The caret Package

Max Kuhn
max.kuhn@pfizer.com

June 9, 2011

Contents

1

Model Training and Parameter Tuning
1.1 An Example
1.2 Basic Parameter Tuning L

1.3 Notes o

Customizing the Tuning Process

2.1 Pre-Processing Options
2.2 Alternate Tuning Grids L
2.3 The trainControl Function
2.4 Alternate Performance Metrics
2.5 Performance Class Probabilities: ROC Curves
2.6 Choosing the Final Model
2.7 Parallel Processing

Extracting Predictions and Class Probabilities

Evaluating Test Sets
4.1 Confusion Matrices e

4.2 ROC Curves o

Exploring and Comparing Resampling Distributions

1

N Ot = W

14
14
14
16
17
21
22
23

26

29
29
31

35

5.1 Within—-Model 35
5.2 Between—-Models, 37

Session Information 40

References 45

The caret Package

The caret package (short for classification and regression training) contains functions to streamline
the model training process for complex regression and classification problems. The package utilizes
a number of R packages but tries not to load them all at package start-up!'. The package “suggests”
field includes: ada, affy, Boruta, bst, caTools, class, Cubist, e1071,, earth (> 2.2-3), elas-
ticnet, ellipse, fastICA, foba, foreach, gam, GAMens (> 1.1.1),, gbm, glmnet, gpls, grid,
hda, HDclassif, Hmisc, ipred, kernlab, klaR, lars, LogicForest,, logicFS, LogicReg, MASS,
mboost, mda, mgcv, mlbench, neuralnet, nnet, nodeHarvest, pamr,, partDSA, party (> 0.9-
99992), penalized, pls, proxy, qrnn, quantregForest, randomForest, RANN, rda, relaxo, rocc,
rpart, rrcov, RWeka (> 0.4-1), sda, SDDA, sparselLDA (> 0.1-1),, spls, stepPlr, superpc,
vbmp. caret loads packages as needed and assumes that they are installed. Install caret using

install.packages("caret", dependencies = c("Depends", "Suggests"))

to ensure that all the needed packages are installed.

1 Model Training and Parameter Tuning

caret has several functions that attempt to streamline the model building and evaluation process.

The train function can be used to

e cvaluate, using resampling, the effect of model tuning parameters on performance
e choose the “optimal” model across these parameters

e cstimate model performance from a training set

More formally:

Define sets of model parameter values to evaluate
for each parameter set do
for each resampling iteration do
Hold—out specific samples
[Optional] Pre—process the data
Fit the model on the remainder
Predict the hold—out samples
end
Calculate the average performance across hold—out predictions

© 00 N O kA W N =

10 end
11 Determine the optimal parameter set
12 Fit the final model to all the training data using the optimal parameter set

By adding formal package dependencies, the package startup time can be greatly decreased

3 of 45

The caret Package

First, a specific model must be chosen. Currently, 118 are available using train; see Table 1 for
details.

In Table 1, there is a list of tuning parameters that can potentially be optimized. The first step in
tuning the model (line 1 in Algorithm 1) is to choose a set of parameters to evaluate. For example,
if fitting a Partial Least Squares (PLS) model, the number of PLS components to evaluate must be
specified.

Once the model and tuning parameter values have been defined, the type of resampling should
be also be specified. Currently, k—fold cross—validation (once or repeated), leave-one—out cross—
validation and bootstrap (simple estimation or the 632 rule) resampling methods can be used by
train. After resampling, the process produces a profile of performance measures is available to
guide the user as to which tuning parameter values should be chosen. By default, the function
automatically chooses the tuning parameters associated with the best value, although different
algorithms can be used (see Section 2.6).

1.1 An Example

As an example, the multidrug resistance reversal (MDRR) agent data is used to determine a pre-
dictive model for the “ability of a compound to reverse a leukemia cell’s resistance to adriamycin”
(Svetnik et al, 2003). For each sample (i.e. compound), predictors are calculated that reflect char-
acteristics of the molecular structure. These molecular descriptors are then used to predict assay
results that reflect resistance.

The data are accessed using data(mdrr). This creates a data frame of predictors called mdrrDescr
and a factor vector with the observed class called mdrrClass.

To start, we will:

e use unsupervised filters to remove predictors with unattractive characteristics (e.g. spare
distributions or high inter—predictor correlations)

e split the entire data set into a training and test set

See the package vignette “caret Manual — Data and Functions” for more details about these opera-
tions.

> print(ncol (mdrrDescr))
[1] 342

> nzv <- nearZeroVar (mdrrDescr)
> filteredDescr <- mdrrDescr[, -nzv]
> print(ncol(filteredDescr))

4 of 45

http://pubs.acs.org/cgi-bin/abstract.cgi/jcisd8/2005/45/i03/abs/ci0500379.html

The caret Package

[1] 297

> descrCor <- cor(filteredDescr)

> highlyCorDescr <- findCorrelation(descrCor, cutoff = .75)
> filteredDescr <- filteredDescr[,-highlyCorDescr]

> print(ncol(filteredDescr))

[1] 50

> set.seed(1)

> inTrain <- sample(seq(along = mdrrClass), length(mdrrClass)/2)
> trainDescr <- filteredDescr[inTrain,]

> testDescr <- filteredDescr[-inTrain,]

> trainMDRR <- mdrrClass[inTrain]

> testMDRR <- mdrrClass[-inTrain]

> print(length(trainMDRR))

[1] 264
> print (length(testMDRR))

[1] 264

1.2 Basic Parameter Tuning

To estimate model performance across the tuning parameters “leave group out cross—validation”
(LGOCV) can be used. This technique is repeated splitting of the data into training and test sets
(without replacement). If the resampling method is not specified, simple bootstrapping is used. To
train a support vector machine classification model (radial basis function kernel) on these multidrug
resistance reversal agent data, we can first setup a control object? that specifies the type of resam-
pling used, the number of data splits (30), the proportion of data in the sub—training sets (75%)
and whether the iterations should be printed as they occur. In this case, we need to specify the
proportion of samples used in each resampled training set. We also set the seed.

> fitControl <- trainControl (method = "LGOCV",

+ p = .75,

+ number = 30,

+ returnResamp = "all",
+ verboseIter = FALSE)
> set.seed(2)

2This is optional; to use the default specifications, the control object does not need to be specified

5 of 45

The caret Package

More information about trainControl is given in Section 2.3.

The first two arguments to train are the predictor and outcome data objects, respectively. The
third argument, method, specifies the type of model (see Table 1). For this model, the tuning
parameters are the cost value (the C argument in kernlab’s ksvm function) and the radius of the
RBF (the sigma argument to the kernel function). The tuneLength argument sets the size of the
grid used to search the tuning parameter space and trControl is the control parameter for the
train function. The preProcess argument is a string of operations that can be used on each of the
30 resampled set of predictors; in this case, we simply center and scale the data prior to modeling
and prediction. The held-out samples are normalized using the means and standard deviations
from the corresponding data set used to fit the model. See the help file for the preProcessing
function for a list of possible techniques.

> svmFit <- train(trainDescr, trainMDRR,
+ method = "svmRadial",
+ preProcess = c("center", '"scale"),
+ tunelLength = 4,
+ trControl = fitControl)
> svmFit
264 samples
50 predictors
2 classes: 'Active', 'Inactive'

Pre-processing: centered, scaled
Resampling: Repeated Train/Test Splits (30 reps, 0.75%)

Summary of sample sizes: 198, 198, 198, 198, 198, 198,

Resampling results across tuning parameters:

C Accuracy Kappa Accuracy SD Kappa SD
0.25 0.803 0.583 0.0383 0.0844
0.5 0.837 0.663 0.0432 0.0904
1 0.837 0.665 0.0406 0.0846
2 0.823 0.638 0.0454 0.0931

Tuning parameter 'sigma' was held constant at a value of 0.0222
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were C = 1 and sigma = 0.0222.

There are two tuning parameters for this model: sigma is a parameter for the kernel function that
can be used to expand/contract the distance function and C is the cost parameter that can be used
as a regularization term that controls the complexity of the model. For this model, the function

6 of 45

The caret Package

sigest in the kernlab package is used to provide a good estimate of the sigma parameter, so that
only the cost parameter is tuned. This tuning scheme is the default, but can be modified (details
are below).

The column labeled “Accuracy” is the overall agreement rate averaged over cross—validation itera-
tions. The agreement standard deviation is also calculated from the cross-validation results. The
column “Kappa” is Cohen’s (unweighted) Kappa statistic averaged across the resampling results.

For regression models (i.e. a numeric outcome), a similar table would be produced showing the
average root mean squared error and average R* value statistic across tuning parameters, otherwise
known as ? (see the note below related to this calculation).

caret works with specific models (see Table 1). For these models, train can automatically create
a grid of tuning parameters. By default, if p is the number of tuning parameters, the grid size is
3P. For example, regularized discriminant analysis (RDA) models have two parameters (gamma and
lambda), both of which lie on [0, 1]. The default training grid would produce nine combinations in
this two—dimensional space.

