
1 Using data perturbations for sensitivity analysis

An easy-to-use exploratory test for numerical and measurement error stability for a given model

is to introduce small random perturbations to the data, on the order of the measurement error

of the instruments used to collect it, and recalculate the estimate. When the estimates produced

using this technique vary greatly, the model estimation is necessarily unstable. And although the

converse is not necessarily true, where a model is already known to be statistically appropriate,

this type of sensitivity analysis will give the researcher greater confidence that the their results are

robust to numerical and measurement error.

We have developed a package in R that makes perturbation-based sensitivity analysis simple to

apply and to interpret. For most models this running a sensitivity analysis involves only two steps.

1. Specify the data, model, and model options for the unperturbed model, and optionally, the

error functions for the perturbation.

2. Use summary() or plot(summary()) to see the sensitivity of the parameter estimates to

perturbations.

Perturb works automatically almost with any R model, such as lm, glm, and nls, that accepts

data as an argument to supply data and that returns estimated coefficients through coef().

The example below shows how to conduct a sensitivity analysis of the classic analysis by Longley

(1964) using sensitivity() and default noise functions.

1

> plongley = sensitivity(longley, lm, Employed ~ .)

> print(summary(plongley), digits = 4)

Sensitivity of coefficients to perturbations:

mean stdev min 2.5% 97.5% max

(Intercept) -3.069e+03 9.650e+02 -4.866e+03 -4.558e+03 -7.883e+02 -6.241e+02

GNP.deflator -2.173e-03 5.398e-02 -1.333e-01 -9.890e-02 9.405e-02 1.104e-01

GNP -2.254e-02 2.999e-02 -7.430e-02 -6.837e-02 4.110e-02 4.312e-02

Unemployed -1.828e-02 4.213e-03 -2.625e-02 -2.519e-02 -9.950e-03 -8.361e-03

Armed.Forces -9.563e-03 1.581e-03 -1.226e-02 -1.213e-02 -5.982e-03 -5.623e-03

Population -9.019e-02 1.729e-01 -5.348e-01 -4.050e-01 1.718e-01 2.537e-01

Year 1.618e+00 4.956e-01 3.632e-01 4.338e-01 2.390e+00 2.539e+00

Sensitivity of stderrs to perturbations:

mean stdev min 2.5% 97.5% max

(Intercept) 9.243e+02 1.882e+02 5.934e+02 6.780e+02 1.311e+03 1.444e+03

GNP.deflator 8.671e-02 2.165e-02 5.675e-02 5.767e-02 1.353e-01 1.667e-01

GNP 3.113e-02 6.791e-03 1.835e-02 2.157e-02 4.585e-02 4.906e-02

Unemployed 4.718e-03 1.093e-03 3.170e-03 3.200e-03 7.545e-03 7.616e-03

Armed.Forces 2.405e-03 5.418e-04 1.458e-03 1.708e-03 3.531e-03 4.406e-03

Population 1.972e-01 5.003e-02 1.125e-01 1.247e-01 3.081e-01 3.419e-01

Year 4.746e-01 9.667e-02 3.035e-01 3.476e-01 6.755e-01 7.389e-01

2

The sensitivity results can also be expressed in plot format:

> plot(summary(plongley))

●

−
50

00
−

30
00

−
10

00

(Intercept)

−
0.

10
0.

00
0.

05
0.

10

GNP.deflator

−
0.

06
−

0.
02

0.
02

GNP

−
0.

02
5

−
0.

02
0

−
0.

01
5

−
0.

01
0

Unemployed

−
0.

01
2

−
0.

01
0

−
0.

00
8

−
0.

00
6

Armed.Forces

●

−
0.

4
−

0.
2

0.
0

0.
2

Population

●●

0.
5

1.
0

1.
5

2.
0

2.
5

Year

This is a rare example of a model that is very sensitive to noise. Even so, note that the small

amounts of noise applied tremendously alter some of the estimated coefficients, but not others. In

most practical cases, however, the substantive implications of your model will remain the same

across the sensitivity analysis – in which case, you can publish them with greater confidence.

