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1 Introduction

R includes functions to compute the probability density function (pdf) or the
probability mass function (pmf), the cumulative distribution function (cdf)
and the quantile function, as well as functions to generate variates from a
fair number of continuous and discrete distributions. For some root foo, the
support functions are named dfoo, pfoo, gfoo and rfoo, respectively.

Package actuar provides d, p, q and r functions for a large number of
continuous distributions useful for loss severity modeling; for phase-type dis-
tributions used in computation of ruin probabilities; for zero-truncated and
zero-modified extensions of the discrete distributions commonly used in loss
frequency modeling; for the heavy tailed Poisson-inverse Gaussian discrete
distribution. The package also introduces support functions to compute raw
moments, limited moments and the moment generating function (when it ex-
ists) of continuous distributions.

2 Additional continuous distributions

The package provides support functions for all the probability distributions
found in Appendix A of Klugman et al. (2012) and not already present in
base R, excluding the log-t, but including the loggamma distribution (Hogg
and Klugman, 1984). These distributions mostly fall under the umbrella of
extreme value or heavy tailed distributions.

Table 1 lists the distributions supported by actuar — using the nomencla-
ture of Klugman et al. (2012) — along with the root names of the R functions.



Family Distribution Root
Transformed beta Transformed beta trbeta
Burr burr
Loglogistic llogis
Paralogistic paralogis
Generalized Pareto genpareto
Pareto pareto
Inverse Burr invburr
Inverse Pareto invpareto
Inverse paralogistic invparalogis
Transformed gamma Transformed gamma trgamma
Inverse transformed gamma invtrgamma
Inverse gamma invgamma
Inverse Weibull invweibull
Inverse exponential invexp
Other Loggamma lgamma
Gumbel gumbel
Inverse Gaussian invgauss
Single parameter Pareto paretol
Generalized beta genbeta

my = E[XY],

the theoretical limited moments

E[(X A x)¥] = E[min(X, x)¥]

and the moment generating function

Mx(t) = E[e"¥],

Table 1: Probability distributions supported by actuar classified by family and
root names of the R functions.

Appendix A details the formulas implemented and the name of the argument
corresponding to each parameter. By default, all functions (except those for
the Pareto distribution) use a rate parameter equal to the inverse of the scale
parameter. This differs from Klugman et al. (2012) but is better in line with
the functions for the gamma, exponential and Weibull distributions in base R.

In addition to the 4, p, q and r functions, actuar introduces m, lev and mgf
functions to compute, respectively, the theoretical raw moments

when it exists. Every distribution of Table 1 is supported, along with the
following distributions of base R: beta, exponential, chi-square, gamma, log-
normal, normal (no lev), uniform and Weibull.



The m and lev functions are especially useful for estimation methods based
on the matching of raw or limited moments; see the "lossdist" vignette for
their empirical counterparts. The mgf functions come in handy to compute
the adjustment coefficient in ruin theory; see the "risk" vignette.

3 Support for phase-type distributions

In addition to the 19 distributions of Table 1, the package provides support
for a family of distributions deserving a separate presentation. Phase-type
distributions (Neuts, 1981) are defined as the distribution of the time until
absorption of continuous time, finite state Markov processes with m transient
states and one absorbing state. Let

T t

be the transition rates matrix (or intensity matrix) of such a process and let
(7t, 7Ty41) be the initial probability vector. Here, T is an m x m non-singular
matrix with t;; < 0fori=1,...,mand t; > 0fori #j,t= —Teand eis a
column vector with all components equal to 1. Then the cdf of the time until
absorption random variable with parameters 7t and T is

TCn41s x=0,
F(x) = 2
(%) {1 —eT*e, x>0, @
where
(o) Mn
M _
eM=3" o (3)

is the matrix exponential of matrix M.

The exponential distribution, the Erlang (gamma with integer shape pa-
rameter) and discrete mixtures thereof are common special cases of phase-
type distributions.

The package provides d, p, r, m and mgf functions for phase-type distribu-
tions. The root is phtype and parameters 7r and T are named prob and rates,
respectively; see also Appendix B.

For the package, function pphtype is central to the evaluation of the ruin
probabilities; see ?ruin and the "risk" vignette.

4 Extensions to standard discrete distributions

The package introduces support functions for counting distributions com-
monly used in loss frequency modeling. A counting distribution is a discrete
distribution defined on the non-negative integers 0,1, 2, ....