1.3 Notes

e There is a formula interface (e.g. train(y ., data = someData) that can be used. One of
the issues with a large number of predictors is that the objects related to the formula which
are saved can get very large. In these cases, it is best to stick with the non—formula interface
described above.

e The function determines the type of problem (classification or regression) from the type of
the response given in the y argument.

e The ... option can be used to pass parameters to the fitting function. For example, in random
forest models, you can specify the number of trees to be used in the call to train. In Section
2.2, there is an the example using gradient boosting machines (GBM) where the default trace
for a gbm model was turned off using the verbose argument to gbm.

e For regression models, the classical R? statistic cannot be compared between models that
contain an intercept and models that do not. Also, some models do not have an intercept
only null model.

To approximate this statistic across different types of models, the square of the correlation
between the observed and predicted outcomes is used. This means that the R? values produced
by train will not match the results of 1m and other functions.

Also, the correlation estimate does not take into account the degrees of freedom in a model and
thus does not penalize models with more parameters. For some models (e.g random forests or
on-linear support vector machines) there is no clear sense of the degrees of freedom, so this
information cannot be used in R? if we would like to compare different models.

7 of 45

The caret Package

e The nearest shrunken centroid model of Tibshirani et al (2003) is specified using method
= "pam". For this model, there must be at least two samples in each class. train will
ignore classes where there are less than two samples per class from every model fit during
bootstrapping or cross—validation (this model only).

e For recursive partitioning models, an initial model is fit to all of the training data to obtain
the possible values of the maximum depth of any node (maxdepth). The tuning grid is created
based on these values. If tuneLength is larger than the number of possible maxdepth values
determined by the initial model, the grid will be truncated to the maxdepth list.

The same is also true for nearest shrunken centroid models, where an initial model is fit to
find the range of possible threshold values, and MARS models (see the details below).

e For multivariate adaptive regression splines (MARS), the earth package is used with a model
type of mars or earth is requested. The tuning parameters used by train are degree and
nprune. The parameter nk is not automatically specified and, if not specified, the default in
the earth function is used.

For example, suppose a training set with 40 predictors is used with degree = 1 and nprune
= 20. An initial model with nk = 41 is fit and is pruned down to 20 terms. This number
includes the intercept and may include “singleton” terms instead of pairs.

Alternate model training schemes can be used by passing nk and/or pmethod to the earth
function. Also, using method = ’gcvEearth’ will use the basic GCV pruning procedure and
only tune the degree.

Also, there may be cases where the message such as “specified 'nprune’ 29 is greater than
the number of available model terms 24, forcing 'nprune’ to 24” show up after the model fit.
This can occur since the earth function may not actually use the number of terms in the
initial model as specified by nk. This may be because the earth function removes terms with
linear dependencies and the forward pass counts as if terms were added in pairs (although
singleton terms may be used). By default, the train function fits and initial MARS model is
used to determine the number of possible terms in the training set to create the tuning grid.
Resampled data sets may produce slightly different models that do not have as many possible
values of nprune.

e For the glmboost and gamboost functions from the mboost package, an additional tuning
parameter, prune, is used by train. If prune = "yes", the number of trees is reduced based
on the AIC statistic. If "no", the number of trees is kept at the value specified by the mstop
parameter. See the mboost package vignette for more details about AIC pruning.

e The partitioning model of Molinaro et al. (2010) has a tuning parameter that is the number
of partitions in the model. The R function partDSA has the argument cut.off.growth which
is described as “the maximum number of terminal partitions to be considered when building
the model.” Since this is the maximum, the user might ask for a model with X partitions but

8 of 45

http://projecteuclid.org/handle/euclid.ss/1056397488

the model can only predict Y < X. In these cases, the model predictions will be based on the
largest model available (Y).

e For generalized additive models, a formula is generated from the data. First, predictors with
degenerate distributions are excluded (via the nearZeroVar function). Then, the number of
distinct values for each predictor is calculated. If this value is less than 10, the predictor is
entered into the formula via a smoothed term (otherwise a linear term is used). For models
in the gam package, the smooth terms have the same amount of smoothing applied to them
(i.e. equal df or span across all the smoothed predictors).

e For some models (blackboost, bstTree, bstLs, bstSm, cubist, earth, enet, foba, gamboost,
gbm, glmboost, glmnet, lars, lars2, lasso, logitBoost, pam, partDSA, pcr, pls, relaxo,
rpart, scrda, superpc), the train function will fit a model that can be used to derive
predictions for some sub-models. For example, for MARS (via the earth function), for a fixed
degree, a model with a maximum number of terms will be fit and the predictions of all of the
requested models with the same degree and smaller number of terms will be computed using
update.earth instead of fitting a new model. When the verboseIter option is used, a line
is printed for the “top—level” model (instead of each model in the tuning grid).

e There are print and plot methods. The plot method visualizes the profile of average re-
sampled performance values across the different tuning parameters using scatter plots or level
plots. See Figures 1 and 2 for examples. Functions that visualize the individual resampling
results for train objects are discussed in Section 5.1.

e Using the first set of tuning parameters that are optimal (in the sense of accuracy or mean
squared error), train automatically fits a model with these parameters to the entire training
data set. That model object is accessible in the finalModel object within train. For example,
svmFit$finalModel is the same object that would have been produced using a direct call to
the ksvm function with the final tuning parameters.

There is additional functionality in train that is described in the next section.

99130p

sunxdu ‘ssxdep

adW ‘Y3nMoI8- 330300
apou ‘I9qUTXeu
SeABSTU ‘S90IqU
sIea

QUON

Axqum

Kxqu

L1quw

Lxqu

nu ‘doasu

nu ‘doasu

doasu

doasw

nu ‘doasw ‘yadepxeun
nu ‘1911 ‘qyadepxem
doasw ‘yadepxeu
yadep uoT1oRISAUT
o8eyuTIys ‘seerl U
yadepxeu
UOTIOQTIOUTW
yadepxeu

Ip

90130p ‘ueds
poyasu ‘3o00T7es
QUON

QUON

yares
yares

yeqaxed

1SoATRHOPOU

gd01801

19IeD

poxdt

eraNIOYg

Kqxed

YoeaIoJ ‘1S9I0 JUOPURI
1S90 JUopURI

1sq

1sq

1sooqu

1sooqu

1sq

epe

1sooqu

wqs8
Kaxed
Kaxed
qxedx
ure3
ure8
ADSUW

SSYI
sqeqs

3Ieqaod
sJIeu ‘yaIes
yeqgaxed
q1SoATRHopPOU
Segot3oT
Jeq
Seqesxa
eqNIOg
1891030
Jyxed

II

wgasq
sTa8q
1sooqures
1sooquTs
991118q
epe
1s00Q32eTq

wqs8

299130
99190
qxedx
sutTdgue3
ssoeoTues
ured
nIvdeasuts
w8

«SIPPOJN 28[)-]PN(],

(abod 9x9U UO PINULIU0D)

sourdg uoIsse139y] aA1}depy 9)RLIRAIYNIN

S991T, I9Y3()

sursdeg

S1S010,{ WOpURY

S[OPOJN Po3IS00¢] 19Y}()

S99IT, Pajsoog]

SUIUOI)IR] SAISINIIY

[PPOW SAT)IPPR POZI[LISUIL)

[opOW IedUI| POZI[RIOUOL)

sIojowreIed Suruny,

ogesoed

UTRI] Ul POSN SOPOIN :T 9[qe],

an[eA poyleu

[PPOIN

10

http://cran.r-project.org/web/packages/MASS/index.html
http://cran.r-project.org/web/packages/mgcv/index.html
http://cran.r-project.org/web/packages/gam/index.html
http://cran.r-project.org/web/packages/gam/index.html
http://cran.r-project.org/web/packages/rpart/index.html
http://cran.r-project.org/web/packages/party/index.html
http://cran.r-project.org/web/packages/party/index.html
http://cran.r-project.org/web/packages/party/index.html
http://cran.r-project.org/web/packages/mboost/index.html
http://cran.r-project.org/web/packages/ada/index.html
http://cran.r-project.org/web/packages/bst/index.html
http://cran.r-project.org/web/packages/mboost/index.html
http://cran.r-project.org/web/packages/mboost/index.html
http://cran.r-project.org/web/packages/bst/index.html
http://cran.r-project.org/web/packages/bst/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
http://cran.r-project.org/web/packages/foreach/index.html
http://cran.r-project.org/web/packages/party/index.html
http://cran.r-project.org/web/packages/Boruta/index.html
http://cran.r-project.org/web/packages/ipred/index.html
http://cran.r-project.org/web/packages/caret/index.html
http://cran.r-project.org/web/packages/logicFS/index.html
http://cran.r-project.org/web/packages/nodeHarvest/index.html
http://cran.r-project.org/web/packages/partDSA/index.html
http://cran.r-project.org/web/packages/earth/index.html
http://cran.r-project.org/web/packages/earth/index.html