If error functions are not specified, a default set of error function will be selected based on

measurement types of the variable: continuous, ordered, or unordered. Continuous variables, by

default are subject to a small amount of mean-zero component-wise uniformly distributed noise,

which is typical of instrumentation-driven measurement error. Ordered factors are assigned a

small probability of having observations reclassified to the neighboring classification, and unordered

factors have a small probability of being reassigned to another legal value.

Alternatively, one can specify the error functions to use yourself, or use one of many supplied

by accuracy. The accuracy package comes with a wide range of noise functions for continuous

distributions, and random reclassification of factors. 1

Your choice of error functions should be chosen to reflect measurement error model for the

specific data you are using. In numerical analysis, uniform noise is often used since this is what

would be expected from simple rounding error. Normal random noise is commonly used in statistics,

under the assumption that measurement error is the sum of multiple independent error processes.
1The perturb package for collinearity diagnosis by Hendrickx, et. al (2004) (which was developed for R after the

accuracy package) provides additional methods for randomly reclassifying factors that via its reclassify() function.

This function can be used in conjunction with accuracy. Hendrickx, et. al also provide a number of collinearity

diagnostics, including one based on data perturbations.

3

In addition, when normal perturbations are used, the result can be interpreted, for many models, as

equivalent to the results of running a slightly perturbed model on unperturbed data. In some cases,

like discrete or ratio variables, other forms of noise are necessary to preserve the structure of the

problem. (see for example, Altman, Gill, McDonald 2005). The magnitude of the noise is also under

the control of the researcher. Most use a magnitude equivalent to the researchers estimate of the

underlying measurement error in the data. Noise is usually adjusted to the size of each component,

since this better preserves the structure of the problem, however in some cases the underlying

measurement error model may imply norm-wise scaling of the noise. For more information on noise

distributions and measurement error models see , e.g., Belsley 1991, Chaitin-Chatelin & Traviesas-

Caasan (2004b), Caroll et. al (1995), Cheng & Van Ness (1999), Fuller (1987).

If multiple plausible measurement error models can be hypothesized, we recommend that sen-

sitivity be run multiple times with different noise specifications, However, in our experience with

social science analyses, the choice of error model does not tend to effect, in practice, the substantive

conclusions from the sensitivity analysis.

Some researchers omit perturbations to outcome variables, since, in terms of statistical theory,

mean-zero measurement error on outcome variables (as opposed to explanatory variables) contribute

only to increased variance in estimates, not bias. While this attitude is well-justified in the context of

statistical theory, it is not similarly justified in the computational realm. If the estimation of a model

is computationally unstable, errors in the outcome variable may have large and unpredictable biases

on the model estimate. Hence, the conservative default in our package is to subject all variables to

perturbation, although options are available to completely control the form and magnitude of all

perturbations.

4

Consider this example, which shows a sensitivity analysis of the anorexia analysis described in

Venables and Ripley (2002). In this case, we leave the dependent variable unperturbed, by assigning

it the identity error function.

> data(anorexia, package = "MASS")

> panorexia = sensitivity(anorexia, glm, Postwt ~ Prewt + Treat +

+ offset(Prewt), family = gaussian, ptb.R = 100, ptb.ran.gen = c(PTBi,

+ PTBus, PTBus), ptb.s = c(1, 0.005, 0.005))

> print(summary(panorexia), digits = 4)

Sensitivity of coefficients to perturbations:

mean stdev min 2.5% 97.5% max

(Intercept) 49.7967 0.383108 49.0190 49.1013 50.4707 50.8230

Prewt -0.5658 0.004617 -0.5785 -0.5737 -0.5574 -0.5559

TreatCont -4.0999 0.036287 -4.1744 -4.1655 -4.0325 -4.0221

TreatFT 4.5710 0.039713 4.4552 4.5024 4.6478 4.6774

Sensitivity of stderrs to perturbations:

mean stdev min 2.5% 97.5% max

(Intercept) 13.3858 0.0522144 13.2640 13.2824 13.4804 13.5540

Prewt 0.1611 0.0006324 0.1597 0.1599 0.1623 0.1631

TreatCont 1.8941 0.0047856 1.8845 1.8862 1.9043 1.9077

TreatFT 2.1340 0.0054418 2.1236 2.1243 2.1451 2.1501

Finally, if a model in R does not take a data argument or does not return coefficients through

the coef method, it is usually only a matter of a few minutes to write a small wrapper that calls the

original model with appropriate data, and that provides a coef method for retrieving the results.