Let N be the counting random variable. We denote py the probability that
the random variable N takes the value k, that is:

Px = PI’[N = k]

Klugman et al. (2012) classify counting distributions in two main classes.
First, a discrete random variable is a member of the (a,b,0) class of distribu-
tions if there exists constants a and b such that

P gy b ko

Pk—1 k
The probability at zero, po, is set such that } 2° ) px = 1. The members of this
class are the Poisson, the binomial, the negative binomial and its special case,
the geometric. These distributions are all well supported in base R with 4, p,
q and r functions.

The second class of distributions is the (a4,b,1) class. A discrete random

variable is a member of the (a,b,1) class of distributions if there exists con-
stants a and b such that

Py b kas

Pk-1 k
One will note that recursions start at k = 2 for the (4,b,1) class. Therefore,
the probability at zero can be any arbitrary number 0 < pg < 1.

Setting pp = 0 defines a subclass of so-called zero-truncated distributions.
The members of this subclass are the zero-truncated Poisson, the zero-truncated
binomial, the zero-truncated negative binomial and the zero-truncated geo-
metric.

Let pl denote the probability mass in k for a zero-truncated distribution.
As above, p; denotes the probability mass for the corresponding member of
the (a,b,0) class. We have

0, k=0
=V k=12,
L=po
Moreover, let P(k) denotes the cumulative distribution function of a mem-
ber of the (a, b,0) class. Then the cdf PT (k) of the corresponding zero-truncated
distribution is

P(k) = P(0) _ P(k) = po

Ty _ _
i T ) R B
forallk =0,1,2,.... Alternatively, the survival function P* (k) = 1 — P (k) is
_ P(k) P(k)
PT(k) = =2 = .
=50 = 1-p

Package actuar provides 4, p, q and r functions for the all the zero-truncated
distributions mentioned above. Table 2 lists the root names of the functions;
see Appendix C for additional details.



Distribution Root

Zero-truncated Poisson ztpois
Zero-truncated binomial ztbinom
Zero-truncated negative binomial ztnbinom
Zero-truncated geometric ztgeom
Logarithmic logarithmic
Zero-modified Poisson zmpois
Zero-modified binomial zmbinom
Zero-modified negative binomial = zmnbinom
Zero-modified geometric zmgeom
Zero-modified logarithmic zmlogarithmic

Table 2: Members of the (a,b,1) class of discrete distributions supported by
actuar and root names of the R functions.

An entry of Table 2 deserves a few additional words. The logarithmic (or
log-series) distribution with parameter 6 has pmf

af*
=—, k=1,2,...
Pk o’ 2,0,

with a = —1/log(1 —0) and for 0 < 6 < 1. This is the standard parametriza-
tion in the literature (Johnson et al., 2005).

The logarithmic distribution is always defined on the strictly positive in-
tegers. As such, it is not qualified as “zero-truncated”, but it nevertheless
belongs to the (a,b,1) class of distributions, more specifically to the subclass
with pg = 0. Actually, the logarithmic distribution is the limiting case of
the zero-truncated negative binomial distribution with size parameter equal
to zero and 6 = 1 — p, where p is the probability of success for the zero-
truncated negative binomial. Note that this differs from the presentation in
Klugman et al. (2012).

Another subclass of the (a,b,1) class of distributions is obtained by set-
ting po to some arbitrary number p}! subject to 0 < p} < 1. The members
of this subclass are called zero-modified distributions. Zero-modified distribu-
tions are discrete mixtures between a degenerate distribution at zero and the
corresponding distribution from the (a,b,0) class.

Let pf(\/{ and PM(k) denote the pmf and cdf of a zero-modified distribution.
Written as a mixture, the pmf is

1— M 1— M
p = (1— 1_p0 >ﬂ{k—o} + o Pk- 4)

Po 1—po



Alternatively, we have

M P M k=0
Py =4 1—pp
, k=1,2,...
I —=po Pk
and
P(k) — P(0) 1-py
M1\ _ M M _ M 0 _
PY(k) =py +(1—pg) 1—D(0) P0+1_p0 (P(k) = po)
forallk =0,1,2,.... The survival function is
5 P(k)y 1—pM _
PT(k)y=(01—-p)) ==L = 0 p(k).
()= (11" ) = T P

The members of the subclass are the zero-modified Poisson, zero-modified
binomial, zero-modified negative binomial and zero-modified geometric, to-
gether with the zero-modified logarithmic as a limiting case of the zero-
modified negative binomial. Table 2 lists the root names of the support func-
tions provided in actuar; see also Appendix C.

