
Simulate Admixed Populations with bnpsd
Alejandro Ochoa and John D. Storey

2019-02-11

1 Introduction

The bnpsd package simulates the genotypes of an admixed population. In the PSD model (Pritchard,
Stephens, and Donnelly 2000), admixed individuals draw their alleles with individual-specific probabilities
(admixture proportions) from K intermediate subpopulations. We impose the BN model (Balding and
Nichols 1995) to the intermediate subpopulation allele frequency, which thus evolve independently with
subpopulation-specific inbreeding coefficients (FST values) from a common ancestral population T . The
kinship coefficients and generalized FST of the admixed individuals were derived in recent work (Ochoa and
Storey 2016a). A simulated admixed population was used to benchmark kinship and FST estimators in the
accompanying paper (Ochoa and Storey 2016b). Here we briefly summarize the notation and intuition behind
the key parameters (see (Ochoa and Storey 2016a) for precise definitions).

1.1 The BN-PSD population structure

The population structure determines how individuals are related to each other. The key parameters are the
inbreeding coefficients of the intermediate subpopulations (fT

Su
below) and the admixture proportions of each

individual for each subpopulation (qju), which are treated as fixed variables.

Each intermediate subpopulation Su (u ∈ {1, ...,K}) evolved independently from a shared ancestral population
T with an inbreeding coefficient denoted by fT

Su
. Each admixed individual j ∈ {1, ..., n} draws each allele from

Su with probability given by the admixture proportion qju (
∑K

u=1 qju = 1∀j). In this case the coancestry
coefficients θT

jk between individuals j, k (including j = k case) and the FST of the admixed individuals are
given by:

θT
jk =

K∑
u=1

qjuqkuf
T
Su
, FST =

n∑
j=1

K∑
u=1

wjq
2
juf

T
Su
,

where 0 < wj < 1,
∑n

j=1 wj = 1 are user-defined weights for individuals (default wj = 1
n∀j). Note θT

jk equals
the kinship coefficient for j 6= k and the inbreeding coefficient for j = k.

The bias coefficient s is defined by

s = θ̄T

FST

where θ̄T =
∑n

j=1
∑n

k=1 wjwkθ
T
jk. This 0 < s ≤ 1 approximates the proportional bias of FST estimators that

assume independent subpopulations, and one bnpsd function below fits its parameters to yield a desired s.

1.2 Random allele frequencies and genotypes

This section details the distributions of the allele frequencies and genotypes of the various populations or
individuals of the BN-PSD model.

Every biallelic locus i in the ancestral population T has an ancestral reference allele frequency denoted by pT
i .

By default the bnpsd code draws
pT

i ∼ Uniform(a, b)

with a = 0.01, b = 0.5, but the code accepts pT
i from arbitrary distributions (see below).

1

The distribution of the allele frequency at locus i in subpopulation Su, denoted by pSu
i , is the BN distribution:

pSu
i |T ∼ Beta

(
νsp

T
i , νs

(
1− pT

i

))
,

where νs = 1
fT

Su

− 1. Allele frequencies for different loci and different subpopulations (Su, Sv, u 6= v) are drawn
independently.

Each admixed individual j at each locus i draws alleles from a mixture of Bernoulli distributions from each
intermediate subpopulation, which is mathematically equivalent to assigning what we call “individual-specific
allele frequencies” (IAFs) πij constructed as:

πij =
K∑

u=1
pSu

i qju.

The unphased genotype xij (encoded to count the number of reference alleles) is drawn as:

xij |πij ∼ Binomial(2, πij).

2 Simulation examples

2.1 Population structure: 1D geography

Let’s generate the same population structure used in the simulation of (Ochoa and Storey 2016b).
library(RColorBrewer) # for nice colors
load this package (bnpsd) and a related popgen package (popkin)
since both packages have an "fst" function, load "bnpsd" last so its function isn’t masked
library(popkin) # for visualizing coancestry matrix with plotPopkin
library(bnpsd)

##
Attaching package: ’bnpsd’

The following object is masked from ’package:popkin’:
##
fst

dimensions of data/model
n <- 100 # number of individuals (NOTE this is 10x less than in publication!)
k <- 10 # number of intermediate subpops

define population structure
F <- 1:k # subpopulation FST vector, up to a scalar
s <- 0.5 # desired bias coefficient
Fst <- 0.1 # desired FST for the admixed individuals
obj <- q1d(n, k, s=s, F=F, Fst=Fst) # admixture proportions from 1D geography
Q <- obj$Q
F <- obj$F

get pop structure parameters of the admixed individuals
Theta <- coanc(Q,F) # the coancestry matrix
verify that we got the desired Fst!
Fst2 <- fst(Q,F)
Fst2

