StatDataML:
An XML Format for Statistical Data*

David Meyer!, Friedrich Leisch!, Torsten Hothorn? and Kurt Hornik!3

L TInstitut fiir Statistik und Wahrscheinlichkeitstheorie, Technische Univer-
sitat Wien, Wiedner Hauptstrafie 8-10/1071, A-1040 Wien, Austria

Institut fiir Medizininformatik, Biometrie und Epidemiologie, Friedrich-
Alexander-Universitéit Erlangen-Niirnberg, Waldstrafle 6, D-91054 Erlan-
gen, Germany

3 Institut fiir Statistik, Wirtschaftsuniversitit Wien, Augasse 2-6, A-1090
Wien, Austria

Abstract. In order to circumvent common difficulties in exchanging statisti-
cal data between heterogeneous applications (format incompatibilities, techno-
centric data representation), we introduce an XML-based markup language for
statistical data, called StatDataML. After comparing StatDataML to other data
concepts, we detail the design which borrows from the language S, such that
data objects are basically organized as recursive and non-recursive structures,
and may also be supplemented with meta-information.

Keywords. Data Exchange, Data Design, XML

1 Introduction

Data exchange between different tools for data analysis and data manipulation
is a common problem: different applications use different and often proprietary
and undocumented formats for data storage. Import/export filters are often
missing or insufficient, and if ever, focus on technical aspects (like storage modes
and floating point specifications) in spite of supporting conceptional represen-
tation issues (like scales or representation of categorical data). The currently
high costs for data exchange hence could be significantly reduced by the use of a
well-defined common data exchange standard, if only because software packages
would just need to provide one single mechanism.

The aim of this paper is to introduce such a data exchange standard for sta-
tistical data: the XMIL-based markup language StatDataML. The design bor-
rows from the language S (see e.g., Chambers, 1998), such that data objects
are basically organized as recursive structures (lists) and non-recursive struc-
tures (arrays), respectively. ! Additionally, each object can have an attached
list of properties (corresponding to S attributes), providing storage of meta-
information.

*This research was supported by the Austrian Science Foundation (FWF) under grant
SFB#010 (‘Adaptive Information Systems and Modeling in Economics and Management Sci-
ence’).

1See Temple Lang & Gentleman (2001) for a more specific approach representing S objects
in XML.

2 Requirements on Statistical Data

Statisticians need a data format which is both flexible enough to handle all
different kinds of statistical data (from time series to decision trees), and spe-
cialized enough to incorporate statistical notions like scales and factors. Such a
data format should feature:

special symbols for infinities and undefined values

special symbols for missingness (“not available”)

logical data

categorical data (unordered, ordered or cyclic?)

numeric data (in the storage modes integer, real and complex)
character data (strings)

date/time information

vectors (objects with elements of the same type)

lists (objects with—possibly different—elements of any type)

Vectors should be indexable arbitrarily—in order to build matrices or multi-
dimensional arrays. Lists allow for complex and even recursive structures (for
they can contain lists again).

Table 1 compares some software products regarding these criteria: two fam-
ilies of mathematical programming languages (Splus®/R* and MATLABS/ Oc-
tave9), statistical software (SPSS”, SAS®, Minitab?) and spreadsheets (Excel'?,
StarCalc!', Gnumeric'?). In spreadsheets and MATLAB/Octave, nominal data
can only be represented by strings. Arrays of arbitrary dimension are sup-
ported by Splus/R and MATLAB only. Complex numbers are only supported
by Splus/R and MATLAB/Octave. The latter cannot handle missingness. IEEE
special values are not supported by Excel, StarCalc, SPSS, SAS and Minitab.

