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Abstract

Palaeoecology is an important branch of ecology that uses the subfossil remains of organ-
isms preserved in lake, ocean and bog sediments to inform on changes in ecosystems and the
environment through time. The analogue package contains functions to perform modern ana-
logue technique (MAT) transfer functions, which can be used to predict past changes in the
environment, such as climate or lake-water pH from species data. A related technique is that
of analogue matching, which is concerned with identifying modern sites that are floristically
and faunistically similar to fossil samples. These techniques, and others, are increasingly being
used to inform public policy on environmental pollution and conservation practices. These
methods and other functionality in analogue are illustrated using the Surface Waters Acidifi-
cation Project diatom:pH training set and diatom counts on samples of a sediment core from
the Round Loch of Glenhead, Galloway, Scotland. The paper is aimed at palaeoecologists
who are familiar with the techniques described but not with R.
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1. Introduction

Palaeoecology is a small but increasingly important branch of ecology. Sub-fossil remains of a
range of organisms are well preserved in a number of media, primarily lake and ocean sediments
and peat bogs. Analysis of these remains can show how individual organisms through to whole
ecosystems develop and evolve, and how they respond to external environmental pressures, such as
climate change and anthropogenic pollution. In recent decades palaeoecology has progressed from
a primarily descriptive science to one which today involves a wide range of quantitative analysis.
This development has been required as palaeoecology has begun to be used to answer questions
in areas relating to public policy on pollution impacts and in conservation biology.

Two important quantitative applications of palaeoecology are palaeoenvironmental reconstructions
and approaches to define reference conditions and restoration success.

Quantitative palaeoecology has played a key role in identifying the problem and the causes of major
environmental issues that have been at the centre of much public concern over the past 20 years
or so, such as acid rain and surface water acidification, eutrophication and anthropogenic climate
change. In each of these cases, the onset of change or pollution occurred long before environmental
monitoring programs were around to detect any change. A key issue, therefore, is to be able to
reconstruct past changes in the environment (e.g. lake water pH or nutrient concentrations, air
temperatures, and sea surface temperature and salinity) from the remains of organisms preserved
in sediments, so that the extent and timing of the change can be determined. These may in turn
suggest particular causative mechanisms.

Acknowledging that many aquatic environments are today degraded as a result of anthropogenic
activities major new pieces of legislation have been enacted in Europe (the European Council Water
Framework Directive, WFD; European Union 2000) and the USA (Clean Water Act; Barbour
et al. 2000), which at their heart contain the concept of change over a baseline state, the reference
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condition. In Europe for example, the WFD requires member states to restore all degraded fresh
waters to at least good status by 2015. Good status is defined as very minor change compared
to the reference condition. In many cases we simply do not know what the appropriate reference
state should be as there are invariably few, if any, reliable records that predate the onset of change.
Palaeoecology can also play a role here; palaeoenvironmental reconstructions can inform us as to
the likely hydrochemical conditions in the past for certain key parameters, and the remains of
various species groups preserved in lake sediments can tell us about the flora and fauna living in a
lake prior to change. However, because only certain species groups preserve well in lake sediments,
direct palaeoecological analysis of lake sediments can provide only part of the answer. Analogue
matching can then be used to identify lakes that are today most similar to the reference conditions
of the target lake, and the missing species information filled in from surveys of those species living
in the identified sites (Simpson et al. 2005).

1.1. Calibration

Palaeoenvironmental reconstruction is a multivariate calibration problem. Calibration methods
(known as transfer functions in the palaeoecological literature) can be classified into two main
types; classical and inverse methods. In general, the species assemblages, Y, in a training set are
assumed to be some function f of the environment at those sites, X, plus an error term. This is
commonly written as

Y = f(X) + ε (1)

where Y is an n×m matrix of counts on m species and Y is an n× p matrix of p environmental
variables for n samples or sites.
In the classical approach to calibration, f is estimated from a set of training data via regression
of Y on X. Given a sample of fossil species data, y0, f is inverted to yield an estimate of the
environment, x0, that gave rise to the fossil assemblage. In all but the simplest cases, however,
the inverse of f does not exist and must be estimated from the data, for example via numerical
optimisation techniques.
The inverse approach avoids the problem of inverting f by directly estimating the inverse of f ,
denoted g, from the data by regressing X on Y

X = g(Y) + ε. (2)

Note that we do not believe that the species (Y) influence their environment (X).
Inverse approaches are known to perform slightly better in situations where the fossil samples are
from the central part of the distribution of the training set, whereas classical approaches perform
slightly better at the extremes of the training set and with a small amount of extrapolation
(ter Braak 1995). The modern analogue technique, described below, is an inverse multivariate
calibration approach.

1.2. The modern analogue technique (MAT)

The quantitative analysis of stratigraphic records from sediment archives is predicated on the
concept of Uniformitarianism (Rymer 1978), which is summarised by the phrase the present is
the key to the past. Through knowledge of the present-day ecology of species, inferences about
past environmental conditions can be made via analogy to that same set of conditions existing
where those species are found living today. This is known as space-for-time substitution, or more
commonly as the modern analogue technique (MAT). In MAT, the environment of samples from
a modern set of lakes that are most similar in terms of their species composition to a fossil sample
can be used as a direct prediction of the environment that existed at the time the fossil sample
was deposited (Jackson and Williams 2004). MAT is a k -nearest neighbours (k -NN) method.
Defining how similar two samples are to one another is a critical consideration in MAT. Dissimi-
larity or distance coefficients are used, which measure the floristic or faunistic similarity between
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a fossil sample and each modern training set sample. One recommended dissimilarity coefficient
for use with compositional data is the chord distance as it has good signal to noise properties
(Overpeck et al. 1985; Gavin et al. 2003).
The chord distance between samples j and k, djk, is

djk =

√√√√ m∑
k=1

(
x0.5

ij − x0.5
ik

)2 (3)

where xij is the proportion of taxon i in sample k. For the chord distance, values for djk range
from 0 to

√
2. Another commonly used measure is the χ2 distance (Prentice 1980; Birks et al.