(Alternatively, you might to choose to run such models in Zelig, as described in the next section.)

For example, the mle function for maximum-likelihood estimation does not have an explicit

data option. Instead, it normally receives data implicitly through the log-likelihood function,

ll, passed into it. To adapt it for use in sensitivity we simply construct a another function

that accepts data and a log-likelihood function separately, constructs a temporary log-likelihood

function with the data passed in the environment, and then calls mle with the temporary function:

5

> mleD <- function(data, lld, ...) {

+ f = formals(lld)

+ f[1] = NULL

+ ll <- function() {

+ cl = as.list(match.call())

+ cl[1] = NULL

+ cl$data = as.name("data")

+ do.call(lld, cl)

+ }

+ formals(ll) = f

+ mle(ll, ...)

+ }

Finally, construct the log-likelihood function to accept data. As in this example, which is based

on the documented example in the Stats4 package:

> library(stats4)

> dat = as.data.frame(cbind(0:10, c(26, 17, 13, 12, 20, 5, 9, 8,

+ 5, 4, 8)))

> llD <- function(data, ymax = 15, xhalf = 6) -sum(stats::dpois(data[[2]],

+ lambda = ymax/(1 + data[[1]]/xhalf), log = TRUE))

> print(summary(sensitivity(dat, mleD, llD)), digits = 4)

Sensitivity of coefficients to perturbations:

mean stdev min 2.5% 97.5% max

ymax 24.836 0.7933 20.991 21.864 25.065 25.135

xhalf 3.100 0.2209 2.976 2.993 3.936 4.167

1.1 Sensitivity analysis using Zelig

Zelig (Imai, et. al 2005) is an easy-to-use R package that can estimate and help interpret the

results of a large range of statistical models. Zelig provides a uniform interface to these models the

Accuracy package utilizes to enable sensitivity analyses. In addition, Accuracy can also be used to

perform sensitivity analyses of the robust alternatives, simulated predicted values, expected values,

6

first differences, and risk ratios that Zelig produces for all the models it supports. 2 So, using these

packages together is an easy way to analyze the sensitivity of predicted values to measurememnt

error.

To illustrate, we replicate Longley’s analysis (above), using zelig() (instead of lm()) to run

the OLS model, and the convenience function sensitivityZelig() to run the sensitivity analysis:

> zelig.out = zelig(Employed ~ GNP.deflator + GNP + Unemployed +

+ Armed.Forces + Population + Year, "ls", longley)

> perturb.zelig.out = sensitivityZelig(zelig.out)

Just as above, summary() and plot(summary()) can be used summarize the sensitivity of the

model coefficients. In addition, we can use the Zelig methods setx and sim to simulate various

quantities of interest. And when summary() and plot() are used, they will display a sensitivity

analysis of the predicted values.

For example, this code generates predictions of the distribution of the explanatory variable,

‘Employed’, around the point where ‘Year’ equals 1955, and the other variables are at their means,

and creates a profile plot of the predicted distribution of the explanatory variable:
2Zelig also integrates nonparametric matching methods as an optional preprocessing step. Thus Accuracy sup-

ports sensitivity analysis of models subject to such pre-processing as well.

7

> setx.out = setx(perturb.zelig.out, Year = 1955)

> sim.perturb.zelig.out = psim(perturb.zelig.out, setx.out)

> summary(sim.perturb.zelig.out)

**** 30 COMBINED perturbation simulations

Model: ls

Number of simulations: 1000

Values of X

(Intercept) GNP.deflator GNP Unemployed Armed.Forces Population Year

1947 1 101.7 387.7 319.3 260.7 117.4 1954

Expected Values: E(Y|X)

mean sd 2.5% 97.5%

1947 65.32 0.1210 65.11 65.59

> plot(sim.perturb.zelig.out)

**** 30 COMBINED perturbation simulations

64.8 65.0 65.2 65.4 65.6 65.8 66.0

0.
0

2.
0

Expected Values: E(Y|X)

D
en

si
ty

1.2 True random numbers through entropy collection

‘Random’ numbers aren’t. The numbers provided by routines such as runif() are not genuinely

random. Instead, they are pseudo-random number generators (PRNGs), deterministic processes

that create a sequence of numbers. Pseudo-random number generators start with a single “seed”

value (specified by the user or left at defaults) and generate a repeating sequence with a certain

8

fixed length, or period p. This sequence is statistically similar, in limited respects, to random draws

from a uniform distribution.