SWISQU

SI0QUSTOU ‘S9977 TWWOD
soTnI ‘peyaoous ‘paounid
peyaoous ‘paunid

Seq ‘AqTeusd ‘ueppty U
Lxqu

cxofeT ‘zaefer ‘Taeher
QUON

dwoo u

dwoou

QUON

QUON

v
o0130p ‘oTeOS

eWITS

ouou

9 ‘eex3ep ‘eTeos
D

9 ‘ewdts

auou

eddey ‘eqs ‘y
dwoou

oz1s ‘Aeoep
ozTs ‘Aeoep
epqueT ‘eydre
9ZTSe0I] ‘Seelqu
sunidu ‘ssx3ep

sqeqs add
1sTqN) 1sTqNO
eysMy G
eysMy SSTNYSH
uuxb uuxb
1seJ1048013uenb 1Ib
19UTRINSU 19UTRINSU
SSVI WwTx
99180 IOT

s1d aod

SSVH DIvydeagur
sqeqs wy

spppopy fiju() uorssaibayy

19180 uuy
gqeTuIsy L10gadssned
gqeTuIsy TeTpeyidssned
geTuIsy TeoutTidssned
geTuIay AToguas
geTuIay 1S0)TRTPRYWAS
qeTurey TRTPRYUAS
qeTurey JeoUuTTUAS

qaxed ¢ s1ds s1ds

qe1e0 ¢ 8Td s1d
919UU ‘1818 1oNNeod
jouu jouu
1ouuTd 1ouuT3
Jeyot3oT] 801807

yaIes ‘38I1eD yaIegseq

(abod 9x9U UO PINULIU0D)

UOISSOISY] HmsinJ uorjoaforg

S[OPOJN poseg—o[ny

SYIOMION [RINON UOISSOISIY oljueny)
18910 UOISSOIZaY S[1urRN()
SYIOM)ON [eInaN

UOISSOIS9Y IRSUIT JSNOY
uoI8s0139Y jusuodwo)) yuopusdopur
UO0IssoI59Y Juouoduro)) redourrg

sorenbg jseor] Ieoul

SIOQUSION 1S0IRON &

S98S900.1J UwISSNIEY)

souIyoR\ 10309A 110ddng
sorenbg jseor [enIeJ osredg
sorenbg jseor] [erureq

SYIOMION TRINON
(wys) joN omsery
UOISSOIZIY] O30

SUVIN pesseg

sIojowreIed Suruny,

odeypedq SN[BA POYlLUW

UTRI] Ul POSN SOPOIN :T 9[qe],

[PPOIN

11

http://cran.r-project.org/web/packages/caret/index.html
http://cran.r-project.org/web/packages/earth/index.html
http://cran.r-project.org/web/packages/LogicReg/index.html
http://cran.r-project.org/web/packages/glmnet/index.html
http://cran.r-project.org/web/packages/nnet/index.html
http://cran.r-project.org/web/packages/caret/index.html
http://cran.r-project.org/web/packages/nnet/index.html
http://cran.r-project.org/web/packages/pls/index.html
http://cran.r-project.org/web/packages/caret/index.html
http://cran.r-project.org/web/packages/spls/index.html
http://cran.r-project.org/web/packages/caret/index.html
http://cran.r-project.org/web/packages/kernlab/index.html
http://cran.r-project.org/web/packages/kernlab/index.html
http://cran.r-project.org/web/packages/kernlab/index.html
http://cran.r-project.org/web/packages/kernlab/index.html
http://cran.r-project.org/web/packages/kernlab/index.html
http://cran.r-project.org/web/packages/kernlab/index.html
http://cran.r-project.org/web/packages/kernlab/index.html
http://cran.r-project.org/web/packages/caret/index.html
http://cran.r-project.org/web/packages/MASS/index.html
http://cran.r-project.org/web/packages/pls/index.html
http://cran.r-project.org/web/packages/caret/index.html
http://cran.r-project.org/web/packages/MASS/index.html
http://cran.r-project.org/web/packages/neuralnet/index.html
http://cran.r-project.org/web/packages/quantregForest/index.html
http://cran.r-project.org/web/packages/qrnn/index.html
http://cran.r-project.org/web/packages/RWeka/index.html
http://cran.r-project.org/web/packages/RWeka/index.html
http://cran.r-project.org/web/packages/Cubist/index.html

sunxdu ‘ssxldep
pIoyseIyl ‘Topou
Ip

epqueTt
epqueT ‘4 ‘saepumy
gosseToqns

eumres ‘epqure T
OUON

QUON

epqUeT ‘SIeAUMN
Teuodetp

eured ‘epqueT ‘WIpPMOU
Teuo3eIp

OUON

QUON

QUON

QUON

yaIeos ‘epu
FTSS®TO(UH
epUW

epU
vq1esieds
epuw

yeTy

vaas

gety
vq1esieds
eps

epy

peadt
AODII

SSVI
AODII

SSVN

epJ

epPPY

zepd

epd

BpUS

epU

epI
vabepps ‘yaTepps
‘va1deas
vq1esieds
eps

®pPY

’pTs
iXelg)=iely]
epb
BPUT]

®pT

sjPpoy fiyu() uo1DIf1ssD))

(abod 9x9U UO PINULIU0D)

(S1seq SYVIN) SISA[RUY JURUITILISI(] A[qIXI]]
SISATRUY JURUIWILIOSI(] [eUOISUSWI(] YSIH

SISATRUY JURUITILIDSI(] POZI[RUSJ
SISATRUY JURUIWLIDSI(] 9INIXIJ\ osIedg
SISATRUY JURUTTILIDSI(] OIN)XI[A

SISA[RUY JURUTWILIOSI(] POZLIR[NSY
SISATRUY JURUIWILIISI(] [RUOSRI(] ostmdalg
JueurLIosI(] ostmdegg

SISATRUY JURUIWLIDSI(] Jeoul| os1edg
SISATRUY JURUITILIISI(] IRIUIT 9FeYULIYS
SISATRUY JURUITILIISI(] D1)SRPIISOINIOH
SISA[RUY JURUIWILIOSI(] JROUL PIZI[I(RIS

SISATRUY JURUIWLIDSI(] JIjRIPRI()

SISATeuy JURUIMILIOSI(] JROUIT]

UTRI] Ul POSN SOPOIN :T 9[qe],

pTousaxyy ‘sausuodwod u odxadns odxadns syuouodwo)) redmourr posiazodng
90180p ‘oTeDS gqeTuIsy AToguax
ewdts qeTuIey TeTpeyuAl
ouou qeTuIsy IesUTTUAI SOUIYDRJN 10309/ 9OURAI[OY
¥ ‘epqueT Bqor eqor
UOT4ORIT 19UDT]SeTo osser
UOT30ORIT ‘epqueT 19UDT]SeTo qous
deas sIeT ZsIeT
UOTAQORIT sIet sIet
ZepqueT ‘TepqueT peztTeuad pezITeusd S[OPOJN TeaUul] pazI[eusJ
sIojowreIed Suruny, ogesoeq onjeA poyjleu [PPOIN

12

http://cran.r-project.org/web/packages/penalized/index.html
http://cran.r-project.org/web/packages/lars/index.html
http://cran.r-project.org/web/packages/lars/index.html
http://cran.r-project.org/web/packages/elasticnet/index.html
http://cran.r-project.org/web/packages/elasticnet/index.html
http://cran.r-project.org/web/packages/foba/index.html
http://cran.r-project.org/web/packages/kernlab/index.html
http://cran.r-project.org/web/packages/kernlab/index.html
http://cran.r-project.org/web/packages/kernlab/index.html
http://cran.r-project.org/web/packages/superpc/index.html
http://cran.r-project.org/web/packages/MASS/index.html
http://cran.r-project.org/web/packages/rrcov/index.html
http://cran.r-project.org/web/packages/MASS/index.html
http://cran.r-project.org/web/packages/rrcov/index.html
http://cran.r-project.org/web/packages/ipred/index.html
http://cran.r-project.org/web/packages/hda/index.html
http://cran.r-project.org/web/packages/sda/index.html
http://cran.r-project.org/web/packages/sparseLDA/index.html
http://cran.r-project.org/web/packages/klaR/index.html
http://cran.r-project.org/web/packages/SDDA/index.html
http://cran.r-project.org/web/packages/klaR/index.html
http://cran.r-project.org/web/packages/mda/index.html
http://cran.r-project.org/web/packages/sparseLDA/index.html
http://cran.r-project.org/web/packages/mda/index.html
http://cran.r-project.org/web/packages/mda/index.html
http://cran.r-project.org/web/packages/HDclassif/index.html
http://cran.r-project.org/web/packages/mda/index.html
http://cran.r-project.org/web/packages/earth/index.html