2

[1] 0.1

this should also equal Fst
inbr <- diag(Theta)
popkin::fst(inbr)

[1] 0.1

verify that we got the desired s too!
s2 <- mean(Theta)/Fst
s2

[1] 0.5

visualize the per-subpopulation inbreeding coefficients (FSTs)
par(mar=c(4,4,0,0)+0.2) # shrink default margins
colIS <- brewer.pal(k, "Paired") # indep. subpop. colors
barplot(F, col=colIS, names.arg=1:k, ylim=c(0,1),

xlab=’Subpopulation’, ylab=’Inbreeding coeff.’)

1 2 3 4 5 6 7 8 9 10

Subpopulation

In
br

ee
di

ng
 c

oe
ff.

0.
0

0.
4

0.
8

visualize the admixture proportions
par(mar=c(1,4,0,0)+0.2) # shrink default margins
barplot(t(Q), col=colIS, border=NA, space=0, ylab=’Admixture prop.’)
mtext(’Individuals’, 1)

A
dm

ix
tu

re
 p

ro
p.

0.
0

0.
4

0.
8

Individuals
Visualize the coancestry matrix using "popkin"!
set outer margin for axis labels (left and right are non-zero)
par(oma=c(0,1.5,0,3))
zero inner margin (plus padding) because we have no individual or subpopulation labels
par(mar=c(0,0,0,0)+0.2)
now plot!
plotPopkin(Theta)

3

0
0.

05
0.

1
0.

15
0.

2
0.

25
K

in
sh

ip

In
di

vi
du

al
s

2.2 Draw random allele frequencies and genotypes

Now let’s draw all the random allele frequencies and genotypes from the population structure. The easiest
way is to use rbnpsd (the initial r is for drawing “random” samples in this and the following functions, in
analogy to the runif, rnorm, rbeta, etc. functions from the stats R package).
m <- 10000 # number of loci in simulation (NOTE this is 30x less than in publication!)
draw all random Allele Freqs (AFs) and genotypes
reuse the previous F,Q
out <- rbnpsd(Q, F, m)
X <- out$X # genotypes
P <- out$P # IAFs (individual-specific AFs)
B <- out$B # intermediate AFs
pAnc <- out$Pa # ancestral AFs

inspect distribution of ancestral AFs (~ Uniform(0.01,0.5))
par(mar=c(4,4,0,0)+0.2) # shrink default margins for these figures
hist(pAnc, xlab=’Ancestral AF’, main=’’, xlim=c(0,1))

Ancestral AF

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

0
10

00

distribution of intermediate population AFs
(all subpopulations combined)
(will be more dispersed toward 0 and 1 than ancestral AFs)
hist(B, xlab=’Intermediate Subpopulation AF’, main=’’, xlim=c(0,1))

4

Intermediate Subpopulation AF

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0
0

20
00

0

distribution of IAFs (admixed individuals)
(admixture reduces differentiation, so these resemble ancestral AFs a bit more)
hist(P, xlab=’Individual-specific AF’, main=’’, xlim=c(0,1))

Individual−specific AF

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
00

genotype distribution of admixed individuals
barplot(table(X), xlab=’Genotypes’, ylab=’Frequency’, col=’white’)

0 1 2

Genotypes

F
re

qu
en

cy

0e
+

00
4e

+
05

Lastly, let’s verify that the correlation structure of the genotypes matches the theoretical coancestry matrix
we constructed earlier. For this we use the popkin function of the package with the same name.
for best estimates, group individuals into subpopulations using the geography
this averages more individuals in estimating the minimum kinship
subpops <- ceiling((1:n)/n*k)
table(subpops) # got k=10 subpops with 100 individuals each

subpops
1 2 3 4 5 6 7 8 9 10

5

10 10 10 10 10 10 10 10 10 10

now estimate kinship using popkin
PhiHat <- popkin(X, subpops)
replace diagonal with inbreeding coeffs. to match coancestry matrix
ThetaHat <- inbrDiag(PhiHat)

Visualize the coancestry matrix using "popkin"!
set outer margin for axis labels (left and right are non-zero)
par(oma=c(0,1.5,0,3))
increase inner top margin for panel titles
par(mar=c(0,0,2.5,0)+0.2)
now plot!
x <- list(Theta, ThetaHat)
titles <- c(’Truth’, ’Estimate’)
plotPopkin(x, titles)

TruthA EstimateB

0
0.

05
0.

1
0.

15
0.

2
0.