The earliest PRNGs, still in use in some places, and used in early versions of R, is the Linear

Congruential Generator (LCG), which is defined as:

LCG(a,m, s, c) ≡

x0 = s,

xn = (axn−1 + c) mod m. (1)

(All parameters are integers, and in practice x is usually divided by m to yield numbers between

zero and one.)

This function generates a sequence of numbers between [0,m − 1] which appears to be, using

some tests, uniformly distributed in that range. Other PNRG’s are more complex, but share with

the LCG the fundamental properties of determinism and periodicity. See (Gentle 1998) for an

extensive treatment of modern PRNG’s and theory.

R provides several high quality PRNG’s natively, and packages such as gsl, rstream and rpsrng

which can be used to generate quasi-random number streams, and concurrent PRNG streams.

Regardless of the particular PRNG algorithm used, however, a PRNG cannot perfectly mimic a

random sequence. And, in fact, there is no complete theory to describe the domains for which

PRNG and true random sequences can be considered interchangeable. In addition, the theory on

which PRNG’s are based assumes that the seed itself is truly random.

The runifT() routine is different from other random number generators in R. It delivers true

random numbers based on entropy collected from external physical sources of randomness.

Two sources of randomness are currently supported. On Unix and Linux system, the kernel

gathers environmental noise from device drivers and other sources into a system entropy pool. This

pool can be accessed through the ’/dev/random’ pseudo-device. Alternatively, the “Hotbits” web

server, run by FourmiLab provides random bytes based on radioactive decay.

Using either source, these routines will retrieve random bits in chunks, and keep them in a local

pool. This pool will be used as necessary to satisfy calls to runifT() and resetSeed(), and will be

automatically refreshed from the external sources when empty. If external sources are unavailable,

the pool is refreshed using standard PRNG’s.

Entropy collection is relatively slow compared to PRNGS. So, these routines are most efficient

for generating either small numbers of very-high-quality random numbers (e.g. for cryptography)

or for seeding (and regularly reseeding) PRNG’s. The function resetSeed() sets the seed for

9

the standard PRNGś using true random bits. The runifS() automates this process further, by

reseeding runif() with random values, periodically to improve the random properties of the resulting

sequence:

> birthday <- function(x, n = 2^20) {

+ spacings = diff(trunc((x * .Machine$integer.max)%%n))

+ tab = table(spacings)

+ tab = tab[which(tab > 1)]

+ chisq.test(sample(tab, 200, replace = T))

+ }

> resetSeed()

> y = runif(1e+06)

> birthday(y)

Chi-squared test for given probabilities

data: sample(tab, 200, replace = T)

X-squared = 22.46, df = 199, p-value = 1

> y = runifS(1e+06)

> birthday(y)

Chi-squared test for given probabilities

data: sample(tab, 200, replace = T)

X-squared = 32.34, df = 199, p-value = 1

1.3 Tests for global optimality

The estimation of many statistical models rests on finding the global optimum to a user-specified

non-linear function. R provides a number of tools for such estimations, including nlm(), nls(),

mle(), optim() and constrOptim().

All of these functions rely on local search algorithms, and the results they return may depend

on the starting point of the search. Maximum likelihood functions, non-linear-regression models,

and the like, are not guaranteed to be globally convex in general. And even where convexity is

guaranteed by statistical theory, inaccuracies in statistical computation can sometimes induce false

10

local optima (discontinuities that may cause local search algorithms to converge, or at least stop).

A poor or unlucky choice of starting values may cause a search algorithm to converge at a local

optimum, which may be far from the real global optimum of the function. Inferences based on the

values of the parameter at the local optimum will be incorrect.

Knowing when a function has reached its true maximum is something of an art. While the

plausibility of the solution in substantive terms is often used as a check, relying solely on the

expected answer as a diagnostic might bias researchers toward Type I errors. Diagnostic tests are

therefore useful to provide evidence that computed solution is the true solution.