1990). Often the squared forms of these coefficients have been used for no other reason than
computational efficiency.
Despite having some optimal properties for percentage compositional data, Faith et al. (1987) have
criticised the chord distance as a weak measure of compositional dissimilarity.
A wide range of dissimilarity coefficients have been proposed, several of which have been imple-
mented in the function distance (see Section 4.1), including several of the coefficients recom-
mended by Faith et al. (1987) as good measures of compositional dissimilarity.

1.3. Analogue matching

Analogue matching (Overpeck et al. 1985; Flower et al. 1997) is a palaeoecological technique used
to identify the k -closest sites from a modern set of lakes that are biologically most similar to the
impacted lake prior to the onset of change. The k -closest sites are selected on the basis of how
similar they are to the target sample in those organisms that are preserved in lake sediments, and
are known as modern analogues. The pre-impact or reference condition flora and fauna for the
target lake from groups that do not preserve in lake sediments can then be inferred on the basis
of the species found living in the modern analogues today (Simpson et al. 2005).

1.4. Outline of the paper

Section 2 contains a worked example providing an overview of the analogue package for R (R
Development Core Team 2007). In Section 3 we look at alternative ways of selecting the number
of analogues, k, to retain in a MAT model. Section 4 describes the wider functionality contained
within analogue, including the dissimilarity coefficients available, an overview of the plotting func-
tions provided, and how to produce sample specific error estimates for fossil samples and use an
independent test set in MAT transfer functions. The paper concludes with a short description of
future plans for the package (Section 5).

2. Using analogue

This section contains a worked example of how to use the analogue package to fit MAT transfer
function models and to perform analogue matching. The analogue package first has to be loaded
before it can be used:

R> library("analogue")

This is analogue 0.5-2

The version of analogue installed is printed if the package has been successfully loaded.
To illustrate analogue, the Surface Waters Acidification Project (SWAP) diatom:pH training set
is used (Stevenson et al. 1995), along with diatom counts from a sediment core taken from the
Round Loch of Glenhead, Galloway, Scotland (Jones et al. 1989). The data sets also need to be
loaded before they can be used:
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R> data(swapdiat, swappH, rlgh, package = "analogue")

The swapdiat data set contains diatom1 counts on 277 species from 167 lakes. Matching measure-
ments of lake water pH (acidity) are available for each lake in swappH. These pH measurements
are the average of four quarterly samples.
The sediment core from the Round Loch of Glenhead (RLGH from now on) contains diatom counts
on 139 species from 101 levels.
In both datasets the diatom counts are expressed as percentage abundances.

2.1. MAT transfer functions

MAT transfer functions are built using the generic function mat. The default method for mat takes
three arguments; x — a data frame of diatom counts for the training set, y — a numeric vector of
observations of the environmental variable of interest, and method — the dissimilarity coefficient
to use.
The data frame of diatom counts (x), must have the same columns (species) as the data frame of
counts for the sediment core for which MAT reconstructions are required. To ensure that both
data frames have the same set of columns, the join function is used to merge the two data sets.

R> dat <- join(swapdiat, rlgh, verbose = TRUE)

Summary:

Rows Cols
Data set 1: 167 277
Data set 2: 101 139
Merged: 268 277

The verbose = TRUE argument instructs the function to print out summaries of the merged data
sets. dat is a list containing two data frames. These are the original datasets but now with a com-
mon set of columns (species). The defaults for join also replace the missing values created when
merging the two data sets with zeros. This behaviour can be controlled through the na.replace
argument.
An alternative to merging the two data sets would be to select only the intersect of the data
sets, i.e. select only those columns in common between the two datasets. This is a non-standard
approach however, and is not consistent with implementations in other software packages. One
potential problem with the merging approach employed by join is the additional zero values
added to one or both of the training set or fossil samples, which may exacerbate the double-zero
problem or have an unduly large effect on the values of the chosen dissimilarity coefficient. As
such, care must be taken when forming training sets and fossil samples, as well as in the choice of
dissimilarity coefficient.
By convention, dissimilarity coefficients are defined for proportional data. As the data used in this
example are percentages we need to convert them to proportions. We extract each of the merged
data sets (the components of dat) back into the training set and the fossil set, converting the data
into proportions as we do so.

R> swapdiat <- dat$swapdiat/100

R> rlgh <- dat$rlgh/100

The data are now ready for analysis. We will fit a MAT model to the SWAP training set using
the squared chord distance (SCD) coefficient:

1Diatoms are unicellular algae that possess a frustule (cell wall) composed of a form of silica. Diatoms live
wherever there is water and light. Diatom frustules are highly resistant and as such preserve well in lake sediments.
Individual diatom species are identified by different ornamentation of the frustule.
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R> swap.mat <- mat(swapdiat, swappH, method = "SQchord")

An overview of the fitted model is produced by printing the stored object:

R> swap.mat

Modern Analogue Technique

Call:
mat(x = swapdiat, y = swappH, method = "SQchord")

Percentiles of the dissimilarities for the training set:

1% 2% 5% 10% 20%
0.416 0.476 0.574 0.668 0.815

Inferences based on the mean of k-closest analogues:

k RMSEP R2 Avg Bias Max Bias
1 0.4227 0.7139 -0.0254 -0.3973
2 0.3741 0.7702 -0.0493 -0.4689
3 0.3387 0.8088 -0.0379 -0.4034
4 0.3282 0.8200 -0.0335 -0.4438
5 0.3136 0.8356 -0.0287 -0.4124
6 0.3072 0.8444 -0.0386 -0.4152
7 0.3167 0.8364 -0.0481 -0.4179
8 0.3065 0.8474 -0.0433 -0.4130
9 0.3049 0.8495 -0.0436 -0.4111
10 0.3015 0.8548 -0.0473 -0.4083

Inferences based on the weighted mean of k-closest analogues:

k RMSEP R2 Avg Bias Max Bias
1 0.4227 0.7139 -0.0254 -0.3973
2 0.3711 0.7734 -0.0476 -0.4614
3 0.3375 0.8102 -0.0385 -0.4088
4 0.3272 0.8213 -0.0346 -0.4433
5 0.3144 0.8348 -0.0298 -0.4205
6 0.3077 0.8435 -0.0371 -0.4253
7 0.3148 0.8377 -0.0451 -0.4250
8 0.3049 0.8483 -0.0407 -0.4206
9 0.3035 0.8500 -0.0408 -0.4205
10 0.3005 0.8546 -0.0442 -0.4180

