it is necessary
to perform a pre-processing of the overall input. The first step to be executed
consists in the bi-partition of units to be censused and of units to be sampled,
in order to build two different frames:

> data(swisserrors)

> data(swissstrata)

> data(swissframe)

> #----Selection of units to be censused from the frame

> framecens <- swissframe[ (swissframe$domainvalue == 1 |

+ swissframe$domainvalue == 4) &

+ (swissframe$X2 == 1 &

+ swissframe$X3 == 1 &

+ swissframe$X4 == 1 &

+ swissframe$X5 == 1 &

+ swissframe$X6 == 1) , ]

> #----Selection of units to be sampled from the frame

> # (complement to the previous)

> framesamp <- swissframe[!((swissframe$domainvalue == 1 |

+ swissframe$domainvalue == 4) &

+ (swissframe$X2 == 1 &

+ swissframe$X3 == 1 &

+ swissframe$X4 == 1 &

+ swissframe$X5 == 1 &

+ swissframe$X6 == 1)) , ]

In this way, we have included all units belonging to ’take-all’ strata in ’frame-
cens’, and the remaining in ’framesamp’. At the end of the process, the sample
will be selected from ’framesamp’, while the units in ’framecens’ will be simply
added to the sample.

We can obtain census strata and sampling strata by applying ’buildStrataDF’
respectively to to ’framecens’ and framesamp’:

> # Build strata to be censused and sampled

> cens <- buildStrataDF(framecens)

Computations have been done on population data

> sum(cens$N)

[1] 405

> strata <- buildStrataDF(framesamp)

Computations have been done on population data

> sum(strata$N)
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[1] 2491

Now we have all required inputs to run ’optimizeStrata’ in presence of ’take-all’
stata:

> solution <- optimizeStrata(

+ errors = swisserrors,

+ strata = strata,

+ cens = cens,

+ strcens = TRUE,

+ alldomains = TRUE,

+ dom = NULL,

+ initialStrata = as.numeric(table(strata$DOM1)),

+ addStrataFactor = 0.00,

+ minnumstr = 2,

+ iter = 40,

+ pops = 10,

+ mut_chance = 0.05,

+ elitism_rate = 0.2,

+ highvalue = 1e+08,

+ suggestions = NULL,

+ realAllocation = TRUE,

+ writeFiles = TRUE)

*** Domain : 1 1

Number of strata : 110

GA Settings

Population size = 10

Number of Generations = 40

Elitism = 2

Mutation Chance = 0.05

Once the optimized solution has been produced, the next steps are executed by
considering only the sampling part of the frame:

> newstrata <- updateStrata(strata, solution)

> # updating sampling frame with new strata labels

> framenew <- updateFrame(frame=framesamp,newstrata=newstrata)

> # selection of sample from sampling strata

> sample <- selectSample(frame=framenew,outstrata=solution$aggr_strata)

*** Sample has been drawn successfully ***

314 units have been selected from 94 strata

==> There have been 15 take-all strata

from which have been selected 50 units
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Finally, the units in the ’take-all’ strata can be added to sampled ones. First,
the census frame needs to be made homogeneous to the sample frame in order
to permit the ’rbind’ step:

> # addition of necessary variables to

> colnames(framesamp) <- toupper(colnames(framesamp))

> colnames(framecens) <- toupper(colnames(framecens))

> framecens$WEIGHTS <- rep(1,nrow(framecens))

> framecens$FPC <- rep(1,nrow(framecens))

> framecens$LABEL <- rep("999999",nrow(framecens))

> framecens$STRATUM <- rep("999999",nrow(framecens))

> framecens$STRATO <- rep("999999",nrow(framecens))

The overall set of units to be surveyed is obtainable in this way:

> survey <- rbind(sample,framecens)

and this is the proportion of sampling and censused units:

> survey$cens <- ifelse(survey$LABEL == "999999",1,0)

> table(survey$cens)

0 1

314 405
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