A number of strategies related to the choice of starting values have been formalized as tests or

global optimality. In this package we implement two. The ‘Starr’ test and the ‘Dehaan’ test. 3 4

The intuition behind the Starr test statistic is to run the optimization from different starting

points to observe ’basins of attraction’, and then to estimate the number of unobserved basins of

attraction from the number of observed basins of attraction. The greater the number of observed

basins of attraction, the lower the probability that a global optimum has been located. This idea

has been attributed to Turing (1948), and the test statistics was developed by Starr (1979):

V2 =
S

r
+

2D

r (r − 1)
. (2)

Here V2 is the probability a convergence point has not been observed, and r is the number of

randomly chosen starting points. S is the number of convergence points that were produced from

one (or a Single) starting value and D is the number of convergence points that were produced

from two (or Double) different starting values.

Finch, Mendell, and Thode (1989) demonstrate the value of the statistic by analyzing a one

parameter equation on a [0, 1] interval for r = 100. While the proposed statistic given by the

above equation is compelling, their example is similar to an exhaustive grid search on the [0, 1]

interval. (Starr’s result is further generalizable for triples and higher order observed clumping of

starting values into their basins of attraction, but Finch, Mendell, and Thode assert that counting

the number of singles and doubles is usually sufficient.)

The statistic may be infeasible to compute for an unbounded parameter space with high dimen-

sionality. However, the intuition behind the statistic can still be soundly applied in these cases. If

multiple local optima are identified over the course of a search for good starting values, a researcher
3In addition to these tests, the R user may also wish to investigate the bhat package, which can generate diagnostic

profile likelihood plots.
4If this indicats that the optimum has not been reached, the user may consider using heuristics designed for non-

smooth optimization problems, such as the simulated annealing option for optim(), or the optimizers provided by

the gafit, genalg, rgenoud modules.

11

should not simply stop once an apparent best fit has been found, especially if there are a number

of local optima which have basins of attraction that were identified only once or twice. Our imple-

mentation of the Staff test provides a ready-to-use-interface that can be easily incorporated into a

search of the parameter space for good optimization starting values.

For computationally intensive problems, another test, by Veall (1990), drawing upon a result

presented by de Haan (1981), may be more practical. The de Haan/Veall test relies on sampling the

optimization function itself rather than identifying basins of attraction. A confidence interval for

the value of the likelihood function’s global optimum is generated from the points sampled from the

likelihood surface. This procedure is much faster than the Starr test because the likelihood function

is calculated only once for each trial. As with starting value searches, researchers are advised to

increase the bounds of the search area and the number of trials if the function to be evaluated has

a high degree of dimensionality or a high number of local optimum have been identified.

Veall suggests that by using a random search and applying extreme asymptotic theory, a confi-

dence interval for the candidate solution can be formulated. The method, according to Veall (1990:

1460) is to randomly choose a large number, n, of values for the parameter vector using a uniform

density over the entire parameter space. Call the largest value of the evaluated likelihood function

L1 and the second largest value L2. The 1− p confidence interval for the candidate solution, L
′
, is

[L1, L
p] where:

Lp = L1 +
L1 − L2

p−1/α − 1
(3)

and α = k/2, where k is some function that depends on n such that k(n)→ 0, as k(n), n→∞ (a

likely candidate is k =
√

n).

As Veall (1990: 1461) notes, the bounds on the search of the parameter space must be large

enough to capture the global maximum and n must be large enough to apply asymptotic theory.

In Monte Carlo simulations, Veall suggests that 500 trials are sufficient for rejecting that a local

optimum is not the a priori identified global optimum.

12

Examples of applying both the dehaan and starr tests are below:

> data("BOD")

> stval = expand.grid(A = seq(10, 100, 10), lrc = seq(0.5, 0.8,

+ 0.1))

> llfun <- function(A, lrc) -sum((BOD$demand - A * (1 - exp(-exp(lrc) *

+ BOD$Time)))^2)

> lls = NULL

> for (i in 1:nrow(stval)) {

+ lls = rbind(lls, llfun(stval[i, 1], stval[i, 2]))

+ }

> fm1 <- nls(demand ~ A * (1 - exp(-exp(lrc) * Time)), data = BOD,

+ start = c(A = 20, lrc = log(0.35)))