The percentiles of the distribution of SCD values for the training set are displayed, along with
model performance statistics for the training data of inferences for pH based on the mean and
weighted mean of the k closest analogues. The weights used are the inverse of the dissimilarity,
1/djk, for each of the k-closest analogues. It should be noted that this may give overly large weights
to nearly identical analogues, which may be of concern in species poor oceanic data sets, but not
generally in species rich limnological training sets. By default only statistics for k = 1, . . . , 10
closest analogues are shown. The RMSEP values shown are leave-one-out errors; the prediction
for each sample in the training set is based on k-closest analogues excluding that sample. These
values are not strongly biased, unlike the apparent (RMSE) errors from other methods such as
the weighted averaging-based techniques. There is not much to choose between models that use
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Figure 1: Summary diagram of the results of a MAT model applied to predict lake water pH from
the SWAP diatom data set — see text for details.

the mean or weighted mean. For the rest of this example, we restrict ourselves to non-weighted
versions of the models.
A more detailed summary of the results may be displayed using the summary method:

R> summary(swap.mat)

Before using this model to reconstruct pH for the RLGH core, the number of analogues, k, to use in
the reconstructions must be determined. A simple way of choosing k is to select k from the model
with lowest RMSEP. In the printed results shown above, the model with the lowest RMSEP was
a model with k = 10 closest analogues for both the mean and weighted mean indices. We should
check this number however, as the displayed lists were restricted to show only the k = 1, . . . , 10
closest analogues. Whenever k is not specified, the functions in analogue automatically choose
the model with lowest RMSEP. The simplest way to check this is to the use the getK extractor
function:

R> getK(swap.mat)

[1] 10
attr(,"auto")
[1] TRUE
attr(,"weighted")
[1] FALSE

This shows that the model with 10 closest analogues has the lowest RMSEP, and that this value
was chosen automatically and not set by the user.
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mat has a plot method, which provides a plot.lm-like function to graphically summarise the fitted
model. By default 4 different plots of the model are produced, so we split the plotting region in
four before plotting and subsequently restore the original settings:

R> opar <- par(mfrow = c(2, 2))

R> plot(swap.mat)

R> par(opar)

The resulting plot is displayed in Figure 1. The upper left panel of Figure 1 shows a plot of the
observed versus fitted values, whilst the upper right panel shows a plot of the observed values
versus model residuals. The dashed blue line in the residuals plot shows the average bias in the
model. In both plots, the solid red line is a LOWESS smoother (span = 2/3).
The labels for the y-axes of both plots show the value of k selected automatically by mat — in
this case k = 10 analogues. We can confirm this value by looking at the plot of the leave-one-out
errors (RMSEP) in the lower left panel of Figure 1. This is a screeplot of the RMSEP values for
models with various values of k (by default this is restricted to be ≤ 20 to avoid clutter). We can
see that a model with 10 analogues has lowest RMSEP although there is not a lot of difference in
the RMSEP of models with between 6 and 11 analogues. The lower right panel of Figure 1 shows
a screeplot, similar to the plot of leave-one-out errors, but which displays the maximum bias in
models of various sizes.
This choice of k is generally not strongly biased despite being determined post hoc from the
training data. However, Telford et al. (2004) demonstrate a worst case where this k is badly
biased. The use of an independent optimsation set, alongside the usual training and test sets, is
recommended to avoid this bias (Telford et al. 2004). Section 4.2.2 shows how to use independent
test or optimsation sets with analogue.
This model can now be used to reconstruct past pH values for the RLGH core. The predict
method of mat can be used for reconstructions:

R> rlgh.mat <- predict(swap.mat, rlgh, k = 10)

R> rlgh.mat

The reconPlot method can be used to plot the reconstructed values as a time series-like plot —
the resulting plot is shown in Figure 2:

R> reconPlot(rlgh.mat, use.labels = TRUE, ylab = "pH", xlab = "Depth (cm.)")

The argument use.labels = TRUE instructs the function to take the names component of the
predicted values as the values for the x-axis. Here depth is a surrogate for time.
If we are interested in how reliable our reconstructed values are, a useful descriptor is the minimum
dissimilarity between a core sample and the training set samples (minDC). If there are no close
modern analogues in the training set for certain fossil samples, we will have less faith in the MAT
reconstructions for those fossil samples than for samples that do have close modern analogues.
The minDC function can be used to extract the minimum dissimilarity for each fossil sample:

R> rlgh.mdc <- minDC(rlgh.mat)

Printing the resulting object (rlgh.mdc) doesn’t yield very much information. It is easier to
display the minDC values in a plot similar to the one produced by reconPlot above:

R> plot(rlgh.mdc, use.labels = TRUE, xlab = "Depth (cm.)")

The resulting plot is shown in Figure 3. The dotted horizontal lines are the probability quantiles
of the distribution of dissimilarity values for the training samples. A useful rule of thumb is that
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a fossil sample has no close modern analogues where the minDC for the sample is greater than
the 5th percentile of the distribution of dissimilarity values for the training samples. As Figure 3
shows, there are several periods of the RLGH core that have no close modern analogues.

2.2. Analogue matching

Analogue matching (AM) is a more general version of MAT and the two techniques are used for
different purposes. As such, a different set of functions are provided in analogue to perform AM.
The main function is analog and it is used in much the same way as mat was earlier, but now
both x and y are data frames of species data.