Quite obviously, zero-truncated distributions are zero-modified distribu-
tions with p}! = 0. However, using the dedicated functions in R will be more
efficient.

5 Support for the Poisson-inverse Gaussian distri-
bution

The Poisson-inverse Gaussian distribution results from the continuous mix-
ture between a Poisson distribution and an inverse Gaussian. That is, the
Poisson-inverse Gaussian is the (marginal) distribution of the random vari-
able X when the conditional random variable X|A = A is Poisson with pa-
rameter A) and the random variable A is inverse Gaussian distribution with
parameters y and ¢.

The literature proposes many different expressions for the pmf of the PIG
(Holla, 1966; Shaban, 1981; Johnson et al., 2005; Klugman et al., 2012). Using
the parametrization for the inverse Gaussian found in Appendix A, we have:

1 _(x_%)
2 elon) 1
Px =\ — i ( Z(P (1“‘ 22))
\/ Ty x Pu 5)
2 1
K( q><1+z¢;ﬂ>>'

forx=0,1,..., u > 0, ¢ > 0 and where

-V roo _
Ky (ax) = % /O plez a2 g2 5 (6)

6



is the modified Bessel function of the third kind (Bateman, 1953; Abramowitz
and Stegun, 1972).

One may compute the probabilities py, x = 0,1, ... recursively using the
following equations:

pozexp{gbly (l— \/1+2¢y2)}

I

= it ")
2 (3 12 1 B
px_1+2¢ﬂ2 (1 2x>pxl+l+2¢y2x(x1)px_2’ Xx=2,3....

The first moment of the distribution is y. The second and third central
moment are, respectively,

2 3
o =0"=p+tou
Ha = p+ 3ppo’.
For the limiting case u = oo, the underlying inverse Gaussian has an in-
verse chi-squared distribution. The latter has no finite strictly positive, integer

moments and, consequently, neither does the Poisson-inverse Gaussian. See
subsection C.4 for the formulas in this case.

6 Special integrals

Many of the cumulative distribution functions of Appendix A are expressed
in terms of the incomplete gamma function or the incomplete beta function.
The incomplete gamma function is

1

I'(a;x) = T

X
/ Fle gt a> 0,6 >0, 8)
0

with -
I'(a) = / Lot dt,
0
whereas the (regularized) incomplete beta function is

X

/f"*l(l—t)b’ldt, a>0b>00<x<1 (9

1
POt = B |

with



Klugman et al. (2012) also introduce three other integrals that play a role in
extending the range of admissible values for limited expected value functions.
Let

Glax) = [t et (10)
X

for a real and x > 0. When « > 0, we clearly have
G(a;x) =T(a)[1 — T(a; x)]. (11)
The integral is also defined for a < 0. Integration by parts yields the relation-

ship
xte
«

Gla;x) = — + %G(a—kl;x).

This process can be repeated until « + k is a positive number, in which case
the right hand side can be evaluated with (11). If « = 0,—1,-2,..., this
calculation requires the value of

] eft

GO = [ Sdt=Ei(),

X

which is known in the literature as the exponential integral (Abramowitz and
Stegun, 1972).

Neither Klugman et al. (2012) nor Abramowitz and Stegun (1972) provide
a name for the integral (10). For the needs of the package, we dubbed it the
gamma integral.

Let also

X
B(a,b;x) = T(a+b) / 11— )b (12)
0
fora>0,b# —1,-2,... and 0 < x < 1. Again, it is clear that when b > 0,
B(a,b;x) =T(a)T(b)B(a,b;x).

Of more interest here is the case where b < 0, b # —1,—-2,... and a >
1+ | —b]. Integration by parts of (12) yields

x1(1 - x)' (a— 1)x*2(1 - x)b+1
b " b(b+ 1)
(g — 1) .. (a _ r)xafrfl(l _ x)b+r
b(b+1)---(b+r)
(a—=1)---(a—r—-1)
b(b+1)---(b+r)
xT(b+r+1)Bla—r—1,b+r+1),

B(a,b;x) = —I'(a+Db)

+ T(a—r—1)

where r = |—b|. This expression is little found in the literature outside of
Klugman et al. (2012). For the needs of actuar, we dubbed (12) the beta integral.



