
Replicable Publication-Ready Model Output with R package

apsrtable

Implementation & Extension Guide

Michael Malecki*

Friday 8th May, 2009

1 Overview

Formatting fitted model objects is not trivial and should not be done at the last minute before submitting a paper. It is
too easy for modeling details to get lost, or simply for values to be omitted, transposed, or otherwise misplaced. Thus
automation is a boon, if not a requirement, for replicability.

Fitted model objects in R contain a lot of information, but often we want to look at several of them side-by-side.
It would be nice to name the models, and include some model-fit information, and to name the covariates. Nested
and non-nested models and naming become a problem for cbind and rbind, and last but not least, we want this
information in some legible format – either plain text or, prefereably, Latex. My R package apsrtable, installable from
CRAN, seeks to solve all of these problems, creating tables ready to be published in the APSR. I might have named
it after Political Analysis, but the latter often features other innovative presentations of data and results, such that “a
PA-style table” is less identifiable.

Like many graduate students – including probably most who read TPM – I have typeset a lot of fitted models in
the course of methods training, leaving aside the relatively few tables that make their way into final seminar, confer-
ence, or journal papers. We were “strongly encouraged” to prepare homework assignments using Latex and create
“professional-looking” tables of model output, with the expectation that we would get faster at it, while becoming
attuned to the intricacies of Latex’s tabular and matrix environments. I found this exercise as tedious as formatting a
bibliography by hand. So, I set out to automate R’s output of “professional-looking” tables. To complete the bibliog-
raphy analogy, I also wanted to make the automated solution more user-friendly than bibtex BSTs – though “an order
of magnitude easier than BST” is still an extremely low target.

*PhD Candidate, Washington University in St. Louis

1

http://malecki.wustl.edu
http://cran.r-project.org/web/packages/apsrtable/index.html

2 Usage

To demonstrate apsrtable’s features, I’ll replicate some of the results from Persson and Tabellini’s (2003) The Eco-
nomic Effects of Constitutions1, in particular models 1–3 of Table 6.1 (p. 159) (Figure 1).

Figure 1. Persson and Tabellini (2003), p.159, detail.

model1 <- lm(cgexp ~
pres + maj +
lyp + gastil + age + trade +
prop65 + prop1564 + federal +
oecd, data=pt)

model2 <- lm(cgexp ~
pres + maj +
lyp + gastil + age + trade +
prop65 + prop1564 + federal +
oecd + col_uka + col_espa + col_otha +
africa + asiae + laam, data=pt)

model3 <- lm(cgexp ~
pro.pres + maj.parl + maj.pres +
lyp + gastil + age + trade +

1The data are available from the authors, though they may contain some coding errors in the institutional interaction variables. A corrected
replication dataset is available here.

2

http://www.igier.unibocconi.it/whos.php?vedi=1169&tbn=albero&id_folder=177
http://malecki.wustl.edu/pt.csv

prop65 + prop1564 + federal +
oecd + col_uka + col_espa + col_otha +
africa + asiae + laam, data=pt)

The result of simply calling apsrtable(model1, model2, model3) shouldn’t be very far from usable output. We get
decimal-aligned columns that are also lined up in the Latex source, errors in parentheses, and a single star indicating
p < .. But, we want to include “robust” standard errors, omit a bunch of controls, give the variables less cryptic
names, and, to complete the exercise, add more stars. All of these are extremely easy to do with apsrtable, but looking
at the default output is a helpful baseline and a recommended first step every time.

Alternate Standard Errors However youwant to go about estimating alternative standard errors, simply insert a vector
or the full new variance-covariance matrix into the fitted model object and name it se2 To get the same standard
errors that Persson and Tabellini report (also, I believe, the Stata default), use the sandwich package:
model1$se <- vcovHC(model1,type="HC1") and so on for each model. By default, apsrtable will include only
the robust standard errors when present, but the argument se can either ignore them and print the model’s
original standard errors (“vcov”) or both (“both”).

Order of Covariates Including nested and non-nested models side-by-side, lining up the covariates that are included
and leaving blank those that are not, is the main feature of the package. For this replication (and most of the
time) the default “lr” left-to-right incorporation of terms is correct. For special cases, two other options, “rl”
and “longest” are provided and discussed briefly under implementation details. For typical use, it is best to nail
down the desired order in which the models are passed to the function, and then the value of order.

Omitting controls Variables can be omitted from the display either by name or index. It is easiest in this case to supply
the argument omit=c(1,4:17). However, the order of coefficients can change, so a list of quoted character
names of coefficients to omit may be safer, and certainly makes your code more transparent and thus easier to
maintain and replicate.

Names of Models and Covariates Models by default are named “Model 1”, “Model 2”, etc., but numbering can
be changed arbitrarily (via argument model.counter), or a vector of meaningful names can be supplied as
model.names (if it comes up short, numbering accounts for the named ones).

Covariate name replacement takes place after the list of included coefficients from all the models has been
generated. Therefore, again it is a good idea to look at the default, settle on the values of order and omitcoef,
and only then supply a vector of coefficient display names as the argument coef.names.