UTRI] Ul POSN SOPOIN :T 9[qe],

seuslx 200X 200X soAIn)) DO
¥ ‘ezTs sseTo bat UOTIRZIJURN() J0JD9A POULIROT
roxd -y s1d3 s1d3 sorenbg 1seor] [eIlIR] POZI[RIOUDL)
1T ‘Toursyesn yeT1y qu soAed OATRN
eaTop ‘eydre 'pI BpIOS
pTOYSaIyl Jured wed SPIOIJUL) USNUNIYG JSOIBIN
ewdTs geTuIay TeIpPRYWASST SouIPRIN 10399A 110ddng serenbg jseor]
©1OY93RWI}SO dwqa Tetpeyduga [OPOIN HqOIJ [eIOUI)N]N URISOARY
QUON 189010,4307 1891033071 $18010,] 1307
1dguny eyoMY dryr
pounxd ‘proyseays eoMY Lyvd
QUON eyoMy youQ
) eoMy Y[S[OPOJN poseg o[y
1991 eYoMYy IWT S991], [OPOJN 21381307
I99TU STOOI®D 1so00gat3oT 1S00¢ 130T
do ‘epqueT ITddeas a1d
Leoop joul WOUT}TNUW UOTSSAIZ0Y [RTOUTI[N]N /O13SIS0T
sunxdu ‘ssxldep lIes ‘qe1ed VQiSeq V(1 pesseg
siojoureIed Suruny, o8exoed an[eA poyleu [PPOIN

13

http://cran.r-project.org/web/packages/caret/index.html
http://cran.r-project.org/web/packages/earth/index.html
http://cran.r-project.org/web/packages/nnet/index.html
http://cran.r-project.org/web/packages/stepPlr/index.html
http://cran.r-project.org/web/packages/caTools/index.html
http://cran.r-project.org/web/packages/RWeka/index.html
http://cran.r-project.org/web/packages/RWeka/index.html
http://cran.r-project.org/web/packages/RWeka/index.html
http://cran.r-project.org/web/packages/RWeka/index.html
http://cran.r-project.org/web/packages/RWeka/index.html
http://cran.r-project.org/web/packages/LogForest/index.html
http://cran.r-project.org/web/packages/vbmp/index.html
http://cran.r-project.org/web/packages/kernlab/index.html
http://cran.r-project.org/web/packages/pamr/index.html
http://cran.r-project.org/web/packages/rda/index.html
http://cran.r-project.org/web/packages/klaR/index.html
http://cran.r-project.org/web/packages/gpls/index.html
http://cran.r-project.org/web/packages/class/index.html
http://cran.r-project.org/web/packages/rocc/index.html

The caret Package

2 Customizing the Tuning Process

There are a few ways to customize the process of selecting tuning/complexity parameters and
building the final model.

2.1 Pre—Processing Options

As previously mentioned, train can pre—process the data in various ways prior to model fitting.
The caret function preProcess is automatically used. This function can be used for centering
and scaling, imputation (see details below), applying the spatial sign transformation and feature
extraction via principal component analysis or independent component analysis. Options to the
preProcess function can be passed via the trainControl function.

These processing steps would be applied during any predictions generated using predict.train,
extractPrediction or extractProbs (see Section 3 later in this document). The pre—processing
would not be applied to predictions that directly use the object$finalModel object.

For imputation, there are two methods currently implemented:

e k-—nearest neighbors takes a sample with missing values and finds the k£ closest samples in
the training set. The average of the k training set values for that predictor are used as a
substitute for the original data. When calculating the distances to the training set samples,
the predictors used in the calculation are the ones with no missing values for that sample and
no missing values in the training set.

e another approach is to fit a bagged tree model for each predictor using the training set samples.
This is usually a fairly accurate model and can handle missing values. When a predictor for a
sample requires imputation, the values for the other predictors are fed through the bagged tree
and the prediction is used as the new value. This model can have significant computational
cost.

If there are missing values in the training set, PCA and ICA models only use complete samples.

2.2 Alternate Tuning Grids

The tuning parameter grid can be specified by the user. The argument tuneGrid can take a data
frame with columns for each tuning parameter (see Table 1 for specific details). The column names
should be the same as the fitting function’s arguments with a period preceding the name. For the
previously mentioned RDA example, the names would be .gamma and .lambda. train will tune
the model over each combination of values in the rows.

For a gradient boosting machine (GBM) model, there are three main tuning parameters:

14 of 45

The caret Package

e number of iterations, i.e. trees, (called n.trees in the gbm function)

e complexity of the tree, called interaction.depth

e learning rate: how quickly the algorithm adapts, called shrinkage

We can fix the learning rate and evaluate more than three values of n.trees:

> gbmGrid <- expand.grid(.interaction.depth = c(1, 3),

+ .n.trees = c(10, 50, 100, 150, 200, 250, 300),

+ .shrinkage = 0.1)

> set.seed(3)

> gbmFit <- train(trainDescr, trainMDRR,

+ method = "gbm",

+ tuneGrid = gbmGrid,

+ trControl = fitControl,

+ ## This next option is directly passed
+ ## from train() to gbm()

+ verbose = FALSE)

> gbmFit

264 samples
50 predictors
2 classes: 'Active', 'Inactive'

Pre-processing: None
Resampling: Repeated Train/Test Splits (30 reps, 0.75%)

Summary of sample sizes: 198, 198, 198, 198, 198, 198,
Resampling results across tuning parameters:

interaction.depth n.trees Accuracy Kappa Accuracy SD

1 10 0.757 0.487 0.0376
1 50 0.796 0.581 0.0366
1 100 0.811 0.612 0.0421
1 150 0.802 0.593 0.0444
1 200 0.801 0.593 0.0439
1 250 0.797 0.586 0.0426
1 300 0.796 0.583 0.0458
3 10 0.789 0.561 0.0365
3 50 0.811 0.612 0.0366
3 100 0.807 0.604 0.0423

Kappa SD
.0822
.0742
.0847
.0898
.0884
.0861
.093
.0768
.0735
.08561

O O O O O O O O O o

15 of 45

The caret Package

3 150 0.804 0.598 0.0468 0.0942
3 200 0.801 0.592 0.0403 0.0808
3 250 0.8 0.59 0.047 0.0936
3 300 0.802 0.593 0.0444 0.0887

Tuning parameter 'shrinkage' was held constant at a value of 0.1

Accuracy was used to select the optimal model using the largest value.

The final values used for the model were interaction.depth = 3, n.trees =
50 and shrinkage = 0.1.

2.3 The trainControl Function

The function trainControl, generates parameters that further control how models are resampled
with possible values:

e method: The resampling method: boot, boot632, cv, LOOCV, LGOCV, repeatedcv and oob.
The last value, out—of-bag estimates, can only be used by random forest, bagged trees, bagged
earth, bagged flexible discriminant analysis, or conditional tree forest models. GBM models
are not included (the gbm package maintainer has indicated that it would not be a good idea
to choose tuning parameter values based on the model OOB error estimates with boosted
trees). Also, for leave—one—out cross—validation, no uncertainty estimates are given for the
resampled performance measures.

e number and repeats: number controls with the number of folds in K—fold cross-validation
or number of resampling iterations for bootstrapping and leave—group—out cross—validation.
repeats applied only to repeated K—fold cross—validation. Suppose that method = "repeat-
edcv", number = 10 and repeats = 3, then three separate 10-fold cross—validations are used
as the resampling scheme.

e verboseIter: A logical for printing a training log.
e returnData: A logical for saving the data into a slot called trainingData.
e p: For leave-group out cross-validation: the training percentage

e classProbs: a logical value determining whether class probabilities should be computed for
held—out samples during resample. Examples of using this argument are given in Section 2.5.

e index: a list with elements for each resampling iteration. Each list element is the sample rows
used for training at that iteration. When these values are not specified, caret will generate
them.

e summaryFunction: a function to compute alternate performance summaries. See Section 2.4
for more details.

16 of 45

The caret Package

e selectionFunction: a function to choose the optimal tuning parameters. See Section 2.6 for
more details and examples.

e PCAthresh, ICAcomp and k: these are all options to pass to the preProcess function (when
used).

e returnResamp: a character string containing one of the following values: "all", "final" or
"none". This specifies how much of the resampled performance measures to save.

e workers, computeFunction, and computeArgs: these are options for parallel processing and
are discussed in Section 2.7

2.4 Alternate Performance Metrics

The user can change the metric used to determine the best settings. By default, RMSE and R?
are computed for regression while accuracy and Kappa are computed for classification. Also by
default, the parameter values are chosen using RMSE and accuracy, respectively for regression and
classification. The metric argument of the train function allows the user to control which the
optimality criterion is used. For example, in problems where there are a low percentage of samples
in one class, using metric = "Kappa" can improve quality of the final model.