3 StatDataML
3.1 StatDataML is XML

For “statistical data” one would usually think of such things as tabular data,
time series objects, responses and regressors or contingency tables. Programs
that produce such data store it on disk, using either a binary format or a
text format. StatDataML files are XML files, thus ordinary text files, with
extension .sdml, containing several XML elements (so called tags), which can
be formally described with a special data definition language (DTD)—see the
World Wide Web Consortium (2000) recommendation. Note that Quoting is

2like days of a week

3For Splus see: http://www.insightful.com

4For R see: Thaka & Gentleman (1996) and http://www.R-project.org
5For MATLAB see: http://www.mathworks.com

6For Octave see: http://www.octave.org

"For SPSS see: http://www.spss.com

8For SAS see: http://www.sas.com

9For Minitab see: http://www.minitab.com

0For Excel see: http://www.microsoft.com

HFor StarCalc see: http://www.staroffice.com or http://www.openoffice.com
12For Gnumeric see: http://www.gnumeric.org

Excel/
R/Splus | MATLAB | Octave | StarCalc | Gnumeric | SPSS | SAS | Minitab
IEEE yes yes yes no yes no no no
NA yes no no yes yes yes yes yes
logical yes (yes) no yes yes yes yes yes
nominal strings | strings | strings | strings |coding| yes | strings
unordered yes yes yes yes
ordered yes yes yes yes
cyclic no no no no no no no no
numeric yes yes yes
integer yes yes no no no (yes) | vyes no
real yes yes yes yes yes yes yes yes
complex yes yes yes no no no no no
character yes yes yes yes yes yes yes yes
date/time yes yes yes yes yes yes yes yes
arrays yes yes no no no no no no
matrix yes yes yes yes yes yes yes yes
lists yes yes yes no no no no no

Table 1: Data representation capabilites of different software packages

needed for the special XML characters &, < and > by using &, &1t; and
> ;, respectively.

’ character \ quote ‘

& &
< <
> >

Table 2: Quoting characters in StatDataML

In the following, we will go through the rules in the StatDataML.dtd file (the
DTD as a whole is given in the Appendix).

3.2 The File Header

<!ELEMENT StatDataML (description?, dataset?)>

The top level StatDataML element contains one description and one dataset
element, each optional. It should contain the StatDataML namespace:

<StatDataML xmlns="http://www.ci.tuwien.ac.at/StatDataML">
</StatDataML>

(The URL defining the name space does not physically exist; its only purpose
is to guarantee a unique name.)

3.3 The description element

<!ELEMENT description (title?, source?, date?, version?,
comment?, creator?, class?, properties?)>

<!ELEMENT title (#PCDATA)>
<!ELEMENT source (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT version (#PCDATA)>
<!ELEMENT comment (#PCDATA)>
<!ELEMENT creator (#PCDATA)>
<!ELEMENT class (#PCDATA)>
<!ELEMENT properties (list)>

The description element is used to provide meta-information about a dataset
that is typically not needed for computations on the data itself. It consists
of eight elements: title, source, date, comment, version, creator and
class are simple strings (PCDATA), whereas properties is a list element (see
next section). date should follow the ISO 8601 format (see below). The
creator element should contain knowledge about the creating application and
the StatDataML implementation, properties offers a well-defined structure to
save application-based meta-information, and, finally, the class element will
contain the class name, if any. There are some discussions about meta data in
statistics'3: one could think of extending the description element in such that
extended information with logical markup can be stored.

3.4 The dataset element

<!ELEMENT dataset (list | array)>

We define a dataset element either as an array or as a list. We use arrays
and lists as basic “data types” in StatDataML because every data object in
statistics can be decomposed into a set of arrays and lists (as in Splus/R, or
like the corresponding arrays and cell-arrays in MATLAB). The basic property
of a list is its recursive structure, in contrast to arrays which are always non-
recursive. If one thinks about data as a tree, lists would be the branches and
arrays the leaves.

3.4.1 Lists

A list contains three elements: dimension, properties and listdata:

<!ELEMENT list (dimension, properties?, listdata)>
<!ELEMENT listdata (list | array | empty)x*>

<IELEMENT dimension (dim*)>
<!ELEMENT dim (e*)>

<!ATTLIST dim size CDATA #REQUIRED>
<!ATTLIST dim name CDATA #IMPLIED>

The dimension element contains one or more dim tags, depending on the num-
ber of dimensions. Each of them has size as a required attribute, and may

B3e.g., http://wuw.gla.ac.uk/External /RSS/RSScomp/metamtg. html

optionally contain up to size names, specified with <e>...</e> tags. In addi-
tion, the dimension as a whole can be attributed a name by the optional name
attribute. Note that arrays, like the whole dataset, can also have additional
properties attached, corresponding, e.g., to attributes in S. The listdata el-
ement may either contain arrays (with the actual data), or again lists, which
allows for complex and even recursive structures, or empty tags indicating non-
existing elements, corresponding to NULL in S.