The package contains functions to compute the gamma, exponential and
beta integrals. They are mostly used at the C level to evaluate the limited
expected value for distributions of the transformed beta and transformed
gamma families. The package also provides the R interfaces gammaint, expint
and betaint, however these functions are not exported.

7 Implementation details

The core of all the functions presented in this document is written in C for
speed.

The cdf of the continuous distributions of Table 1 use pbeta and pgamma to
compute the incomplete beta and incomplete gamma functions, respectively.
Functions dinvgauss, pinvgauss and ginvgauss rely on C implementations of
functions of the same name from package statmod (Giner and Smyth, 2016).

The matrix exponential C routine needed in dphtype and pphtype is based
on expm from package Matrix (Bates and Maechler, 2016).

The C implementation of expint is based on code from the GNU Software
Library (Galassi et al.). The C code for gammaint and betaint was written by
the second author.

For all but the trivial input values, the pmf, cdf and quantile functions for
the zero-truncated and zero-modified distributions of Table 2 use the internal
R functions for the corresponding standard distribution.

Generation of random variates from zero-truncated distributions uses the
following simple inversion algorithm on a restricted range (Dalgaard, 2005;
Thomopoulos, 2013). Let u be a random number from a uniform distribution
on (po,1). Then x = P~1(u) is distributed according to the zero-truncated
version of the distribution with cdf P(k).

For zero-modified distributions, we generate variates from the discrete
mixture (4) when p}! > po. When p}! < py, we can use either of two methods:

i)  the classical rejection method with an envelope that differs from the tar-
get distribution only at zero (meaning that only zeros are rejected);

ii)  the inversion method on a restricted range explained above.

Which approach is faster depends on the relative speeds of the standard ran-
dom generation function and the standard quantile function, and also on the
proportion of zeros that are rejected using the rejection algorithm. Based on
the difference py — p))!, we determined (empirically) distribution-specific cut-
off points between the two methods.

Finally, computation of the Poisson-inverse Gaussian pmf uses the direct
expression (5) — and the C level function bessel_k part of R's API — rather
than the recursive equations (7). We thereby take advantage of the various
optimizations in bessel_k, with no negative impact on performance.



A Continuous distributions

This appendix gives the root name and the parameters of the R support func-
tions for the distributions of Table 1, as well as the formulas for the pdf, the
cdf, the raw moment of order k and the limited moment of order k using the
parametrization of Klugman et al. (2012) and Hogg and Klugman (1984).

In the following, I'(«; x) is the incomplete gamma function (8), B(a, b; x) is
the incomplete beta function (9), G(«; x) is the gamma integral (10), B(a, b; x)
is the beta integral (12) and K, (x) is the modified Bessel function of the third
kind (6).

Unless otherwise stated, all parameters are finite and strictly positive, and
the functions are defined for x > 0.

A1 Transformed beta family
A.1.1 Transformed beta

Root: trbeta, pearson6
Parameters: shapel (), shape2 (y), shape3 (1), rate (A = 1/0), scale ()

(1 —w)® _ v = (3)’
f(x)_W' u_l—l—v’ v—(é)
F(x) = B(7,a;u)
kT (1 x—
] = 21 +rk<%€£> ek
_ OB(t+k/v, 0 —k/y;u)
E[(X Ax)¥] = (@) (7)

+xk[1 — B(t,a;u)l, k> —1v

A1.2 Burr

Root: burr
Parameters: shapel (), shape2 (), rate (A = 1/0), scale (0)

foy =tz o, 1 02(3)7

X 1+0v 0
F(x)=1—u"
k _
E[xH] — 6kT (1 +k/&ir)(a k/v)’ <k <ay
O*B(1+k/v,a —k/v;1—
E[(X A x)t] = LB Vl“?zx) 11—

+ xFu®, k> —v

10



A.1.3 Loglogistic

Root: 1logis
Parameters: shape (), rate (A = 1/6), scale (6)

yu(l—u) v X\
fla)=—7— R UZ(@)
Fx)=u
EXN =6 T(1+k/9)T(1—k/v), —y<k<y

]