Returning to the RLGH example, in AM all we are interested in is identifying those samples from
the modern training set that are close modern analogues for samples from the RLGH core. In
particular, we define the reference condition or period for acidified lakes to be immediately prior
to the onset of the industrial revolution, c. 1800. We accept that this period is not the “natural”
state of the RLGH as many UK surface waters have experienced several thousand years of human
impact, but this reference condition is appropriate for assessing recovery from recent acidification
resulting from the burning of fossil fuels for energy generation and industrial activities. We use
analog, this time with the chord distance (CD) measure and select only those samples from the
reference period of the RLGH (samples 25–37):

R> rlgh.ref <- rlgh[25:37, ]

R> swap.ana <- analog(swapdiat, rlgh.ref, method = "chord")

R> swap.ana

Analogue matching for fossil samples

Call: analog(x = swapdiat, y = rlgh.ref, method = "chord")
Dissimilarity: chord

Percentiles of the dissimilarities for the training set:

1% 2% 5% 10% 20%
0.645 0.690 0.758 0.817 0.903

Minimum dissimilarity per sample

Dissimilarity: chord

020.3 022.3 024.3 025.3 026.3 027.3 028.3 030.5 032.5 036.5 040.5 044.5 048.5
0.597 0.561 0.611 0.594 0.597 0.636 0.595 0.593 0.586 0.584 0.608 0.615 0.658

In the minimum dissimilarity section of the printed results, the upper row is the core sample label
— here these are numbers representing depth down the core. The lower row is the minimum
dissimilarity between the fossil sample and a training set sample. A more detailed display of the
k best analogues (k = 10 by default) is given by the summary method.

Having performed the main AM computations, we need to extract information from the resulting
object, particularly those samples from the training set that are as close or closer than c to
each fossil sample, where c is some critical threshold or cutoff. The cma function (close modern
analogues) does this:

R> swap.cma <- cma(swap.ana)

R> swap.cma
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Close modern analogues of fossil samples

Call: cma(object = swap.ana)

Dissimilarity: chord
Cutoff: 0.705

Number of analogues per fossil sample:

020.3 022.3 024.3 025.3 026.3 027.3 028.3 030.5 032.5 036.5 040.5 044.5 048.5
14 13 10 9 10 9 10 11 10 19 9 12 5

Notice that we do not need to specify a cutoff, c. By default, cma uses the 2.5th percentile of
the distribution of dissimilarities for the modern training set as the value of c if none is supplied.
Argument "cutoff" is used if you want to supply a different cutoff value:

R> cma(swap.ana, cutoff = 0.5)

The close modern analogues can be displayed graphically using the plot method for cma. This is a
wrapper for stripchart, and only displays samples that have one or more close modern analogues.
Stripcharts are one dimensional scatter plots and are a good alternative to boxplots when sample
sizes are small, as they generally are when selecting close modern analogues for fossil samples.

R> plot(swap.cma)

The stripchart is shown in Figure 4. The y-axis contains the samples of interest, and for each of
these a point is drawn along the x-axis for each close modern analogue within the dissimilarity
cutoff, c, chosen. Recall that the sample labels for the RLGH sediment core are just the depths
from the core top, it is, therefore, only coincidental that the y-axis appears numeric and continuous.
One problem with analogue methods is the need to decide what level of dissimilarity between two
samples should accept before we consider the two samples as being truly dissimilar. We avoid this
problem with MAT by selecting the number of analogues that minimises the RMSEP. We cannot
do this in AM, however, as invariably we do not have known environmental data for the fossil
samples we are comparing with the training set. Instead we must choose a suitable cutoff for the
dissimilarity, as described above.
One solution to this problem is to take a low percentile of the distribution of training set dissimi-
larities as the cutoff; often the 5th or 10th percentile (Anderson et al. 1989). However, if the shape
of the distribution of dissimilarities is strongly left skewed, taking the 5th or 10th percentile would
lead to the use of an overly large cutoff, and if there is strong right skew, a smaller cutoff will
be chosen. Depending on the shape distribution of training set dissimilarities one may decide to
choose a lower or higher percentile to guide their choice of cutoff. We can examine the distribution
of training set dissimilarities using the dissim extractor function and its plot method:

R> plot(dissim(swap.ana))

The resulting plot is shown in Figure 5. A reference normal is overlaid with the same mean and
standard deviation as the observed set of dissimilarities, with the same sample size. The two
vertical, dotted lines are drawn at the 5th percentiles of the observed and reference distributions.
The actual percentile drawn can be changed using argument "prob". As Figure 5 shows, the
observed distribution of dissimilarities for the training set is not too far from a normal distribution,
though there is some slight skewness to the left. The 5th percentile would suggest a cutoff of
c ≤ 0.758 in this case.
An alternative solution to the problem of deciding on a suitable cutoff is to use Monte Carlo sim-
ulation to determine a dissimilarity threshold that is unlikely to have occurred by chance (Sawada
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et al. 2004). At random, two samples are drawn from the training set and the dissimilarity between
the two samples is recorded. This process is repeated many times to generate a randomisation
distribution of dissimilarity values expected by random comparison of samples. A threshold value
that occurred one time in a hundred would correspond to a significance level of 0.01. The dis-
similarity value that achieves this level of significance can be determined by selecting the 0.01
probability quantile of the randomisation distribution (the 1st percentile).
The mcarlo function provides this functionality and methods are available for "mat" and "analog"
objects.

R> swap.mc <- mcarlo(swap.ana)

R> swap.mc

Simulated Dissimilarities

Simulation type : paired
No. simulations : 10000
Coefficient : chord

Summary of simulated distribution:
Min 1st Qu. Median Mean 3rd Qu. Max

0.616 0.847 1.009 0.987 1.132 1.317

Percentiles of simulated distribution:
1% 2.5% 5% 10% 90% 95% 97.5% 99%

0.633 0.663 0.690 0.734 1.236 1.262 1.286 1.298

See Section 3.3 for details on how Receiver Operating Characteristic curves may be used to deter-
mine and optimal value for c.

3. Alternative methods for choosing k

A wide range of techniques have been described in the literature for choosing a value of k that
gives the best model predictions/reconstructions with the lowest error. Some of these techniques
are available in analogue.