3.4.2 Arrays

<!ELEMENT array (dimension, properties?,
nominalCategories?, (data | textdata))>

Arrays are blocks of data objects of the same elementary type with dimen-
sion information used for memory allocation and data access (indexing). The
first two elements, dimension and properties, are identical to list. The
listdata block gets replaced by the data (or textdata) element which con-
tains the data itself. In addition, there is an optional element for categorical
data, nominalCategories, which specifies the levels coding for categorical data:

<!ELEMENT nominalCategories (label)+>
<!ELEMENT label (#PCDATA)>
<!ATTLIST label code CDATA #REQUIRED>

The label element has a mandatory code attribute specifying the levels’ integer
value, and contains a name (which is optional). If no name is given, the appli-
cation should use the numerical code instead. The order of the label elements
also defines the ordering relation of the levels for ordinal data.

3.4.3 The data tag

<!ENTITY % TYPES "logical|nominal|numeric|character|datetime">
<!ENTITY % MODES "unordered|ordered|cyclic|integer|reall|complex">

<!ELEMENT data (elce|na)* >

<!ATTLIST data true CDATA "1"
false CDATA "O"
type (%TYPES;) "character"
mode (%MODES;) #IMPLIED>

<!ELEMENT na EMPTY>
<!ENTITY % REAL "#PCDATA|posinf|neginf |nan">

<!ELEMENT e (%REAL;)* >
<!ELEMENT posinf EMPTY>
<!ELEMENT neginf EMPTY>
<!ELEMENT nan EMPTY>

<VELEMENT ce (r,i) >
<!ELEMENT r (%REAL;)* >
<!ELEMENT i (%REAL;)* >

If data is used (especially recommended for character data), then each element
of the array representing an existing value is encapsulated in <e>...</e> (or
<ce>...</ce> for complex numbers). For missing values, <na/> has to be used,
empty values are just represented by <e></e> (or simply <e/>).

The type attribute specifies the statistical data type, as logical, nominal, nu-
meric, character and date/time. The optional mode attribute allows for fur-
ther specification: nominal data could be unordered (“factors”), ordered and
cyclic (e.g., days of week), whereas numeric data could be integer, real or
complex.

As an example, consider a character dataset formed by color names, with one
value missing (after green), and one being empty (after blue). The correspond-
ing data section would appear as follows:

<data type="nominal" mode="unordered">
<e>red</e> <e>green</e> <na/> <e>blue</e> <e></e> <e>yellow<e>
</data>

TIEEE Number Format

The implementation is responsible for the correct casts. The number format has
to follow the IEEE Standard for Binary Floating Point Arithmetic (see Institute
of Electrical and Electronics Engineers, 1985), which is implemented by most
programming languages and system libraries. However, the IEEE special values
+Inf, -Inf and NaN must explicitly be specified by <posinf/>, <neginf/> and
<nan/>, respectively, to facilitate the parsing process in case the IEEE standard
were not implemented. These special values could appear as follows:

<data type="numeric" mode="real">
<e>1.23</e> <e><posinf/></e> <e><nan/></e> <e>2.43</e>
</data>

Complex Numbers

Complex numbers are enclosed in <ce>...</ce> tags which contain exactly one
<r>...</r> tag (for the real part) and one <i>...</i> tag (for the imaginary
part). Apart from that, the same rules as for <e>...</e> apply:

<data type="numeric" mode"=complex">
<ce> <r>12.4</r> <i>1</i> </ce>
</data>

Logical Values

The true- and false-attributes can be used to change the default representation
of logical values (1 and 0).