Y
+ 251 —u), k>—v

A.14 Paralogistic

Root: paralogis
Parameters: shape (a), rate (A = 1/6), scale (0)

w?ut(1—u) 1 X\«
flx) = x S U_(é)
F(x)=1-—u"
k _
E[Xk] _ " T (14 k/a)T'(« k/zx)/ Cnck<a?
['(a)
GkB(l +k/a, 0 —k/a;1—u)
k1 ’ ’
E[(X/\x) ]_ r(a)
+ xFus, k> —a
A.1.5 Generalized Pareto
Root: genpareto
Parameters: shapel (), shape2 (1), rate (A = 1/6), scale (0)
Cut(1—u)® v X
& =50 ““1ro "o
F(x) = B(t, ;)
0T (T + k)T (a — k)
k1 _
E[X"] = (@)l () , T<k<uw
O*B(t +k,a —k;u)
k _ 7 7
E[(XAx)"] = (@) (7)

+ 251 — B(t,a;u)], k>-—-1

A.1.6 Pareto

Root: pareto, pareto2

11



Parameters: shape («), scale (6)

_aut(1—u) 1 X
fO==—F— =15y 73
Flx)=1—u"

E[x" = ! +FIEZ£(“ — k), ~1<k<uw
k f—k1—u
E[(X Ax)] = 6 B(1+k1:(a) k;1—u)

+xfu, k> -1

A.1.7 Inverse Burr

Root: invburr
Parameters: shapel (7), shape2 (), rate (A = 1/0), scale (9)

_ Tyut(1—u) v (XN
f@)=——"— =1 = (5)
F(x)=u"
0T (T +k/v)T(1—k/7)
E[x} = <k
[X] T(0) , v <k<ay
O B(t+k/v,1—k/vy;u)
k _ 7 7
E[(XAx)"] = T(0)
+ 2K (1 —u"), k> —1vy
A.1.8 Inverse Pareto
Root: invpareto
Parameters: shape (7), scale (6)
_Tu™(1—u) v X
fW =" "y "7
F(x)=u"
k —
E[X"] = friz+brd k), —t<k<1
I'(7)

EIXA )] =6 [Ty (1 )y

+ 251 —ub), k>-—1

A.1.9 Inverse paralogistic

Root: invparalogis
Parameters: shape (1), rate (A = 1/0), scale ()

12



flx) = x 0  "T1xe T \p
F(x)=u"
E[x} = Gkr(r+k;21)"(1 — k/T), —T?<k<T
k T T — T, U
R

+ 251 —ub), k> —1?

A.2 Transformed gamma family
A.2.1 Transformed gamma

Root: trgamma
Parameters: shapel (), shape2 (1), rate (A = 1/6), scale (0)

Tule ™4 X\T
=g =)
F(x) =T(a;u)

0 T(a+k/7)
O T(a+k/7) '
E[(X Ax)F] = T1“(oc+k/r,u)

+ xK[1 = T(a; u)], k> —at

A.2.2 Inverse transformed gamma

Root: invtrgamma
Parameters: shapel (), shape2 (1), rate (A = 1/6), scale (0)

Tue " 0\"
=S = ()
F(x) =1-T(a;u)

k o — T
E[XK] = Br(r(a)k/) k<at
E[(X Ax)H] = W A T(u),  allk

A.23 Inverse gamma

Root: invgamma
Parameters: shape («), rate (A = 1/6), scale (0)

13



o= =

F(x) = 1— T(a;u)

E[x] ekrr(?a; D ke
E[(X A x)F] = W + T (s ),

M) = s (012K (V=00

A.2.4 Inverse Weibull

Root: invweibull, lgompertz
Parameters: shape (7), rate (A = 1/0), scale (9)

f =", = ()

F(x)=¢"

E[XX|=6T(1-k/1) k<7
E[(XAx)¥] = 0°G(1 — k/7;u) + xF(1 — ™),

A.2.5 Inverse exponential

Root: invexp
Parameters: rate (A = 1/6), scale (0)

fo =" =t

F(x)=e"

E[X|=6T(1-k) k<1
E[(XAx)]=65G(1 —ku) + x"(1—e ™),

A.3 Other distributions
A.3.1 Loggamma

Root: 1gamma
Parameters: shapelog («), ratelog (A)