3.1. Bootstrapping

The most objective way of determining an optimal value for k is to use some form of cross-
validation (CV). analogue currently contains functions to implement bootstrapping (Birks et al.
1990). Repeated bootstrap samples are drawn from the training set and a MAT model fitted to
the selected samples. These models are then used to predict for the out-of-bag (OOB) samples.
A RMSEP measure is then calculated by averaging over the OOB predictions. This procedure is
the same as bagging (Breiman 1996), but a different form of RMSEP than the normal definition
is used (Birks et al. 1990). The RMSEPboot of the training set is calculated as:

RMSEPboot =
√
s21 + s22, (4)

where s1 is the standard deviation of the OOB residuals and s2 is the mean bias or the mean of
the OOB residuals.
The bootstrap function is used to bootstrap resample the training set from a MAT model. Con-
tinuing the RLGH MAT example from earlier, we take 100 bootstrap samples and examine the
returned object:
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R> set.seed(1234)

R> swap.boot <- bootstrap(swap.mat, n.boot = 100)

R> swap.boot

Bootstrap results for palaeoecological models

Model type: MAT
Weighted mean: FALSE
Number of bootstrap cycles: 100

Leave-one-out and bootstrap-derived error estimates:

k RMSEP S1 S2 r.squared avg.bias max.bias
LOO 10 0.3015 - - 0.8548 -0.04729 -0.4083
Bootstrap 11 0.3246 0.1168 0.3028 0.9250 -0.05109 -0.4452

The bootstrap procedure suggests that k = 11 analogues provides the lowest RMSEPboot.
We cannot directly compare the RMSEP values shown, as a different method was used to calculate
the two values. The leave-one-out RMSEP is calculated in the normal way:

RMSEPloo =

√√√√ n∑
i=1

(yi − ŷi)2

n
, (5)

where i = 1, . . . , n and n is the number of samples, whilst the bootstrap RMSEP is calculated
following (4). We can compute a RMSEP that can be compared with the leave-one-out RMSEP
as follows:

R> RMSEP(swap.boot, type = "standard")

[1] 0.3028484

It is felt that the RMSEP of Birks et al. (1990) gives a more reliable estimate of the real prediction
error than the standard RMSEP definition. Furthermore, the alternate RMSEP formulation is
used to produce bootstrap sample-specific errors (see Section 7).

3.2. Changing the stored value of k

Having used bootstrap to select a value for k, it would be useful if this value could be stored
in the MAT model so that functions that utilise the stored value of k will use the new value
automatically. The getK function can be used extract the stored value of k from certain objects,
whilst setK can be used to alter or set the stored value. To illustrate, we extract the bootstrap
selected value of k and store this in the swap.mat object created earlier:

R> getK(swap.boot)

[1] 11
attr(,"auto")
[1] TRUE
attr(,"weighted")
[1] FALSE

R> setK(swap.mat) <- getK(swap.boot)
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3.3. Receiver Operating Characteristic (ROC) curves

Recently Wahl (2004) and Gavin et al. (2003) have presented a framework for identifying an
optimal critical threshold, c, for dissimilarity, that best discriminates between known analogue and
non-analogue samples. This framework is based on the use of Receiver Operating Characteristic
(ROC) curves but is only applicable where training set samples can be a priori assigned to groups
or types of samples (e.g. samples classified into vegetation types). A site is an analogue for another
site if they belong to the same group, and not an analogue if they come from different groups.
There are two types of error that arise when a cutoff value for the dissimilarity is used: i) false
positive error, which occurs when two samples that are not analogues are determined to be ana-
logues on the basis of the chosen cutoff; and ii) false negative error, when two samples that really
are analogues are determined non-analogous. The optimal cutoff value is the one that jointly
minimises these two types of error. ROC curve analysis allows us to compare the rates of these
two different errors for various cutoff values and to determine the optimal cutoff.
ROC curves are drawn using two measures of performance: i) sensitivity, the proportion of true
analogues out of all sites said to be analogues on the basis of the cutoff; and ii) sensitivity, the
proportion of true non-analogues out of all non-analogues. Sensitivity is drawn on the y-axis and
1− specificity is drawn on x-axis. The point on the ROC curve closest to the top-left corner of the
plot corresponds to the cutoff value that jointly minimises the two types of error. The so-called
area under the ROC curve (AUC) is a measure of the ability of the community dissimilarity to
discriminate between analogue samples and non-analogue ones, and is equivalent to the Mann-
Whitney U.
The general idea is that by using the ROC curve for your training set/model a critical threshold c
is determined. Instead of choosing the k -closest analogues for each fossil sample, you now choose
the m-closest samples from the training set with a dissimilarity of ≤ c. The implication being
that a variable number of analogues is used for each fossil sample in the reconstruction because
only those samples that really are analogues are used. Contrast this with the approach presented
earlier, where a fixed number of k -closest analogues is used for all fossil samples. In effect, by using
a fixed value of k, the standard approach is employing a variable threshold c in its predictions.
analogue contains functions that implement a modified version of the ROC method of Wahl (2004)
and Gavin et al. (2003). The major difference is that analogue considers all pair-wise comparisons
in building the ROC curve, whereas the the methodology proposed by Wahl (2004) and Gavin
et al. (2003) uses only the k -closest analogues.
The roc function is used to produce ROC curves from mat and analog objects. We continue the
worked example by calculating a ROC curve for the SWAP training set. As these data do not
fall into natural groupings, we first need to cluster the lakes into groups of similar lake types,
arbitrarily splitting the training set into 12 groups. Note that we do this only to illustrate the
approach. In reality, the groups should have been determined a priori, on the basis of a lake-
typology (such as in the case of WFD assessments of standing waters) or vegetation types for
example, and not via a clustering of the species data in the training set.

R> clust <- hclust(as.dist(swap.mat$Dij), method = "ward")

R> grps <- cutree(clust, k = 12)

R> swap.roc <- roc(swap.mat, groups = grps)

R> swap.roc

ROC curve of dissimilarities

Optimal Dissimilarity = 0.894

AUC = 0.889, p-value: < 2.22e-16
No. within: 1214 No. outside: 12647
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Figure 6: Plot summarising the results of the ROC curve analysis of the SWAP MAT model —
see text for details.