<data type="logical" true="T" false="F">
<e>T</e> <e>F</e>
</data>

Date and Time Information

Data of type datetime has to follow the ISO 8601 specification (see International
Organization for Standardization, 1997). StatDataML should only make use of
the complete representation in extended format of the combined calendar date
and time of the day representation:

CCYY-MM-DDThh:mm:ss+hh:mm

where the characters represent Century (C), Year (Y), Month (M), Day (D),
Time designator (T; indicates the start of time elements), Hour (h), Minutes
(m) and Seconds (s).

[C] ... Century

[Y] ... Year

[M] ... Month

[D] ... Day

[T] ... Time designator (indicates the start of time elements)
[h] ... Hour

[m] ... Minutes

[s] ... Seconds

For example, the 12th of March 2001 at 12 hours and 53 minutes, UTC+1,
would be represented as: 2001-03-12T12:53:00+01:00 .

3.4.4 The textdata tag

For (memory /storage space) efficiency we also define textdata, a second way
of writing data blocks using arbitrary characters (typically whitespace) for sep-
arating elements instead of <e>...</e>.

<!ELEMENT textdata (#PCDATA) >

<!ATTLIST textdata sep CDATA " \n"
na.string CDATA "NA"
null.string CDATA "NULL"
posinf.string CDATA "+Inf"
neginf.string CDATA "-Inf"
nan.string CDATA "NaN"
true CDATA "1"
false CDATA "O"

type (4TYPES;) "character"
mode (%MODES;) #IMPLIED>

In this case the complete data block is included in a single XML tag; because
only a single character is used as separator, one needs 6 bytes less per element.
The use of textdata even provides more compact results when compression
tools (like zip) are used, and is recommended if such tools are not available or
if their use is not desirable. The set of separator characters is defined by the
optional attribute sep. The attributes na.string and null.string define the
strings to be interpreted as missing or empty values (default: NA and NULL).
posinf.string, neginf.string and nan.string are used to specify the cor-
responding IEEE special values. An additional “advantage” is that textdata
blocks are not parsed by the XML parser, which can drastically reduce the

memory footprint when reading a file, because many parsers represent the com-
plete XML data as a nested tree. This results in one branch for each array
element and typically needs much more memory than just the element itself.
Our color-example could look similar to following:

<textdata na.string="N/A" null.string="EMPTY" mode=character>
red green EMPTY blue N/A yellow
</textdata>

We could also have defined a different set of separator symbols with the sep-
attribute, e.g. colons or semi-colons.

3.5 Implementation issues

Interfaces implementing StatDataML should provide options for setting conver-
sion strings for the NA, +oc and NaN entities if they are not supported, but with
no defaults. Unsupported elements with no default conversion should cause an
error, thus forcing the user to explicitly specify a conversion rule. All conversions
effectively done should be reported by a warning message.

4 Examples

4.1 Demo Sessions

We show how a sample task (creating a simple matrix, writing a StatDataML-
file in MATLAB, reading this file in R) is realized.

4.1.1 A session with R

R : Copyright 2001, The R Development Core Team
Version 1.3.0 Under development (unstable) (2001-03-20)

load the StatDatalML-package

> library (StatDataML)
Loading required package: XML

Create a simple data structure

X <- list(matrix (c(1,2,3,4),2,2))
X[[2]] <- 12 + 3i

X[[3]] <- "Test"

X[[4]1] <- 1list (a="Test 2", b=33.44)
dim(X) <- c(2,2)

V V. V Vv V

Show what we got

> X

[,1] [,2]
[1,] "Numeric,4" "Character,1"
[2,] "Complex,1" "List,2"

> X[[1,1]]

[,11 [,2]
[1,] 1 3
[2,] 2 4

> X[[1,2]]
[1] "Test"

> X[[2,1]]
[1] 12+3i

> X[[2,2]]
$a
[1] "Test 2"

$b
[1] 33.44

write it to the .sdml file

> writeSDML (X, "test.sdml")

4.1.2 A session with MATLAB

<MATLAB>
Copyright 1984-2000 The MathWorks, Inc.
Version 6.0.0.88 Release 12

>> path (path, ’StatDataML’)
>> X = readsdml (’test.sdml’)

X =
[2x2 double] ’Test’
[12.0000+ 3.0000i] [1x1 struct]
>> X{1}
ans =
1 3
2 4
> {2}
ans =
12.0000 + 3.0000i
>> X{3}
ans =
Test
>> X{4}
ans =
a: ’Test 2’
b: 33.4400