25
K

in
sh

ip

In
di

vi
du

al
s

2.3 Customizing the allele frequency and genotype pipeline

The random variables generated by rbnpsd above can also be generated separately using the following
functions (where p is the usual variable symbol for allele frequencies):

• rpanc (Random p ANCestral)
• rpint (Random p INTermediate)
• rpiaf (Random p Individual-specific Allele Frequency)
• rgeno (Random GENOtypes)

Here is the step-by-step procedure for drawing AFs and genotypes in rbnpsd:
reuse the previous m,F,Q
pAnc <- rpanc(m) # draw ancestral AFs
B <- rpint(pAnc, F) # draw intermediate AFs
P <- rpiaf(B, Q) # draw IAFs (individual-specific AFs)
X <- rgeno(P) # draw genotypes

We provide functions for these separate steps to allow for more flexibility. For example, the ancestral allele
frequencies could be drawn from a Symmetric Beta:

6

alpha <- 1/2 # this increases rare alleles
pAnc <- rbeta(m, alpha, alpha)
par(mar=c(4,4,0,0)+0.2) # shrink default margins for these figures
hist(pAnc, xlab=’Ancestral AF’, main=’’, xlim=c(0,1))

Ancestral AF

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
60

0
14

00

You could also draw genotypes from the ancestral population or the intermediate populations:
draw genotypes for one individual from the ancestral population
use "cbind" to turn the vector pAnc into the column matrix "rgeno" expects
Xanc <- rgeno(cbind(pAnc))
returns a column matrix:
dim(Xanc)

[1] 10000 1

draw genotypes from intermediate populations
draws one individual per intermediate population
Xint <- rgeno(B)

2.4 Low-memory genotype simulation algorithm

If you desire to simulate a very large number of individuals (n) and loci (m), you might run out of memory
while running rbnpsd. Memory consumption is reduced by passing the lowMem=TRUE option to rbnpsd, which
draws the genotypes X directly from the subpopulation AF matrix B and the admixture coefficients Q, without
storing the whole IAF matrix P at any given time. However, this algorithm is much slower than the default
one (lowMem=FALSE).
out <- rbnpsd(Q, F, m, lowMem=TRUE)
X <- out$X # genotypes
B <- out$B # intermediate AFs
pAnc <- out$Pa # ancestral AFs
NOTE: out$P is not computed in this mode!

The same option exists for rgeno, which instead of accepting the IAF matrix P as input requires both B and
Q as above:

7

X <- rgeno(B, Q, lowMem=TRUE)

3 Additional population structures

Here we show examples for functions that create admixture matrices for various simple population structures.
The admixture scenarios implemented in bnpsd are generated by functions that start with q (Q is the
admixture proportions matrix that these functions create):

• q1d: (Linear) 1D geography
• q1dc: Circular 1D geography
• qis: Independent Subpopulations

The first example was q1d, the rest follow.

3.1 Circular 1D geography

This is a twist on the earlier 1D geography where subpopulations and individuals are placed on a circumference,
so random walks wrap around and the appropriate density is the Von Misses distribution.

Let’s generate an analogous population structure to the original “linear” example.
reuse earlier (n,k) dimensions
n <- 100 # number of individuals
k <- 10 # number of intermediate subpops

define population structure
F <- 1:k # subpopulation FST vector, up to a scalar
s <- 0.5 # desired bias coefficient
Fst <- 0.1 # desired FST for the admixed individuals
obj <- q1dc(n, k, s=s, F=F, Fst=Fst) # admixture proportions from *circular* 1D geography
Q <- obj$Q
F <- obj$F

get pop structure parameters of the admixed individuals
Theta <- coanc(Q,F) # the coancestry matrix
verify that we got the desired Fst!
fst(Q,F)

[1] 0.1

verify that we got the desired s too!
mean(Theta)/Fst

[1] 0.5

visualize the per-subpopulation inbreeding coefficients (FSTs)
par(mar=c(2.5,2.5,0.3,0)+0.2, lab=c(2,1,7), mgp=c(1.5,0.5,0)) # tweak margins/etc
colIS <- brewer.pal(k, "Paired") # indep. subpop. colors
barplot(F, col=colIS, names.arg=colnames(Q), xlab=’Subpopulation’, ylab=’Inbr’)

8

Subpopulation

In
br

0
1

visualize the admixture proportions
par(mar=c(1,4,0.4,0)+0.2, lab=c(2,2,7)) # tweak margins/etc
barplot(t(Q), col=colIS, border=NA, space=0, ylab=’Admix prop’)
mtext(’Individuals’, 1)