The printed results show the optimal dissimilarity c, the AUC statistic and its p-value. The latter
two are determined by the standard R function wilcox.test.
The plot method for roc can display a number of different plots of the ROC results:

R> opar <- par(mfrow = c(2, 2))

R> plot(swap.roc)

R> par(opar)

The resulting plot is shown in Figure 6. The ROC curve itself is drawn in the upper-left panel.
The upper-right panel displays density plots of the distributions of the dissimilarities between
analogue and non-analogue samples. The point where the two curves cross is the optimal decision
threshold. The vertical, dotted line is the optimal dissimilarity based on the ROC curve. This line
may not always pass exactly through the optimal decision threshold as the ROC curve has been
evaluated on a finite set of dissimilarities, but it is usually very close.
The lower left panel of Figure 6 is a plot of the difference between the true positive fraction (TPF)
and the false positive fraction (FPF) as a function of dissimilarity. The vertical, dotted line is
the optimal dissimilarity based on the ROC curve. The lower right panel of Figure 6 is a plot of
the posterior probability of two samples being analogues as a function of the dissimilarity, d. It is
worth noting that the posterior probability of analogue is based on the slope of ROC curve, and
that there are various definitions of the slope of a ROC curve in the literature. The slope used in
plot.roc is different to that used by Gavin et al. (2003), who use a measure of the instantaneous
rate of change at points on the ROC curve2, where as in analogue, the slope of the ROC curve is
TPF/FPF (Henderson 1993).

2Gavin et al. (2003) used binned data from a histogram of dissimilarities for analogue and no-analogue compar-
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The data plotted in the lower right panel of Figure 6 is based on the likelihood ratio of a positive
event (LR+), which is calculated as LR(+) = TPF/FPF (Henderson 1993). This likelihood ratio
is converted into a posterior odds:

O+
post. = LR(+)×O+

pri. (6)

where O+
pri. is

O+
pri. =

Pr+pri.

1− Pr+pri.

(7)

and Pr+pri. is the prior probability of any two samples being analogous (Brown and Davis 2006).
Pr+pri. may be set at 0.5 (i.e. a 50% probability of two samples being analogues) or may be deter-
mined from the observed probability of two samples being analogue (i.e. in the same group) in the
modern training set.
The posterior odds of analogue O+

post. are converted to a posterior probability of analogue via

Pr+post. =
O+

post.

1 +O+
post.

. (8)

The workhorse function used by plot.roc to draw the posterior probability of any two samples
being analogues is bayesF. The help page for bayesF contains additional details.

4. Other features of analogue

We briefly describe some of the other features of the analogue package.

4.1. Dissimilarity coefficients

Analogue provides a wide range of dissimilarity coefficients via the distance function. A list of
the coefficients provided is shown in Table 1. All the dissimilarity coefficients are coded in pure
R code. As such, distance will not be as quick as other similar functions available in R, such as
dist, or vegdist in vegan, where the computations are done in compiled C code. Where there is
overlap with coefficients available explicitly or indirectly (via transformation), in functions dist or
vegdist, these faster functions are used by default, but only if no second argument y is supplied.
The existing implementation is sufficiently speedy for most problems that might be encountered
with training sets of up to about 200 samples. Beyond this, a faster implementation may be
desirable to save compute time. C versions of the dissimilarity coefficients already implemented in
distance are currently being written and will be made available in a future version of analogue.
The implementation in distance has one main advantage over other implementations. In many
situations we are interested in computing the dissimilarities between training set samples and
fossil samples, not the pair-wise dissimilarities between samples in a single data set. With other
R functions for computing dissimilarities, such as those mentioned above, this is not possible
unless the two data sets are merged and the required dissimilarities subsequently extracted from
the resulting object. distance was primarily designed to work with two separate data frames
of species data and to calculate only the required dissimilarities between the two data frames.
Pairwise dissimilarities for a single data frame can be calculated using distance, by providing the
sole data frame as argument x and leaving argument y as missing, as the following snippet shows.

isons to calculate the slope of the curve across each bin. It is not clear what advantage binning the data has over
the method employed in analogue or whether it is even necessary.
∗where Ri is the range of proportions for descriptor (variable) i.
†where wi is the weight for descriptor i and sjki is the similarity between samples j and k for descriptor (variable)

i.
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Distance metric Method Formula

Euclidean distance euclidean djk =
√∑

i(xij − xik)2

Squared Euclidean distance SQeuclidean djk =
∑

i(xij − xik)2

Chord distance chord djk =
√∑

i(
√
xij −

√
xik)2

Squared chord distance SQchord djk =
∑

i(
√
xij −

√
xik)2

Bray-Curtis dissimilarity bray djk =
∑

i
|xij−xik|∑

i
(xij+xik)

χ2 distance chi.square djk =
√∑

i
(xij−xik)2

xij+xik

Squared χ2 distance SQchi.square djk =
√∑

i(xij − xik)2/(xi+/x++)
Information statistic information djk =

∑
i(pij log( 2xij

xij+xik
) + xik log( 2xik

xij+xik
))

χ2 distance chi.distance djk =
√∑

i(xij − xik)2/(xi+/x++)
Manhattan distance manhattan djk =

∑
i(|xij − xik|)

Kendall’s coefficient kendall djk =
∑

i MAXi −minimum(xij , xik)
Gower’s coefficient∗ gower djk =

∑
i
|xij−xik|

Ri

Alternative Gower’s coeffi-
cient∗

alt.gower djk =
√

2
∑

i
|xij−xik|

Ri

Gower’s mixed coefficient† mixed djk =
∑p

i=1
wisjki∑p

i=1
wi

Table 1: List of the dissimilarity coefficients currently available in function distance.

R> dists1 <- distance(swapdiat, method = "bray")

R> dists2 <- distance(swapdiat, rlgh, method = "bray")

Object dists1 contains the pairwise Bray-Curtis dissimilarities between samples in the SWAP
diatom data set, where as dists2 contains the Bray-Cutis dissimilarity between each sample in
rlgh and each sample in swapdiat. The dissimilarity coefficient used is specified using the method
argument.

4.2. Advanced MAT usage

Sample specific error estimates

Using the bootstrap method described above, it is possible to derive sample specific errors of the
reconstructed values for core samples. The sample specific RMSEP is calculated using:

RMSEP =
√
s21fossil

+ s22model
, (9)

where s1fossil is the standard deviation of the bootstrap estimates of the environment for an indi-
vidual fossil sample and s2model is the average bias (mean of residuals) from the MAT model.