If none of these parameters are satisfactory, the user can also compute custom performance metrics.
The trainControl function has a argument called summaryFunction that specifies a function for
computing performance. The function should have these arguments:

e data is a reference for a data frame or matrix with columns called obs and pred for the
observed and predicted outcome values (either numeric data for regression or character values
for classification). Currently, class probabilities are not passed to the function. The values in
data are the held—out predictions (and their associated reference values) for a single combi-
nation of tuning parameters. If the classProbs argument of the trainControl object is set
to TRUE, additional columns in data will be present that contains the class probabilities. The
names of these columns are the same as the class levels.

e lev is a character string that has the outcome factor levels taken from the training data. For
regression, a value of NULL is passed into the function.

e model is a character string for the model being used (i.e. the value passed to the method value
of train).

The output to the function should be a vector of numeric summary metrics with non—null names.

caret contains an alternate summary function called twoClassSummary that, for binary classifica-
tion models, will compute the sensitivity, specificity and the area under the ROC curve. This is
discussed more in the next section.

17 of 45

The caret Package

0.83 - 0.83 o

0.82 -

0.82 -

0.81 - 0.81 o

Accuracy (Repeated Train/Test Splits)
Accuracy (Repeated Train/Test Splits)

0.5 1.0 15 2.0 -20 -15 -10 -05 0.0 0.5 1.0
Cost Cost
Interaction Depth Interaction Depth
1 3 x 1 3 x

0.81 -
0.60 — -

0.80 -

0.79 -

0.55 -

0.78 -

0.77 -

Kappa (Repeated Train/Test Splits)

0.50 — -

Accuracy (Repeated Train/Test Splits)

0.76 -

T T T T T T T T T T T T T T
0 50 100 150 200 250 300 0 50 100 150 200 250 300

#Trees #Trees

Figure 1: Examples of output from plot.tain. top left a plot produced using plot(svmFit)
showing the relationship between SVM cost parameter and the resampled classification accuracy.
Although this model has two tuning parameters, a constant value for the parameter sigma was used.
top right the same plot but the xTrans argument was used to log—transform the cost parameter.
bottom left a plot produced using plot (gbmFit) showing the relationship between the number of
boosting iterations, the interaction depth and the resampled classification accuracy bottom right
the same plot, but the Kappa statistic is plotted using plot (gbmFit metric = "Kappa")

18 of 45

The caret Package

0.81

0.80

0.79

0.78

Interaction Depth

0.77

0.76

T T T T T T T
10 50 100 150 200 250 300

#Trees

Accuracy (Repeated Train/Test Splits)

Figure 2: For the boosted tree example in Section 2.2, using plot(gbmFit metric = "Kappa",
plotType = "level") shows the relationship (using a levelplot) between the number of boosting
iterations, the interaction depth and the resampled estimate of the Kappa statistic.

As an example of a custom metric, suppose we want to used the Rand Index (Rand, 1971) to
measure the similarity of the observed and predicted data. The 1071 package contains a function
called classAgreement that computes this value. We can use the following function to estimate
the version of the Rand index that is corrected for random agreement:

19 of 45

The caret Package

Rand <- function (data, lev, model)
{

>
+
+ library(el071)

+ tab <- table(datal[, "pred"], datal, "obs"])
+ out <- classAgreement (tab)$crand

+ names(out) <- "cRand"

+ out

+

}

To rebuild the support vector machine model using this criterion, we can see the relationship between
the tuning parameters and the Rand index via the following code:

> fitControl$summaryFunction <- Rand
> set.seed(2)
> svmNew <- train(trainDescr, trainMDRR,
+ method = "svmRadial",
+ preProcess = c("center", '"scale"),
+ metric = "cRand",
+ tunelLength = 4,
+ trControl = fitControl)
> svmNew
264 samples
50 predictors
2 classes: 'Active', 'Inactive'

Pre-processing: centered, scaled
Resampling: Repeated Train/Test Splits (30 reps, 0.75%)

Summary of sample sizes: 198, 198, 198, 198, 198, 198,

Resampling results across tuning parameters:

C cRand cRand SD
0.25 0.362 0.0927
0.5 0.454 0.114

1 0.453 0.108

2 0.417 0.11

Tuning parameter 'sigma' was held constant at a value of 0.0222
cRand was used to select the optimal model using the largest value.
The final values used for the model were C = 0.5 and sigma = 0.0222.

20 of 45

The caret Package

2.5 Performance Class Probabilities: ROC Curves

By default, train evaluate classification models in terms of the predicted classes. Optionally, class
probabilities can also be used to measure performance. To obtain predicted class probabilities
within the resampling process, the argument classProbs in trainControl must be set to TRUE.
This merges columns of probabilities into the predictions generated from each resample (there is a
column per class and the column names are the class names).

As shown in the last section, custom functions can be used to calculate performance scores that
are averaged over the resamples. Another built-in function, twoClassSummary, will compute the
sensitivity, specificity and area under the ROC curve (see Section 4.2 for details).

For example:

fitControl <- trainControl (method = "LGOCV",

p = .75,

number = 30,

classProbs = TRUE,

summaryFunction = twoClassSummary,
returnResamp = "all",

verboselter = FALSE)

svmROC <- train(trainDescr, trainMDRR,
method = "svmRadial",
tunelLength = 4,
metric = "ROC",

>

+

+

+

+

+

+

> set.seed(2)
>

+

+

+

+ trControl = fitControl)
>

264 samples
50 predictors
2 classes: 'Active', 'Inactive'

Pre-processing: None
Resampling: Repeated Train/Test Splits (30 reps, 0.75%)

Summary of sample sizes: 198, 198, 198, 198, 198, 198,

Resampling results across tuning parameters:

C Sens Spec ROC Sens SD Spec SD ROC SD
0.25 0.959 0.603 0.877 0.0338 0.0918 0.0364
0.5 0.931 0.718 0.894 0.05 0.0785 0.0335

21 of 45

The caret Package

1 0.904 0.753 0.895 0.053 0.0825 0.037
2 0.869 0.764 0.888 0.0631 0.08 0.0386

Tuning parameter 'sigma' was held constant at a value of 0.0222
ROC was used to select the optimal model using the largest value.
The final values used for the model were C = 1 and sigma = 0.0222.

In this case, the average area under the ROC curve was 0.895 across the 30 resamples.

2.6 Choosing the Final Model

Another method for customizing the tuning process is to modify the algorithm that is used to select
the “best” parameter values, given the performance numbers. By default, the train function chooses
the model with the largest performance value (or smallest, for mean squared error in regression
models). Other schemes for selecting model can be used. Breiman et al (1984) suggested the “one
standard error rule” for simple tree-based models. In this case, the model with the best performance
value is identified and, using resampling, we can estimate the standard error of performance. The
final model used was the simplest model within one standard error of the (empirically) best model.
With simple trees this makes sense, since these models will start to over-fit as they become more
and more specific to the training data.

train allows the user to specify alternate rules for selecting the final model. The argument se-
lectionFunction can be used to supply a function to algorithmically determine the final model.
There are three existing functions in the package: best is chooses the largest/smallest value, oneSE
attempts to capture the spirit of Breiman et al (1984) and tolerance selects the least complex
model within some percent tolerance of the best value. See ?best for more details.

User—defined functions can be used, as long as they have the following arguments:
e x is a data frame containing the tune parameters and their associated performance metrics.

Each row corresponds to a different tuning parameter combination

e metric a character string indicating which performance metric should be optimized (this is
passed in directly from the metric argument of train.

e maximize is a single logical value indicating whether larger values of the performance metric

are better (this is also directly passed from the call to train).

The function should output a single integer indicating which row in x is chosen.

As an example, if we chose the previous boosted tree model on the basis of overall accuracy (Figure
1), we would choose: interaction depth = 3, n trees = 50, shrinkage = 0.1. However, the scale in

22 of 45

The caret Package

this plots is fairly tight, with accuracy values ranging from 0.757 to 0.811. A less complex model
(e.g. fewer, more shallow trees) might also yield acceptable accuracy.

The tolerance function could be used to find a less complex model based on (& — Zpest) /Tpest X 100,
which is the percent difference. For example, to select parameter values based on a 2% loss of
performance:

> whichTwoPct <- tolerance(gbmFit$results, "Accuracy", 2, TRUE)
> cat("best model within 2 pct of best:\n")

best model within 2 pct of best:
> gbmFit$results[whichTwoPct,]

interaction.depth n.trees shrinkage Accuracy Kappa AccuracySD KappaSD
7 1 50 0.1 0.7964646 0.5805309 0.03661601 0.0741651

This indicates that we can get a less complex model with and accuracy of 0.796 (compared to the
“pick the best” value of 0.811).

The main issue with these functions is related to ordering the models from simplest to complex. In
some cases, this is easy (e.g. simple trees, partial least squares), but in cases such as this model,
the ordering of models is subjective. For example, is a boosted tree model using 100 iterations
and a tree depth of 2 more complex than one with 50 iterations and a depth of 87 The package
makes some choices regarding the orderings. In the case of boosted trees, the package assumes that
increasing the number of iterations adds complexity at a faster rate than increasing the tree depth,
so models are ordered on the number of iterations then ordered with depth. See ?best for more
examples for specific models.