A% (In x)*~1
f x) = X)(H‘lii)(lx)’
F(x) =T(x;Alnx), x>1

E[x’q_(/\/lx)a, k<A

x>1

14
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A

— X

E[(X/\x)k] — (/\ )ar(a;(/\k)lnx)

+ x*T(a; AMln x), k<A

A.3.2 Gumbel

Root: gumbel
Parameters: alpha (—oo < o < 00), scale (0)

—(u+e ) _
f(x)zie 0 , u:xele —00 < x < 0

F(x) = exp[—exp(—u)]
E[X] =ua+ 70, v ~ 0.57721566490153
262

Var[X] = —

M(t) = e"T(1 - 6t)
A.3.3 Inverse Gaussian

Root: invgauss
Parameters: mean (y), shape (A = 1/¢), dispersion (¢)

0= () or ()
F(x) =@ (%) 12/ @ (%)
S e (o

E[XAx]=p {q) (x/\Zb%l) T (_x/\;%lﬂ

T x(1 - F(x)
M(t):exp{(l)ly<l—\/T¢yzt>}, t§24>1]12

The limiting case y = oo is an inverse gamma distribution with « = 1/2 and
A = 2¢ (or inverse chi-squared).

A.3.4 Single parameter Pareto

Root: paretol
Parameters: shape («), min (6)

15



X
ak
E[X" =
[X"] PR k<a
ok ko*
E[(X Ax)F] = v x>0

a—k (a—k)xe K

Although there appears to be two parameters, only « is a true parameter. The
value of 6 is the minimum of the distribution and is usually set in advance.

A.3.5 Generalized beta

Root: genbeta
Parameters: shapel (a), shape2 (b), shape3 (1), rate (A = 1/0), scale (0)

oy = D@ -mr = (5), o<x<o

xB(a,b) 0
F(x) = p(a,b;u)
kB(a
E[X}] = {W, k> —at
E[(XAx)k] = Wﬁ(a +k/T,b;u)

+ xK[1 = B(a, b; u)), k> —1y

B Phase-type distributions

Consider a continuous-time Markov process with m transient states and one
absorbing state. Let
T t
Q= [0 0} (13)
be the transition rates matrix (or intensity matrix) of such a process and let
(7t, 7ty41) be the initial probability vector. Here, T is an m x m non-singular
matrix with t;; < 0fori=1,...,m and tij > 0 for i # j; wis an 1 x m vector
of probabilities such that re + 7,1 = 1; t = —Te; e = [1],,x1 is a column
vector of ones.

Root: phtype
Parameters: prob (771 «,), rates (Tixm)

16



M(t) = t(—tI — T) "'t + (1 — me)

C Discrete distributions

This appendix gives the root name and the parameters of the R support func-
tions for the members of the (a,b,0) and (a,b,1) discrete distributions as de-
fined in Klugman et al. (2012); the values of a, b and py in the representation;
the pmf; the relationship with other distributions, when there is one. The ap-
pendix also provides the main characteristics of the Poisson-inverse Gaussian
distribution.

C.1 The (4,b,0) class

The distributions in this section are all supported in base R. Their pmf can
be computed recursively by fixing po to the specified value and then using
pr=(a+b/k)pr_q, fork=1,2,....

All parameters are finite.

C.1.1 Poisson

Root: pois
Parameter: lambda (A > 0)

C.1.2 Negative binomial

Root: nbinom
Parameters: size (r > 0), prob (0 < p < 1), mu (r(1—p)/p)

a=1-p, b=(r-1)1-p), po=p
r+k—1
Pr = ( L )p’(l—P)k

Special case: Geometric(p) when r = 1.

17



C.1.3 Geometric

Root: geom
Parameter: prob (0 < p <1)

a=1-p, b=0, Po=p
pe=p(1—p)

C.1.4 Binomial

Root: binom
Parameters: size (n =0,1,2,...), prob (0 < p <1)

_ P _(n+1p 1

n _
P = <k>pk(l—p)” ko k=1,2,...,n

Special case: Bernoulli(p) when n = 1.

C.2 The zero-truncated (4,b,1) class

Package actuar provides support for the distributions in this section. Zero-
truncated distributions have probability at zero pl = 0. Their pmf can be
computed recursively by fixing p; to the value specified below and then using
pr = (a+0b/k)pr_q, for k = 2,3,.... The distributions are all defined on
k=1,2,....