Stars The default behavior is to indicate coefficient significance at the level p < . with a single superscript asterisk.
Two arguments allow you to increase the sparkle of almost any table. To set a different level for a single star,
supply it to lev. To include a dagger for .10, a star for .05, two stars for .01, and three stars (!) for .001, supply the
argument stars="default". I admit the name is confusing, but “default” here indicates the R default rather
than the APSR and apsrtable default.

2Most model objects are simply lists rather than formal classes (that is, they use the S3 class system). Models fit with lmer are formally mer class
objects but changes in how lme4 methods display and summary work has prevented incorporation of that class of models so far.

3

Other arguments The other arguments are documented in the package, but two are worth mention here. The
handling of notes about standard errors and significance indicators is discussed below. Also, Sweave=TRUE should
be used whenever you include a call to apsrtable from within a Sweave document. Otherwise output will
include the table environment code and empty caption and label, which should be included in the Sweave
document itself if emacs reftex is to keep track of tables. An internal test for Sweave might appear in future
versions, but the default output is meant for cutting and pasting from an R session into a Latex document,
which seems to be fairly common workflow.

3 Some Implementation Details

Three features of apsrtable bear mention for how I implemented them: covariate aggregation across models, table
notes, and model summaries, which provides a flexible extension framework.

3.1 Covariate Order

Authors have immense control over the order in which covariate rows are presented in the final table. Through a
combination of the order of terms in the model objects, and the choice of order in the call to apsrtable, one should
be able to create tables that never need “rearrangement” of rows between output and publication. First, it builds a
list of all variable names, and then notes the position of the variables in each model with respect to this final order.
Next, the omitcoef list is marked, and finally, the names of remaining terms are replaced with the optional list of
coef.names, which, of course, may contain Latex markup. The column of variable names is set in text mode, so any
math should be delimited by $, and because it’s R, backslashes have to be doubled. A label “β Intercept” would be
supplied as "$\\beta_0$ Intercept".

The default left-to-right order starts with the first model; any terms included in the second not in the first are
appended to the order, and so on. Right-to-left (order="rl") takes the initial order from the rightmost model; and
order="longest" starts with the order of terms in the model with the most terms, wherever it is in the list of models,
then appends any others always left-to-right.

3.2 Table Notes

Some kinds of notes pertaining to the table depend on values used to generate it. In particular, informing readers of
“robust” standard errors, and the indicators and “level” of statistical significance lies in the gap between content and
presentation. Authors also commonly indicate the source of data in a note beneath a table (technically a multicolumn
span within the tabular environment).

The notes argument allows you to specify a list of functions or character strings. R’s “lazy evaluation” means that
these functions are evaluated only when eval is called explicitly inside apsrtable. R’s variable scoping meant that
the variables in the apsrtable() call reside 3 levels up the call stack, so custom functions in the notes list can only
access them by specifying the environment at sys.frame(-3). Of course, simple character strings are valid in the
notes list and will be typset along with the results of the dynamic functions.

4

3.3 Extending apsrtable with modelInfo

Besides the coefficients, standard errors, and statistical significance star(s), model summaries and some indication
of goodness-of-fit should be included with each model, which I call modelInfo. But, different researchers prefer to
include different statistics describing models as a whole. Therefore, apsrtable comes with some reasonable defaults
and a simple mechanism to change them. The same mechanism makes extending the package to other types of
models relatively easy.

ModelInfo methods are called on the list of model summaries (that is, the result of summary(model)). At a mini-
mum, one can select from the information contained therein to generate a list of named character strings that comprise
the modelInfo that will be included in the final output. The formatter doesn’t care what you include here – it simply
matches the names (always left-to-right) across models and prints it all. If the summary object does not contain some
data that you need for a model summary statistic, see Section 3.4 for creating special apsrtableSummary methods that
return the information you want.

So, what does a modelInfo method look like? It is a formal S4 method that takes a model summary object as its
argument. Therefore to change the list of model information, just change what the modelInfo function returns for
a given model class. Future versions will probably include a selection of presets, but changing by a quick call to
setMethod is straightforward and my aim here is to make clear how to get the modelInfo you want. For lm objects, the
default prints the N , R, adjusted R, and residual sd. The example in ?modelInfo shows you how to print only the N
and residual sd; the easiest way to find the default is via getMethod("modelInfo","summary.lm"). The defaults for
lm and glm are also included as named private functions, to make reversion easier (see the modelInfo example).

To return to the Persson and Tabellini example, they summarize the controls used (but not displayed) in the mod-
elInfo section. It is simple to write a function for summary.lm that tests for the presence of a particular name among
coefficients. Besides this, they report the N as “Number of Observations” (so we want to change the name of that
element in the list), and the adjusted R. So, we just create a custom modelInfo method that returns these items.