2.7 Parallel Processing

If a model is tuned using resampling, the number of model fits can become large as the number
of tuning combinations increases (see the two loops in Algorithm 1). To reduce the training time,
parallel processing can be used. For example, to train the support vector machine model in Section
1.2, each of the 4 candidate models was fit to 30 separate resamples. Since each resample is
independent of the other, these 120 models could be computed in parallel.

R has several packages that facilitates parallel processing when multiple processors are available (see
Schmidberger et al., 2009). train can be used to build multiple models simultaneously. When a
candidate model is resampled during parameter tuning, the resampled datasets are sent in roughly
equal sized batches to different “workers,” which could be processors within a single machine or

23 of 45

The caret Package

across computers. Once their models are built, the results are returned to the original R session.
Examples of R packages that can be used for parallel processing with train are nws and Rmpi,
among others.

To run in parallel, any function that emulates lapply can be used. For example, the snow package
has a parallel 1apply function that uses MPI. We can write a wrapper for this function:

> mpiCalcs <- function(X, FUN, ...)
+ {

+ theDots <- list(...)

+ parLapply(theDots$cl, X, FUN)
+ F

To use this function, a cluster must be started using MPI:

> ¢l <- makeCluster(5, "MPI")
5 slaves are spawned successfully. 0 failed.

and to use this cluster, the trainControl object must be modified:

> fitControl <- trainControl (method = "LGOCV",

+ p = .75,

+ number = 30,

+ returnResamp = "all",

+ verboselter = FALSE

+ workers = 5,

+ computeFunction = mpiCalcs,
+ computedArgs = list(cl = c1))

The last three options specify the number of workers, the function that emulates lapply and the
extra arguments to this function (such as the cluster object). The documentation page for train
has another example using the nws package.

This control object is passed into train with no other modifications. The command stopClus-
ter(cl) will shut down the workers.

One common metric used to assess the efficacy of parallelization is speedup = Tseq/Tpar, Where Ty,
and 7,4, denote the execution times to train the model serially and in parallel, respectively. Exclud-
ing systems with sophisticated shared memory capabilities, the maximum possible speedup attained
by parallelization with P processors is equal to P. Factors affecting the speedup include the over-
head of starting the parallel workers, data transfer, the percentage of the algorithm’s computations
that can be done in parallel, etc.

24 of 45

The caret Package

Training Time Speedup
gbm o pls x svm v gbm o pls x svm v
| | | | | | | |
100 -
~ 80 L 6 7 -
£
E
[} Qo
E 60 - é
()
g &
.@ 40 — —
'_
20 - - B
O — —
T T T T T T T T
5 10 15 20 5 10 15 20
#Processors #Processors

Figure 3: Training time profiles using parallel processing via train for a benchmarking data set run
on a 32 core machine. The left panel shows the elapsed time to train various types of models using
single or multiple processors. The panel on the right shows the “speedup,” defined to be the time
for serial execution divided by the parallel execution time. The reference line shows the maximum
theoretical speedup.

Figure 3 shows the results of a benchmarking study run on a 32 core machine. In the left panel,
the actual training time for each of the models is shown. Irrespective of the number of processors
used, the PLS model is much more efficient than the other models. This is most likely due to
PLS solving straight-forward, well optimized linear equations. Unfortunately, partial least squares
produces linear boundaries which may not be flexible enough for some problems. For the support
vector machine and boosted tree models, the rate of decrease in training time appears to slow after
15 processors.

On the right-hand panel, the speedup is plotted. For each model, there is a decrease in the training
time as more nodes are added, although there was little benefit of adding more than 15 workers.
The support vector machine comes the closest to the theoretical speedup boundary when five or
less workers are used. Between 5 and 15 workers, there is an additional speedup, but at a loss of
efficiency. After 15 workers, there is a negligible speedup effect. For boosted trees, the efficiency
of adding parallel workers was low, but there was more than a four-fold speedup obtained by using
more than 10 workers. Although PLS benefits from parallel processing, it does not show significant
gains in training time and efficiency.

25 of 45

The caret Package

One downside to parallel processing in this manner is that the dataset is held in memory for every
node used to train the model. For example, if parallelism is used to compute the results from 50
bootstrap samples using P processors, P data sets are held in memory. For large datasets, this can
become a problem if the additional processors are on the same machines where they are competing
for the same physical memory. In the future, this might be resolved using specialized software that
exploits systems with a shared memory architecture.

More research is needed to determine when it is advantageous to parallel process, given the type of
model and the dimensions of the training set.

3 Extracting Predictions and Class Probabilities

As previously mentioned, objects produced by the train function contain the “optimized” model in
the finalModel sub-object. Predictions can be made from these objects as usual. In some cases,
such as pls or gbm objects, additional parameters from the optimized fit may need to be specified.
In these cases, the train objects uses the results of the parameter optimization to predict new
samples.

For example, we can load the Boston Housing data:

> library(mlbench)

> data(BostonHousing)

> # we could use the formula interface too

> bhDesignMatrix <- model.matrix(medv ~. - 1, BostonHousing)

split the data into random training/test groups:

set.seed(4)

inTrain <- createDataPartition(BostonHousing$medv, p = .8, list = FALSE, times = 1)
trainBH <- bhDesignMatrix[inTrain,]

testBH <- bhDesignMatrix[-inTrain,]

trainMedv <- BostonHousing$medv[inTrain]

testMedv <- BostonHousing$medv[-inTrain]

V V.V Vv VvV

fit partial least squares and multivariate adaptive regression spline models:

> set.seed(5)
> plsFit <- train(trainBH, trainMedv,

+ llplsll’
+ preProcess = c("center", '"scale"),
+ tunelLength = 10,

26 of 45

The caret Package

+ trControl = trainControl(verboselter = FALSE,

+ returnResamp = "all"))
> set.seed(5)

> marsFit <- train(trainBH, trainMedv,

+ "earth",

+ tunelength = 10,

+ trControl = trainControl (verboselter = FALSE,

+ returnResamp = "all"))

To obtain predictions for the MARS model, predict.earth can be used.

> marsPredl <- predict(marsFit$finalModel, newdata = testBH)
> head (marsPred1)

y
[1,] 34.18241

[2,] 20.90113
[3,] 18.83659
[4,] 14.56850
[5,]1 16.44564
[6,] 22.12989

Alternatively, predict.train can be used to get a vector of predictions for the optimal model
only:

> marsPred2 <- predict(marsFit, newdata = testBH)
> head (marsPred2)

[1] 34.18241 20.90113 18.83659 14.56850 16.44564 22.12989

Note that the plsFit object used pre-processing. In this case, we cannot directly call predict.mvr
and expect to get the same answers as predict.train. The latter function knows that centering
and scaling is required and execute these calculations on the new samples, whereas predict.mvr
does not. For the pls function, there is an argument called scale that can be used instead of the
pre—processing options in the train function.

For multiple models, the objects can be grouped using a list and predicted simultaneously:

> bhModels <- list(pls = plsFit,

+ mars = marsFit)

> bhPredl <- predict(bhModels, newdata = testBH)
> str(bhPred1)

27 of 45

The caret Package

List of 2
$ pls : num [1:99] 30.2 21.9 16.1 16 15.8 ...
$ mars: num [1:99] 34.2 20.9 18.8 14.6 16.4 ...

In some cases,observed outcomes and their associated predictions may be needed for a set of models.
In this case, extractPrediction can be used. This function takes a list of models and test and/or
unknown samples as inputs and returns a data frame of predictions:

> allPred <- extractPrediction(bhModels,
+ testX = testBH,
+ testY = testMedv)
> testPred <- subset(allPred, dataType == "Test")
> head(testPred)
obs pred model dataType object
408 34.7 30.15640 pls Test pls
409 21.7 21.87263 pls Test pls
410 20.2 16.06634 pls Test pls
411 15.2 16.01122 pls Test pls
412 15.6 15.80842 pls Test pls
413 14.5 17.94325 pls Test pls
> by(

+ testPred,
+ list (model = testPred$model),
+ function(x) postResample (x$pred, x$obs))

model: earth
RMSE Rsquared
4.6052438 0.8016275

model: pls
RMSE Rsquared
5.5016752 0.7286127

The output of extractPrediction is a data frame with columns:

e obs, the observed data
e pred, the predicted values from each model
PR A4

e model, a character string (“rpart”, “pls” etc.)

e dataType, a character string for the type of data:

28 of 45

The caret Package

— “Training” data are the predictions on the training data from the optimal model,
— “Test” denote the predictions on the test set (if one is specified),

— “Unknown” data are the predictions on the unknown samples (if specified). Only the
predictions are produced for these data. Also, if the quick prediction of the unknowns is
the primary goal, the argument unkOnly can be used to only process the unknowns.