The limiting case of zero-truncated distributions when p; is infinite is a
point mass in k = 1.

C.2.1 Zero-truncated Poisson

Root: ztpois
Parameter: lambda (A > 0)

T
Ak
PE= Ri(er — 1)
C.2.2 Zero-truncated negative binomial

Root: ztnbinom
Parameters: size (r > 0), prob (0 < p < 1)
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rp’ (1 —
a=1-p,  b=(-11-p), p=2LP
-P
_ (rHk=1\pa-pt
Pk = k 1—p

Special cases: Logarithmic(1 — p) when r = 0; Zero-truncated geometric(p)
whenr = 1.
C.2.3 Zero-truncated geometric

Root: ztgeom
Parameter: prob (0 < p <1)

a=1-p, b=0, pL=p
pe=p(1—p)!

C.2.4 Zero-truncated binomial

Root: ztbinom
Parameters: size (n =0,1,2,...), prob (0 < p < 1)

___p o, _tlp _mp(1—p)"!
1—p 1—p ' T ai-(1-py
k n—k
_(myprQ=-p" "
pk_(k)l—(l—p)"’ k=1,2,...,n

C.2.5 Logarithmic

Root: logarithmic
Parameter: prob (0 < p < 1)

a=p,  b=-p p=

Pk~ Tklog(1—p)

C.3 The zero-modified (a,b,1) class

Package actuar provides support for the distributions in this section. Zero-
modified distributions have an arbitrary probability at zero p)! # py, where
po is the probability at zero for the corresponding member of the (a,b,0) class.
Their pmf can be computed recursively by fixing p; to the value specified
below and then using py = (a + b/k)px_1, for k = 2,3,.... The distributions
are all defined onk =10,1,2,....

The limiting case of zero-modified distributions when p; is infinite is a
discrete mixture between a point mass in k = 0 (with probability p}!) and a
point mass in k = 1 (with probability 1 — p(I)VI).
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C.3.1 Zero-modified Poisson

Root: zmpois
Parameters: lambda (A > 0), p0 (0 < péw <1

(1-pi"HA
a=0, b=A, p1 = p—
(1 - pi"HA*
Pk = 7
kl(er = 1)

C.3.2 Zero-modified negative binomial

Root: zmnbinom
Parameters: size (r > 0), prob (0 < p < 1), p0 (0 < pM < 1)

1—M7’r1—
i=1-p b=G-D-p, - CERIEEEY

C(rHk=1\ (1= phpr(1—p)k

Special cases: Zero-modified logarithmic(1 — p) when r = 0; Zero-modified
geometric(p) when r = 1.

C.3.3 Zero-modified geometric

Root: zmgeom
Parameters: prob (0 < p < 1), p0 (0 < pM < 1)

a=1-p, b=0, p=1-p))p
pe=(1—pd"p(1—p)<!

C.3.4 Zero-modified binomial

Root: zmbinom
Parameters: size (n =0,1,2,...), prob (0 < p < 1), p0 (0 < péw <1

_ P p_ (it Dp oy m(1—pgp(l—p)"!
1-p’ i-p M 1-(1-p)
_ MY k(1 _ \n—k
o= (" A=p)pA—p)" ",
k 1—(1—p)

.n
C.3.5 Zero-modified logarithmic
Root: logarithmic

Parameters: prob (0 < p < 1), p0 (0 < pM < 1)
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(1—pd"p

S T )

_ a—phrt
Pk klog(1—p)

C.4 Other distribution
C.4.1 Poisson-inverse Gaussian

Root: poisinvgauss, pig
Parameters: mean (4 > 0), shape (A = 1/¢), dispersion (¢ > 0)

(1
2 olom) ! 00 (1 1 (x=2)
P\ 7 ¢(+2¢V2>
2 1
x K, _ — 1—|—) , x=0,1,...,
* ”2< 4>< 2942 )

Recursively:

In the limiting case u = oo, the pmf reduces to

21 1
=,/ ——= —(x—3) .
Pr= \/pr!WT‘/’) UK, (V2/9), x=01,...
and the recurrence relations become

po = exp{~v/279)
1

P1= —==Po
V2
3 1 1
px— <1—2x> pxil—i—ﬂix(:}(j—l) px_Z, x—2,3,....
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