A
dm

ix
 p

ro
p

0.
0

1.
0

Individuals
Visualize the coancestry matrix using "popkin"!
par(oma=c(0,1.5,0,3), mar=c(0,0,0.4,0)+0.2) # tweak margins/etc
plotPopkin(Theta, nPretty=3)

0.
05

0.
1

0.
15

K
in

sh
ip

In
di

vi
du

al
s

3.2 Independent subpopulations

The independent subpopulations model, where individuals are actually unadmixed, is the most trivial form of
the BN-PSD admixture model.
define population structure
we’ll have k=3 subpopulations, each with these sizes:
k <- 3
n1 <- 100; n2 <- 50; n3 <- 20
here’s the labels (for simplicity, list all individuals of S1 first, then S2, then S3)
labs <- c(rep.int(’S1’, n1), rep.int(’S2’, n2), rep.int(’S3’, n3))
data dimensions infered from labs:
length(labs) # number of individuals "n"

[1] 170

length(unique(labs)) # number of subpopulations "k"

[1] 3

9

desired admixture matrix ("is" stands for "Independent Subpopulations")
Q <- qis(labs)
got a boolean matrix with a single TRUE value per row
(denoting the sole subpopulation from which each individual draws its ancestry)
head(Q, 2)

S1 S2 S3
[1,] TRUE FALSE FALSE
[2,] TRUE FALSE FALSE

construct the intermediate subpopulation FST vector
Fst <- 0.2 # the desired final FST
F <- 1:k # subpopulation FST vector, unnormalized so far
F <- F/popkin::fst(F)*Fst # normalized to have the desired Fst
popkin::fst(F) # verify FST for the intermediate subpopulations

[1] 0.2

get coancestry of the admixed individuals
Theta <- coanc(Q,F) # the coancestry matrix
before getting FST for individuals, weigh then inversely proportional to subpop sizes
w <- weightsSubpops(labs) # function from ‘popkin‘ package
verify Fst for individuals (same as for intermediate subpops for this pop structure)
fst(Q, F, w)

[1] 0.2

visualize the per-subpopulation inbreeding coefficients (FSTs)
par(mar=c(2.5,2.5,0,0)+0.2, lab=c(2,1,7), mgp=c(1.5,0.5,0)) # tweak margins/etc
colIS <- brewer.pal(k, "Paired") # indep. subpop. colors
barplot(F, col=colIS, names.arg=colnames(Q), xlab=’Subpopulation’, ylab=’Inbr’)

S1 S2 S3
Subpopulation

In
br

0.
0

0.
2

visualize the admixture proportions
par(mar=c(1,4,0.4,0)+0.2, lab=c(2,2,7)) # tweak margins/etc
barplot(t(Q), col=colIS, border=NA, space=0, ylab=’Admix prop’)
mtext(’Individuals’, 1)

A
dm

ix
 p

ro
p

0.
0

1.
0

Individuals
Visualize the coancestry matrix using "popkin"!
par(oma=c(0,1.5,0,3), mar=c(0,0,0.4,0)+0.2) # tweak margins/etc
plotPopkin(Theta, nPretty=3)

10

0
0.

1
0.

2
0.

3
K

in
sh

ip

In
di

vi
du

al
s

References

Balding, D. J., and R. A. Nichols. 1995. “A Method for Quantifying Differentiation Between Populations at
Multi-Allelic Loci and Its Implications for Investigating Identity and Paternity.” Genetica 96 (1-2): 3–12.

Ochoa, Alejandro, and John D. Storey. 2016a. “FST And Kinship for Arbitrary Population Structures I:
Generalized Definitions.” bioRxiv doi:10.1101/083915. Cold Spring Harbor Labs Journals. https://doi.org/10.
1101/083915.

———. 2016b. “FST And Kinship for Arbitrary Population Structures II: Method of Moments Estimators.”
bioRxiv doi:10.1101/083923. Cold Spring Harbor Labs Journals. https://doi.org/10.1101/083923.

Pritchard, J. K., M. Stephens, and P. Donnelly. 2000. “Inference of Population Structure Using Multilocus
Genotype Data.” Genetics 155 (2): 945–59.

11

https://doi.org/10.1101/083915
https://doi.org/10.1101/083915
https://doi.org/10.1101/083923

	Introduction
	The BN-PSD population structure
	Random allele frequencies and genotypes

	Simulation examples
	Population structure: 1D geography
	Draw random allele frequencies and genotypes
	Customizing the allele frequency and genotype pipeline
	Low-memory genotype simulation algorithm

	Additional population structures
	Circular 1D geography
	Independent subpopulations

	References