10

4.2 Sample output
4.2.1 The integers from 1 to 10

<?7xml version="1.0"7>
<!DOCTYPE StatDataML PUBLIC "StatDataML.dtd" "StatDataML.dtd">

<StatDataML xmlns="http://www.omega.org/StatDataML/">

<description>
<title>The integers from 1 to 10</title>
<source>MATLAB</source>
<date>2001-10-10T14:40:01+0200</date>
<version></version>
<comment></comment>
<creator>MATLAB-6.0.0.88 (R12):StatDataML_1.0-0</creator>
<class></class>

</description>

<dataset>
<array>
<dimension>
<dim size="10"></dim>
</dimension>
<data type="numeric" mode="integer">
<e>1</e> <e>2</e> <e>3</e> <e>4</e> <e>b</e>
<e>B</e> <e>T7</e> <e>8</e> <e>9</e> <e>10</e>
</data>
</array>
</dataset>

</StatDataML>

11

4.2.2 A more complex example

The following example represents a table with two variables (which could be,
e.g., a dataframe in S and a structure in MATLAB): one factor a with levels fa
and fb, and one numeric variable.

alfa fa fa fa fa b fb b b 1b
b|0.5 +oco0 4.5 NaN 1.0 3.0 3.2 1.3 2.4 3.5

<?xml version="1.0"7>
<!DOCTYPE StatDataML PUBLIC "StatDataML.dtd" "StatDataML.dtd">

<StatDataML xmlns="http://www.omega.org/StatDataML/">

<description>
<title>A small dataframe</title>
<source>MATLAB</source>
<date>2001-10-10T14:43:02+0200</date>
<version></version>
<comment></comment>
<creator>MATLAB-6.0.0.88 (R12):StatDataML_1.0-0</creator>
<class></class>
</description>

<dataset>
<list>
<dimension>
<dim size="2"> <e>a</e> <e>b</e> </dim>
</dimension>

<listdata>
<array>
<dimension>
<dim size="10"></dim>
</dimension>
<data type="character">
<e>fa</e> <e>fa</e> <e>fa</e> <e>fa</e> <e>fa</e>
<e>fb</e> <e>fb</e> <e>fb</e> <e>fb</e> <e>fb</e>
</data>
</array>
<array>
<dimension>
<dim size="10"></dim>
</dimension>
<data type="numeric" mode="real">
<e>0.5</e> <e><posinf/></e> <e>4.5</e> <e><nan/></e> <e>1.0</e>
<e>3.0</e> <e>3.2</e> <e>1.3</e> <e>2.4</e> <e>3.5</e>
</data>
</array>
</listdata>
</list>
</dataset>

</StatDataML>

12

5 Resources

e Duncan Temple Lang’s XML package provides general XML parsing for S
engines (http://cran.r-project.org/src/contrib/Omegahat/XML.tar.gz)

e The package StatDataML provides a beta implementation of StatDataML
I/0O routines for Splus/R and MATLAB/Octave. The two functions writeSDML
and readSDML implement writing and reading for StatDataML-files. With
this implementation it will be possible to write and read R data objects
without loss of information
(http://cran.r-project.org/src/contrib/Devel/StatDataML_0.3-1.tar.gz)

e The XML C library for gnome (http://www.xmlsoft.org/)

6 Conclusion: Limitations and Extensionability

StatDataML seems general and flexible enough to cover most of statisticians’
data representation needs. Currently we have support for Splus, R, MATLAB
and Octave (the software is available at http://www.omegahat.org/), and con-
verters for SPSS and Gnumeric are under development. There are some limita-
tions, though:

Especially for large datasets, a distributed data structure could be help-
ful: e.g., one could think about just distributing the description part of a
StatDataML-file, allowing the receiver to decide on whether to retrieve the data
or not. Another application would be data subject to continous change, using
StatDataML-files as structured link-lists. Both should easily be possible using
the standardized “XlInclude” specification, which offers a general link tag for
XML files. But there will be still a remaining issue: how may user specify (pos-
sibly remote) database access? At least, we would need some query-information
(e.g., in SQL) supplied along with the database URL.