We continue the RLGH example from above and generate sample specific RMSEPs for each of the
RLGH core samples using the predict method for mat and 100 bootstraps:

R> set.seed(1234)

R> rlgh.boot <- predict(swap.mat, rlgh, bootstrap = TRUE, n.boot = 100)

R> reconPlot(rlgh.boot, use.labels = TRUE, ylab = "pH", xlab = "Depth (cm.)",

+ display.error = "bars", predictions = "bootstrap")
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Figure 7: Time series plot of the pH reconstruction for the RLGH core, with bootstrap-derived
sample specific errors. Depth is a surrogate for time, with 0 being the most recent period repre-
sented by the core.

The bootstrap predictions are plotted with error bars representing the sample specific RMSEP
of the estimated value. The resulting plot is shown in Figure 7. The display.errors argument
controls how the model errors are displayed; available options are "none", "bars" or "lines".

Using an independent test set

The bootstrap function can also be used to provide a realistic RMSEP using an independent test
set. A test set is one where both the predictor and the response variables have been observed,
invariably by random splitting of the a full data set into a training and a test set.
We begin by randomly splitting the SWAP data into a training set of 100 samples and a test set
of 67 samples:

R> set.seed(1234)

R> want <- sample(1:nrow(swapdiat), 67, replace = FALSE)

R> train <- swapdiat[-want, ]

R> train.env <- swappH[-want]

R> test <- swapdiat[want, ]

R> test.env <- swappH[want]

Now we draw 100 bootstrap samples from the training set and predict for the test set:

R> train.mat <- mat(train, train.env, method = "SQchord")

R> test.boot <- bootstrap(train.mat, newdata = test, newenv = test.env,

+ n.boot = 100)

R> test.boot

Bootstrap results for palaeoecological models

Model type: MAT
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Weighted mean: FALSE
Number of bootstrap cycles: 100

Leave-one-out and bootstrap-derived error estimates:

k RMSEP S1 S2 r.squared avg.bias max.bias
LOO 9 0.3298 - - 0.8329 -0.06244 -0.5729
Bootstrap 12 0.3621 0.1320 0.3371 0.9167 -0.07278 -0.6136
Test 7 0.3948 - - 0.8807 0.04068 0.7456
Test (Boot) 9 0.4335 0.1629 0.4018 0.8871 -0.04978 -0.7130

The printed results now show two additional lines for the model and bootstrap summary statistics
for the test set. The bootstrap RMSEP for the test set is ∼ 0.07 pH units higher than the standard
bootstrap RMSEP for the training set, suggesting that simply bootstrapping a training set slightly
underestimates the real error performance. It should be noted that, ideally, the test set samples
should be taken as a random, stratified sample from the full data set, such that the test set samples
cover the entire range of the full data set.

Using an optimisation set

Telford et al. (2004) demonstrated that choosing k post hoc by selecting the k with lowest RMSEP
for the training set can be biased, and that in some cases this bias can be quite large. The
solution to this problem is to use an optimisation set alongside the usual training and test sets
(Telford et al. 2004). The model is built on a subset of the training data, just as in the previous
section, except that we split the test set into a small optimisation set as well as a test set. The
optimisation set is used to select k, and is the number of analogues that produces the lowest
RMSEP for the optimisation set samples. analogue provides both the model-based RMSEP as
well as the bootstrap RMSEP for the optimisation test. This value of k is then used to predict for
the test set samples to produce an independent assessment of the RMSEP of the predictions.
We illustrate this process, first by selecting out the optimisation set samples from the test set,

R> set.seed(9876)

R> want <- sample(nrow(test), 40)

R> opti <- test[-want, ]

R> opti.env <- test.env[-want]

R> test <- test[want, ]

R> test.env <- test.env[want]

Using the test set created in the previous section, 40 of these samples are randomly selected for
the new test set and the remaining 27 are allocated to the optimisation set. The training set is
the same as that generated previously.
Using train.mat, we bootstrap the training set to produce predictions for the optimisation set,

R> opti.boot <- bootstrap(train.mat, newdata = opti, newenv = opti.env,

+ n.boot = 100)

R> opti.boot

Bootstrap results for palaeoecological models

Model type: MAT
Weighted mean: FALSE
Number of bootstrap cycles: 100

Leave-one-out and bootstrap-derived error estimates:
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k RMSEP S1 S2 r.squared avg.bias max.bias
LOO 9 0.3298 - - 0.8329 -0.06244 -0.5729
Bootstrap 9 0.3611 0.1456 0.3305 0.9134 -0.06269 -0.5854
Test 5 0.4321 - - 0.8625 0.01053 0.5994
Test (Boot) 7 0.4895 0.1892 0.4514 0.8651 -0.05449 -0.6596

The number of analogues that gives the lowest RMSEP for the optimisation samples is 5 for the
model-based predictions and 7 for the bootstrap-based predictions. We continue by selecting the
value of k for the model-based predictions and use this to produce predictions for the test set.

R> use.k <- getK(opti.boot, prediction = TRUE, which = "model")

R> test.boot <- bootstrap(train.mat, newdata = test, newenv = test.env,

+ k = use.k, n.boot = 100)

R> test.boot

Bootstrap results for palaeoecological models

Model type: MAT
Weighted mean: FALSE
Number of bootstrap cycles: 100

Leave-one-out and bootstrap-derived error estimates:

k RMSEP S1 S2 r.squared avg.bias max.bias
LOO 5 0.3415 - - 0.8010 -0.05200 -0.5725
Bootstrap 5 0.3686 0.1734 0.3253 0.9071 -0.05437 -0.5511
Test 5 0.4111 - - 0.8483 0.03091 0.8416
Test (Boot) 5 0.4177 0.1876 0.3733 0.8800 -0.03407 -0.7895

getK is used to select the appropriate k from opti.boot and this is passed to bootstrap as its
argument k. The printed results show the model- and bootstrap-based RMSEP in the lines labelled
“Test”.