Some classification models can produce probabilities for each class. The functions predict.train
and predict.list can be used with the type = "probs" argument to produce data frames of class
probabilities (with one column per class). Also, the function extractProbs can be used to get
these probabilities from one or more models. The results are very similar to what is produced by
extractPrediction but with columns for each class. The column pred is still the predicted class
from the model.

4 Evaluating Test Sets

A function, postResample, can be used obtain the same performance measures as generated by
train for regression or classification.

4.1 Confusion Matrices

caret also contains several functions that can be used to describe the performance of classification
models. The functions sensitivity, specificity, posPredValue and negPredValue can be used
to characterize performance where there are two classes. By default, the first level of the outcome
factor is used to define the “positive” result (i.e. the event of interest), although this can be changed.

The function confusionMatrix can also be used to summarize the results of a classification model:

> mbrrPredictions <- extractPrediction(list(svmFit), testX = testDescr, testY = testMDRR)
> mbrrPredictions <- mbrrPredictions[mbrrPredictions$datarype == "Test",]
> sensitivity(mbrrPredictions$pred, mbrrPredictions$obs)

[1] 0.8066667
> confusionMatrix(mbrrPredictions$pred, mbrrPredictions$obs)

Confusion Matrix and Statistics

Reference
Prediction Active Inactive

29 of 45

The caret Package

25
89

Active 121
Inactive 29
Accuracy :
95% CI

No Information Rate :
: 6

P-Value [Acc > NIR]

Kappa :
Mcnemar's Test P-Value :

Sensitivity :
Specificity :

Pos Pred Value :

Neg Pred Value :
Prevalence :

Detection Rate :
Detection Prevalence :

'Positive' Class :

0

. 7955

(0.7417, 0.8424)

0

o

O O O O O O o

.5682
.256e-15

.5849
.6831

.8067
. 7807
.8288
. 7542
.5682
.4583
.55630

Active

The “no—information rate” is the largest proportion of the observed classes (there were more actives
than inactives in this test set). A hypothesis test is also computed to evaluate whether the overall
accuracy rate is greater than the rate of the largest class. Also, the prevalence of the “positive
event” is computed from the data (unless passed in as an argument), the detection rate (the rate of
true events also predicted to be events) and the detection prevalence (the prevalence of predicted

events).

Suppose a 2 x 2 table with notation

Reference
Predicted | Event | No Event
Event A B
No Event C D

30 of 45

The caret Package

The formulas used here are:

S tvity =
ensitivity = 7
Spec ficity —
peci ficity B1D
Preval A+C
revalence =
A+B+C+D
PPV — sensitivity X prevalence
~ ((sensitivity x prevalence) + ((1 — specificity) x (1 — prevalence))
NPV — speci ficity x (1 — prevalence)
~ ((1 — sensitivity) x prevalence) + ((speci ficity) x (1 — prevalence))
A
Detection Rate = 1T B1C1D
A+ B
Detection Prevalence = 178 i 1D

When there are three or more classes, confusionMatrix will show the confusion matrix and a set
of “one—versus—all” results. For example, in a three class problem, the sensitivity of the first class is
calculated against all the samples in the second and third classes (and so on).

4.2 ROC Curves

The function roc?

can be used to calculate the sensitivity and specificity used in an ROC plot.
For example, using the previous support vector machine fit to the MBRR data, the predicted class
probabilities on the test set can used to create an ROC curve. The area under the ROC curve, via

the trapezoidal rule, is calculated using the aucRoc function.

> mbrrProbs <- extractProb(list(svmFit), testX = testDescr, testY = testMDRR)
> mbrrProbs <- mbrrProbs[mbrrProbs$dataType == "Test",]

> mbrrROC <- roc(mbrrProbs$Active, mbrrProbs$obs)

> aucRoc (mbrrROC)

[1] 0.8724269

See Figure 5 for an example.

3I'm looking into using the ROCR package for ROC curves, so don’t get too attached to these functions

31 of 45

The caret Package

0.0 0.2 0.4 0.6 0.8 1.0
1 1 1

1 1 1 |
Data: Active Data: Inactive

30 -

20 4

Percent of Total

10 4

| =

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Probability of Active

Figure 4: The predicted class probabilities from a support vector machine fit for the MBRR test
set. This plot was created using plotClassProbs (mbrrProbs).

Plotting Predictions and Probabilities

Two functions, plotObsVsPred and plotClassProbs, are interfaces to lattice to plot model results.
For regression, plotObsVsPred plots the observed versus predicted values by model type and data

(e.g. test). See Figures 6 and 5 for examples. For classification data, plotObsVsPred plots the
accuracy rates for models/data in a dotplot.

To plot class probabilities, plotClassProbs will display the results by model, data and true class
(for example, Figure 4).

32 of 45

The caret Package

1.0

0.6 0.8
1

Sensitivity

0.4

0.2

0.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

1 - Specificity

Figure 5: An ROC curve from the predicted class probabilities from a support vector machine fit
for the MBRR test set.

33 of 45

The caret Package

40 |

Observed

20

10

10 20 30 40 50
Predicted

Figure 6: The results of using plotObsVsPred to show plots of the observed median home price
against the predictions from two models. The plot shows the training and test sets in the same
Lattice plot

34 of 45

The caret Package

5 Exploring and Comparing Resampling Distributions

5.1 Within—Model

There are several Lattice functions than can be used to explore relationships between tuning pa-
rameters and the resampling results for a specific model:

e xyplot and stripplot can be used to plot resampling statistics against (numeric) tuning
parameters.

e histogram and densityplot can also be used to look at distributions of the tuning parameters
across tuning parameters.

For example, the following statements produces the images in Figure 7.

> xyplot (marsFit, type= c("g", "p", "smooth"), degree = 2)
> densityplot(marsFit, as.table = TRUE, subset = nprune < 10)

35 of 45

The caret Package

8
o
7 - § -
[
o)
6 - 8 -
o
8
w
0 8 ° °
= ° ° 9
X 5 - 8 o 8 ¢ ° -
o 3 L o o
] ° o ° 8 o
3 g : i 8 4
g 8 4
8 5
4 - o ! 8 ; 5 s+
o
g o g g 8 § g E 8
g o 8 ° [§ o
o 8 8 8 e
A o ° o
3 L
T T T T
5 10 15 20
nprune
3 4 5 6 7 8
! ! ! ! ! ! ! ! ! ! ! !
nprune nprune
0.8 -
0.6 =
0.4 -
0.2 -
2 0.0 @000 o@B00e ® 0@ PowoD o =
2 nprune nprune
3 E - 0.8
— — 0.6
— - 0.4
— ~ 0.2
— 000 @B % o®0 0@ WSRO W 0 - 0.0

T T T T T T T T T T T T
3 4 5 6 7 8

Figure 7: Scatter plots and density plots of the resampled RMSE by the number of retained terms
for the MARS model fit to the Boston Housing data

36 of 45

The caret Package

5.2 Between—Models

caret also includes functions to characterize the differences between models (generated using train,
sbf or rfe) via their resampling distributions. These functions are based on the work of Hothorn
et al. (2005) and Eugster et al (2008).

Using the blood-brain barrier data (see ?BloodBrain), three regression models were created: an
rpart tree, a conditional inference tree using ctree, M5 rules using M5Rules and a MARS model
using earth. We ensure that the models use the same resampling data sets. In this case, 100
leave—group—out cross—validation was employed.

> data(BloodBrain)

> set.seed(1)

> tmp <- createDataPartition(logBBB, p = 0.8, times = 100)

> rpartFit <- train(bbbDescr, logBBB,

+ "rpart",

+ tuneLength = 16,

+ trControl = trainControl (method = "LGOCV", index = tmp))
Fitting: maxdepth=16

> ctreeFit <- train(bbbDescr, 1logBBB,

+ "ctree2",

+ tunelLength = 10,

+ trControl = trainControl(method = "LGOCV", index = tmp))
Fitting: maxdepth=1

Fitting: maxdepth=2

Fitting: maxdepth=3

Fitting: maxdepth=4

Fitting: maxdepth=5

Fitting: maxdepth=6

Fitting: maxdepth=7

Fitting: maxdepth=8

Fitting: maxdepth=9

Fitting: maxdepth=10

> earthFit <- train(bbbDescr, logBBB,

+ "earth",

+ tuneLength = 20,

+ trControl = trainControl(method = "LGOCV", index = tmp))

37 of 45

The caret Package

Fitting: degree=1, nprune=76

> mbFit <- train(bbbDescr, logBBB,
+ "M5Rules",
+ trControl = trainControl (method = "LGOCV", index = tmp))

Fitting: pruned=Yes
Fitting: pruned=No

Given these models, can we make statistical statements about their performance differences? To do
this, we first collect the resampling results using resamples.