> ss = -sum(resid(fm1)^2)

> dehaan(lls, ss)

[1] TRUE

> llb = NULL

> for (i in 1:nrow(stval)) {

+ llb = rbind(llb, coef(nls(demand ~ A * (1 - exp(-exp(lrc) *

+ Time)), data = BOD, start = c(A = stval[i, 1], lrc = stval[i,

+ 2]))))

+ }

> starr(llb)

[1] 0

1.4 A generalized Cholesky method

The generalized inverse is a commonly used technique in statistical analysis, but the generalized

Cholesky has not before been used for statistical purposes, to our knowledge. When the inverse

of the negative Hessian does not exist, we suggest two separate procedures to choose from. One

is to create a pseudo-variance matrix and use it, in place of the inverse, in an importance resam-

pling scheme. In brief, applying a generalized inverse (when necessary, to avoid singularity) and

generalized Cholesky decomposition (when necessary, to guarantee positive definiteness) together
13

often produce a pseudo-variance matrix for the mode that is a reasonable summary of the curvature

of the posterior distribution. This method is developed and analyzed in detail in (Gill and King,

2004), here we provide a brief sketch.

The Gill/Murray Cholesky factorization of a singular matrix C, adds a diagonal matrix E

such that the standard Cholesky procedure is defined. Unfortunately it often increments C by an

amount much larger than necessary providing a pseudo-Cholesky result that is further away from

the intended result. Schnabel and Eskow (1990) improve on the C+E procedure of Gill and Murray

by applying the Gerschgorin Circle Theorem to reduce the infinity norm of the E matrix. The

strategy is to calculate delta values that reduce the overall difference between the singular matrix

and the incremented matrix. This improves the Gill/Murray approach of incrementing diagonal

values of a singular matrix sufficiently that Cholesky steps can be performed.
This technique is complex to describe but simple to use:

> S <- matrix(c(2, 0, 2.5, 0, 2, 0, 2.5, 0, 3), ncol = 3)

> sechol(S)

[,1] [,2] [,3]

[1,] 1.414 0.000 1.767767

[2,] 0.000 1.414 0.000000

[3,] 0.000 0.000 0.004262

attr(,"delta")

[1] 1.817e-05

> t(T)

[,1]

[1,] TRUE

2 References

Altman M, Gill J, McDonald MP (2003). Numerical Issues in Statistical Computing for the Social

Scientist. John Wiley & Sons, New York.

Belsley DA (1991). Conditioning diagnostics, collinearity and weak data in regression. John Wiley

& Sons, New York.

14

Chaitin-Chatelin F, Traviesas-Caasan E (2004b). “Qualitative Computing.”, In Bo Einarsson (ed.),

Accuracy and Reliability in Scientific Computing. SIAM Press, Philadelphia.

Cheng C, Van Ness JW (1999). Statistical Regression with Measurement Error. Arnold, London.

de Haan, L (1981). “Estimation of the Minimum of a Function Using Order Statistics.” Journal of

the American Statistical Association, 76, 467-9.

Fuller WA (1987). Measurement Error Models. John Wiley & Sons, New York.

Gill J & King G (2004). “What to do When Your Hessian is Not Invertible: Alternatives to Model

Respecification in Nonlinear Estimation.” Sociological Methods and Research, 32(1), 54-87.

Hendrickx J, Belzer B, te Grotenhuis M, Lammers J (2004). “Collinearity Involving Ordered and

Unordered Categorical Variables.” Presented at “RC33 conference in Amsterdam, August 17-

20”. URL http://www.xs4all.nl/~jhckx/perturb/.

Imai K, King G, Lau O (2005). “Zelig: Everyone’s Statistical Software.” R package version 2.4-5.

http://gking.harvard.edu/zelig

Longley, JW (1967). “An Appraisal of Computer Programs for the Electronic Computer from the

Point o f View of the User.” Journal of the American Statistical Association, 62, 819-41.

Schnabel RB, Eskow E (1990). “A New Modified Cholesky Factorization.” SIAM Journal of

Scientific Statistical Computing, 11, 1136-58.

Veall MR (1990). “Testing for a Global Maximum in an Econometric Context.” Econometrica, 58,

1459-65.

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. Fourth Edition. Springer, New

York.

15