Add robust se to the models
library(sandwich)
model1$se <- vcovHC(model1,type="HC1")
model2$se <- vcovHC(model2,type="HC1")
model3$se <- vcovHC(model3,type="HC1")

Create and register custom modelInfo for lm

setMethod("modelInfo", "summary.lm", function(x) {
env <- parent.frame()
digits <- evalq(digits,env)
model.info <- list(

5

"Continents"= (
ifelse(!is.na(charmatch("laam",rownames(coef(x)))),

"\\mathrm{Yes}", "\\mathrm{No}")),
"Colonies" = (

ifelse(!is.na(charmatch("col",rownames(coef(x)))),
"\\mathrm{Yes}", "\\mathrm{No}")),

"Number of\\tabularnewline Observations"= (
formatC(sum(x$df[1:2]),format="d")),

"adj. R^2" = (
formatC(x$adj.r.squared,format="f",digits=digits)))

class(model.info) <- "model.info"
return(model.info)
})

With the new modelInfo method registered, the final call to apsrtable() is shown below, and the results typeset
as Table 1.

apsrtable(model1,model2,model3,
omitcoef=c(

"(Intercept)","lyp", "gastil", "age", "trade",
"prop65", "prop1564", "federal" ,
"oecd" , "col_uka", "col_espa", "col_otha",
"africa", "asiae", "laam"),

coef.names=c("Presidential","Majoritatian",
"Proportional Presidential",
"Majoritarian Parliamentary",
"Majoritarian Presidential"),

align="left",stars="default",
notes=list(se.note(), stars.note())
)

The example above shows how the modelInfo methods can be used to change the display for linear model sum-
mary objects. In theory, any model object for which coef, vcov, and summary methods should work with apsrtable.
Extending means mainly creating modelInfo methods for other classes of model summaries.

3.4 Adding model classes with apsrtableSummary

Sometimes, the summary method for a given object either does not exist, or does not produce output that apsrtable
knows what to do with. In this case, users have two options: write a replacement summary method and submitting

6

Table 1. Replication of Models 1–3 from Persson and Tabellini (2003), p. 149: “Size of government and constitutions: Simple regression estimates.”

Model 1 Model 2 Model 3
Presidential −.∗∗ −.∗∗

(.) (.)
Majoritatian −.† −.∗∗

(.) (.)
Proportional Presidential −.∗

(.)
Majoritarian Parliamentary −.∗

(.)
Majoritarian Presidential −.∗∗∗

(.)
Continents No Yes Yes
Colonies No Yes Yes
Number of
Observations   
adj. R . . .
Robust standard errors in parentheses
† significant at p < .; ∗p < .; ∗∗p < .; ∗∗∗p < .
Data from Persson & Tabellini (2003)

it to package maintainers, or create a summary method that only apsrtable will use. Presumably, the latter may be a
stopgap on the way to the former.

One user, Dustin Tingley, requested support for the gee package, specifically gee.robust objects. A summary of
them suitable for apsrtable would have to place the “robust” standard errors into the $se position of the summary
object, as well as turn the summary.gee’s columns of z-scores into Pr(z) for the bedazzler apsrstars.3 The solution is
to write a replacement apsrtableSummary which is always tried first, with the model-object’s default summary called
otherwise.

The example manipulates the output of summary.gee into a matrix (and $se vector) suitable for seamless use with
apsrtable.

"apsrtableSummary.gee" <- function(x) {
s <- summary(x)
newCoef <- coef(s)
which columns have z scores? (two of them in robust case)
zcols <- grep("z",colnames(newCoef))
newCoef[,zcols] <- pnorm(abs(newCoef[,zcols]), lower.tail=FALSE)
colnames(newCoef)[zcols] <- "Pr(z)"
s$coefficients <- newCoef
put the robust se in $se so that notefunction works automatically
3Relatedly, an apsrtableSummary may be needed just to rename columns in some summary coefficient matricies. The function apsrstars,

derived from stats:::printCoefmat, checks for column names starting with “Pr(”.

7

the se checker will overwrite [,4] with pt, but this doesn't matter
because the last column Pr(z) is used by apsrstars() anyway
and the se are pulled from $se.
if(class(x)[1] == "gee.robust") {

s$se <- coef(s)[,4]
}
return(s)

}

4 Conclusion

I saw a striking need to produce publication-ready output as a part of the modeling process, especially as complexity
grew. Not surprisingly, I learned after publishing the package on CRAN and announcing it to PolMeth, that I was
not alone. Martin Elff has a similar function (mtable) in his memisc package, which can also produce non-Latex
output. Some of the details of his implementation caused me to refactor parts of my own. My current workflow relies
heavily on Sweave to ensure that the code I run is actually connected to both the theoretical arguments I make and
the results I present. I rely on apsrtable to produce reliable, replicable, relatively painless tables of results. I hope that
TPM readers can save themselves (and their graduate students!) some typesetting frustration by using apsrtable, and
I look forward to extensions and improvements that users may provide.

8

	Overview
	Usage
	Some Implementation Details
	Covariate Order
	Table Notes
	Extending apsrtable with modelInfo
	Adding model classes with apsrtableSummary

	Conclusion