> resamps <- resamples(list(CART = rpartFit,

+ CondInfTree = ctreeFit,
+ MARS = earthFit,
+ M5 = mbFit))

> resamps

Call:
resamples.default(x = list(CART = rpartFit, CondInfTree = ctreeFit, MARS = earthFit, ME

Models: CART, CondInfTree, MARS, M5

Number of resamples: 100
Performance metrics: RMSE, Rsquared

> summary (resamps)

Call:
summary.resamples(object = resamps)

Models: CART, CondInfTree, MARS, M5
Number of resamples: 100

RMSE

Min. 1st Qu. Median Mean 3rd Qu. Max.
CART 0.4927 0.5806 0.6417 0.6331 0.6764 0.7819
CondInfTree 0.4528 0.5934 0.6375 0.6427 0.6873 0.8685
MARS 0.4387 0.5709 0.6073 0.6128 0.6601 0.8327
M5 0.4607 0.5689 0.6219 0.6308 0.6763 0.8341

38 of 45

The caret Package

Rsquared

Min. 1st Qu. Median Mean 3rd Qu. Max.
CART 0.12070 0.2749 0.3436 0.3455 0.4049 0.5981
CondInfTree 0.07711 0.2852 0.3517 0.3449 0.4099 0.6164
MARS 0.18800 0.3381 0.4146 0.4141 0.4939 0.6515
M5 0.12260 0.3080 0.3910 0.3950 0.4744 0.6286

There are several Lattice plot methods that can be used to visualize the resampling distributions:
density plots, box—whisker plots, scatterplot matrices and scatterplots of summary statistics. In the
latter case, the plot consists of the differences between two models on the y—axis and the average on
the z—axis (See Figure 8). In Figure 9, density plots of the data are shown. In this figure, the R?
distributions indicate that M5 rules and MARS appear to be similar to one another but different
from the two tree-based models. However, this pattern is inconsistent with the root mean squared
error distributions.

bwplot (resamps, metric = "RMSE")
densityplot (resamps, metric = "RMSE")
xyplot (resamps,
models c("CART", "MARS"),
metric = "RMSE")
splom(resamps, metric = "RMSE")

vV + + Vv v VvV

Since models are fit on the same versions of the training data, it makes sense to make inferences on
the differences between models. In this way we reduce the within—resample correlation that may
exist. We can compute the differences, then use a simple t—test to evaluate the null hypothesis that
there is no difference between models.

> difValues <- diff(resamps)
> difValues

Call:
diff.resamples(x = resamps)

Models: CART, CondInfTree, MARS, M5
Metrics: RMSE, Rsquared

Number of differences: 6

p—value adjustment: bonferroni

> summary(difValues)

39 of 45

The caret Package

Call:
summary.diff.resamples(object = difValues)

p-value adjustment: bonferroni
Upper diagonal: estimates of the difference
Lower diagonal: p-value for HO: difference = 0

RMSE

CART CondInfTree MARS M5
CART -0.009607 0.020238 0.002280
CondInfTree 0.8305096 0.029845 0.011887
MARS 0.0447524 0.0006745 -0.017958
M5 1.0000000 1.0000000 0.2662612
Rsquared

CART CondInfTree MARS M5
CART 0.0005807 -0.0685809 -0.0495256
CondInfTree 1.000000 -0.0691617 -0.0501063
MARS 5.753e-08 6.541e-08 0.0190553
M5 0.002156 0.001024 0.679609

Note that these results are consistent with the patterns shown in Figure 9; there are more differences
in the R? distributions than in the error distributions.

Several Lattices methods also exist to plot the differences (density and box—whisker plots) or the
inferential results (level and dot plots). Figures 10 and 11 show examples of level and dot plots.

> dotplot(difValues)

> densityplot(difValues,
+ metric = "RMSE",

+ auto.key = TRUE,

+ pch = "[")

> bwplot(difValues,

+ metric = "RMSE")

> levelplot(difValues, what = "differences")

6 Session Information

e R version 2.11.1 (2010-05-31), x86_64-apple-darwin9.8.0

e Locale: en_US/en_US/en_US/C/en_US/en_US

40 of 45

The caret Package

RMSE
| | | | | |
0.2 - o -
o
o
o
o
o
o
0.1 .0y ce o -
s o ° . c»° R ° o
o
n ° o 3 ° oogo . o
% o o %o o
2 ° °) % o o° o° °
| 0.0 4 ;e o O -
= ° o o ° e S
© 6 o 0 o
< ® o
O o 0%, o© 00 o
o ° °
o
-0.1 ° ° ° -
o
-0.2 o L
T T T T T T
0.50 0.55 0.60 0.65 0.70 0.75
Average

Figure 8: Examples of output from xyplot(resamps, models = c("CART", "MARS")). The av-
erages and differences of the two models is shown for each resampling data set.

41 of 45

The caret Package

CART —_— M5 —
CondInfTree —— MARS ——
RMSE Rsquared
6 — -
5 — —
4 - L
=
a3 L
]
&)
2 — -
1 — —
O — —
I I I I I I I I I I I
04 05 06 07 08 09 0.0 0.2 0.4 0.6 0.8

Figure 9: Examples of output from densityplot (resamps). Looking at R?, M5 rules and MARS
appear to be similar to one another but different from the two tree-based models. However, this
pattern is inconsistent with the root mean squared error distributions.

42 of 45

The caret Package

RMSE
0.03
M5 — -
0.02
MARS - 001
- 0.00
CondInfTree -
- —-0.01
CART — -
LT -0.02

T T T T
CART CondinfTree MARS M5

difference = (x axis — y axis)

Figure 10: Examples of output from levelplot(difValues, what = "differences"). The pair—
wise differences in RMSE are shown

43 of 45

The caret Package

MARS - M5 ' -

CondInfTree — MARS

CondInfTree — M5 ’ -

CART - MARS b -

CART - M5

CART - CondInfTree ’ -

I I I I I
-0.04 -0.02 0.00 0.02 0.04

Difference in RMSE
Confidence Level 0.992 (multiplicity adjusted)

Figure 11: Examples of output from dotplot(difValues). The differences in RMSE and their
associated confidence intervals are shown.

44 of 45

The caret Package

e Base packages: base, datasets, graphics, grDevices, grid, methods, splines, stats, stats4,
tools, utils

e Other packages: akima 0.5-4, caret 4.91, class 7.3-2, cluster 1.12.3, e1071 1.5-24, earth 2.4-5,
ellipse 0.3-5, gam 1.03, gbm 1.6-3.1, Hmisc 3.8-3, ipred 0.8-8, kernlab 0.9-12, klaR 0.6-4,
lattice 0.18-8, leaps 2.9, MASS 7.3-6, mlbench 2.1-0, modeltools 0.2-17, mvtnorm 0.9-95,
nnet 7.3-1, plotrix 3.0-5, pls 2.1-0, plyr 1.2.1, proxy 0.4-6, randomForest 4.5-36,
reshape 0.8.3, rpart 3.1-46, survival 2.35-8

e Loaded via a namespace (and not attached): coin 1.0-17, colorspace 1.0-1, party 0.9-99992,
rJava 0.8-7, RWeka 0.4-4, RWekajars 3.7.2-1

7 References

Breiman, Friedman, Olshen, and Stone. (1984) Classification and Regression Trees. Wadsworth.

Eugster et al. (2008), “Exploratory and inferential analysis of benchmark experiments, ” Ludwigs-
Maximalians- Universitat Munchen, Department of Statistics, Tech. Rep vol. 30

Hothorn et al. (2005), “The design and analysis of benchmark experiments, ” Journal of Compu-
tational and Graphical Statistics, 14, 675699

Molinaro et al. (2010), “partDSA: deletion/substitution/addition algorithm for partitioning the
covariate space in prediction,” Bioinformatics, 26, 1357-1363

Rand (1971), “Objective criteria for the evaluation of clustering methods,” Journal of the American
Statistical Association 66, 846-850.

Schmidberger et al. (2009), “ State-of-the-art in Parallel Computing with R,” Journal of Statistical
Software, 31

Svetnik, V., Wang, T., Tong, C., Liaw, A., Sheridan, R. P. and Song, Q. (2005), “Boosting: An
ensemble learning tool for compound classification and QSAR modeling,” Journal of Chemical
Information and Modeling, 45, 786 —799.

Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G. (2003), “Class prediction by nearest shrunken
centroids, with applications to DNA microarrays,” Statistical Science, 18, 104-117.

45 of 45

	Model Training and Parameter Tuning
	An Example
	Basic Parameter Tuning
	Notes

	Customizing the Tuning Process
	Pre–Processing Options
	Alternate Tuning Grids
	The trainControl Function
	Alternate Performance Metrics
	Performance Class Probabilities: ROC Curves
	Choosing the Final Model
	Parallel Processing

	Extracting Predictions and Class Probabilities
	Evaluating Test Sets
	Confusion Matrices
	ROC Curves

	Exploring and Comparing Resampling Distributions
	Within–Model
	Between–Models

	Session Information
	References