Furthermore, it would be helpful to have some form of authentication, which
means that everyone can read a StatDataML file but cannot manipulate the data
without violating the signature. Our opionion is that this problem should not
be solved within StatDataML. One could make use, e.g., of “XML signature”,
which seems to be an appropriate solution.

Fnally, within StatDataML.dtd we describe how a basic dataset should be
organized. We (currently) do not provide definitions for classes like a dataframe
or time series in DTD format. To model this, we would like to have a principle
of inheritance from dataset, such that the basic DTD can be extended or
restricted and an XML parser can validate objects of certain classes. To our
knowledge, this can not be done with standard XML—restrictions necessitate
the specification of a new DTD.

Appendix: the StatDataML .dtd file
<!-- StatDataML DTD version="0.3" -->
<!ELEMENT StatDataML (description?, dataset?)>

<!ELEMENT description (title?, source?, date?, version?, comment?,

13

creator?, class?, properties?)>

<!ELEMENT title (#PCDATA) >

<!ELEMENT source (#PCDATA) >

<!ELEMENT date (#PCDATA) >

<VELEMENT version (#PCDATA) >

<!ELEMENT comment (#PCDATA) >

<!ELEMENT creator (#PCDATA) >

<IELEMENT class (#PCDATA) >

<!ELEMENT dataset (list | array)>

<!ELEMENT 1list (dimension, properties?, listdata) >
<!ELEMENT listdata (list | array | empty)x*>

<!ELEMENT empty EMPTY>

<!ELEMENT array (dimension, properties?, nominalCategories?,
(data | textdata))>

<!ELEMENT nominalCategories (label)+>
<!ELEMENT label (#PCDATA)>
<!ATTLIST label code CDATA #REQUIRED>

<!ENTITY % TYPES "logical|nominal|numeric|character|datetime">
<!ENTITY % MODES "unordered|ordered|cyclic|integer|real|complex">

<!ELEMENT data (elcelna)* >

<!'ATTLIST data true CDATA "1"
false CDATA "O"
type (ATYPES;) "character"
mode (%MODES;) #IMPLIED>

<!ELEMENT textdata (#PCDATA) >

<!ATTLIST textdata sep CDATA " \n"
na.string CDATA "NA"
null.string CDATA "NULL"
posinf.string CDATA "+Inf"
neginf.string CDATA "-Inf"
nan.string CDATA "NaN"
true CDATA "1"
false CDATA "O"
type (ATYPES;) "character"
mode (%MODES;) #IMPLIED>

<!ELEMENT na EMPTY>

<IENTITY % REAL "#PCDATA|posinf|neginf |nan">
<!ELEMENT e (%REAL;)* >

<!ELEMENT posinf EMPTY>

<!ELEMENT neginf EMPTY>

<!ELEMENT nan EMPTY>

<!ELEMENT ce (r,i) >

14

<!ELEMENT r (%REAL;)* >
<!ELEMENT i (%REAL;)* >

<!ELEMENT dimension (dimx*)>
<IELEMENT dim (ex)>

<!ATTLIST dim size CDATA #REQUIRED>
<!ATTLIST dim name CDATA #IMPLIED>

<!ELEMENT properties (list)>

References

Chambers, J. M. (1998). Programming with Data: a guide to the S Language.
Springer.

Thaka, R. & Gentleman, R. (1996). R: A language for data analysis and graphics.
Journal of Computational and Graphical Statistics, 5(3), 299-314.

Institute of Electrical and Electronics Engineers (1985). IEEE Standard 754-
1985 (R 1990), Standard for Binary Floating-Point Arithmetic.

International Organization for Standardization (1997). ISO 8601:1997, Data
elements and interchange formats - Information Interchange - Representation
of dates and times.

Temple Lang, D. & Gentleman, R. (2001). RSXMLObjects: Reading and writ-
ing S objects in XML. S Package. http://www.omegahat.org/RSXMLObjects.

World Wide Web Consortium (2000). Extensible Markup Language (XML), 1.0
(2nd Edition). http://www.w3.org.

15