The curse of dimensionality

The curse of dimensionality, a term coined by Bellman (1961), describes the problem of defining
localness in high dimensions; neighbourhoods with a fixed number of samples become less local
as the number of dimensions increases (Hastie and Tibshirani 1990). It is common for the dimen-
sionality of palaeoecological data sets to be high, especially with diverse proxies such as diatoms.
In the SWAP and RLGH example presented here, there are 277 dimensions (species) and only
167 sites in the modern training set. However, MAT and AM have been applied routinely in
palaeoecology without any prior dimension reduction.
Despite this, MAT and AM appear to defy the curse of dimensionality. This may be, as Härdle
(1990) shows, because the relevant dimensionality is not m, the number of species, but p, the
number of environmental variables (ter Braak 1995). ter Braak (1995) also suggests that this
defiance of the curse is due to the dissimilarity just summing over dimensions, the species.
A common method of dimension reduction in palaeoecology is to delete rare taxa from the training
set. Various definitions of what is rare have been used, but taxa that are found in fewer than a
set number of sites/samples or whose maximum abundance is less than some prescribed limit are
often deleted. Commonly, taxa are retained if they are present in, say, at least 5 or 10 samples in
the training set or are found at at least 2% abundance in one or more sample. Often these two
measures are combined. This deletion of rare taxa runs counter to ecology, especially in AM, where
these rare taxa may be important indicators of particular environments and as yet our knowledge
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of the autecology of many of the taxa employed in transfer functions is not sufficiently developed
to determine their worth. As such, rare taxa should be deleted with care.
The following snippet illustrates how to subset the merged SWAP and RLGH data set to select
only those species present in at least 5 sites and with a maximum abundance of at least 2%.
max.abb and n.occ are the maximum abundances and the number of occurrences for each taxon
respectively.

R> dat <- join(swapdiat, rlgh, split = FALSE)

R> max.abb <- apply(dat, 2, max)

R> n.occ <- colSums(dat > 0)

R> spp.want <- which(max.abb >= 0.02 & n.occ >= 5)

R> swapdiat2 <- swapdiat[, spp.want]

R> rlgh2 <- rlgh[, spp.want]

Note that we generate the maximum abundance and number of occurrences per taxon on the
combined SWAP and RLGH data sets, by using join, but this time with the argument split =
FALSE so that dat contains the full merged species data set rather than the two data sets split
out (see page 3). The process has considerably reduced the number of diatom taxa from 277 to
173. One can now proceed to refit the models described earlier, but this time using swapdiat2
and rlgh2.

4.3. Generating plots

Several analogue functions produce a range of plots. In this section we take a brief look at some
of the more important plot-types.
The two main plots commonly used to illustrate palaeoecological transfer function models are i) a
plot of inferred (fitted) model estimates versus observed values, and ii) a plot of residuals versus
inferred (fitted) values. These are two of the plot-types that can be produced by the plot method
for mat. We have seen how to use this function already, but here we illustrate how individual
figures can be produced using plot.mat, firstly the inferred estimates versus observed values plot:

R> plot(swap.mat, which = 1)

The resulting plot is shown in Figure 8. The grey line is a 1:1 line, and the red line is a LOWESS
smoother. Whether the smoother is displayed is controlled by the global option options("add.smooth")
or suppressed by specifying panel = points in the call to plot.
The residuals versus observed plot is produced using which = 2 in the call to plot:

R> plot(swap.mat, which = 2)

The resulting plot is shown in Figure 9. By default, a number of additional features are drawn
on this plot. The blue, dashed line is the mean bias in the model (the mean of the residuals). A
related statistic is the maximum bias. Maximum bias is calculated by splitting the environmental
gradient (the range of the response, y) into 10 sections, and calculating the mean of the residuals
within these sections. The maximum bias statistic is taken as the maximum of the mean biases
of the 10 sections. These sections, and the mean bias for each, are plotted as blue, error bar-like
lines displayed in Figure 9. Display of these maximum bias markers is controlled by argument
max.bias of plot.mat. The red line is again a LOWESS smoother.
The main remaining plotting function not already covered is screeplot. This function produces
the type of screeplots displayed in the lower row of Figure 1. screeplot methods for mat and
bootstrap are currently available, and can draw screeplots of the RMSEP, average bias or max-
imum bias statistics for models of size k. The statistic displayed is controlled by the display
argument, which defaults to RMSEP. The bootstrap method draws both the leave-one-out and
bootstrap-derived statistics. We illustrate this by plotting RMSEP as a function of k for the
swap.boot object created earlier — the resulting plot shown in Figure 10:
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Figure 8: Plot of the MAT-inferred and observed pH values for the SWAP training set — see text
for details.
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Figure 9: Plot of the MAT model residuals and observed pH values for the swap training set —
see text for details.
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Figure 10: Screeplot of leave-one-out (solid) and boostrap-derived (dashed) RMSEP as a function
of k for the SWAP training set.
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4.4. Generic R functions

Several of the standard R model utility functions have methods for mat available in analogue.
Currently, fitted and resid methods are provided to extract the fitted values and residuals from
a MAT model respectively.

5. Final remarks and future development plans

The functionality of R package analogue has been demonstrated and explained using the SWAP
diatom:pH data set and diatom counts from the RLGH sediment core. The SWAP dataset is a
relatively large data set compared to those routinely produced in palaeoecological studies, and as
such represents a real-world example of the type of data used in the field.

analogue is still in the early stages of planned development. The main functionality for generating
MAT transfer functions and reconstructions and for performing AM is already implemented, but
several areas of development remain.

As mentioned above, faster C versions of the dissimilarity calculations are planned to speed up
the functions for use on large problems. Also, the package code has yet to receive any rigorous
optimisation in terms of memory usage or computation time. Once the feature set has stabilised
sufficiently, a code review will be performed to identify bottlenecks and to improve the implemen-
tation where possible.

It will be noticeable that the functionality is more comprehensive for MAT transfer functions
than for analogue matching. This is purely a function of legacy; MAT models have been used in
palaeoecology for over 20 years, but analogue matching (in the sense presented in this paper) is
a much newer topic and exactly how the results of AM are used in informing conservation policy
is an area of ongoing research. As new developments are proposed, they will be added to future
versions of analogue.
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