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Abstract

We introduce ctsem (Driver, Oud, and Voelkle 2015), an R package for continuous
time structural equation modelling of panel (N > 1) and time series (N = 1) data, using
either full information maximum likelihood or the Kalman filter. Most dynamic models
for longitudinal data in the social and behavioural sciences are discrete time models. An
assumption of discrete time models is that time intervals between measurements are equal,
and that all subjects were assessed at the same intervals. Violations of this assumption are
regularly ignored due to the difficulty of accounting for varying time intervals, therefore
parameter estimates can be severely biased. By using stochastic differential equations
and estimating an underlying continuous process, continuous time models allow for any
pattern of measurement occasions. By interfacing to a general purpose SEM package
(OpenMx), ctsem combines the flexible specification of structural equation models with
the enhanced data gathering opportunities and improved estimation of continuous time
models. ctsem can estimate relationships over time for multiple latent processes, measured
by multiple noisy indicators with varying time intervals between observations. Within and
between effects are estimated simultaneously by modelling both observed covariates and
unobserved heterogeneity. Exogenous shocks with different shapes, group differences,
higher order diffusion effects and oscillating processes can all be simply modelled. We
first briefly introduce and define continuous time models, then show how to specify and
estimate a range of continuous time models using ctsem.

Keywords: time series, panel data, state Space, structural equation modelling, continuous
time, stochastic differential equation, dynamic models, Kalman filter, R.

1. Introduction

Dynamic models, such as the well known vector autoregressive model, are widely used in
the social and behavioural sciences. They allow us to see how fluctuations in processes re-
late to later values of those processes, the effect of an input at a particular time, how the
various factors relate to average levels of the processes, and many other possibilities. Some
examples with panel data include the impact of European institutional changes on business
cycles (Canova, Ciccarelli, and Ortega 2012), the coupling between sensory and intellectual
functioning (Ghisletta and Lindenberger 2005), or the analysis of bidirectional links between
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children’s delinquency and the quality of parent-child relationships (Keijsers, Loeber, Branje,
and Meeus 2011). Examples of single subject approaches are studies on the decline in pneu-
monia rates in the USA after a vaccine introduction (Grijalva, Nuorti, Arbogast, Martin,
Edwards, and Griffin 2007), or the lack of a relationship between antidepressant sales and
public health in Iceland (Helgason, TÃşmasson, and Zoega 2004). At present, applications
of dynamic models in the social and behavioural sciences are almost exclusively limited to
discrete time models. In discrete time models it is assumed that time progresses in discrete
steps, that time intervals between measurement occasions are equal, and that, in case of panel
data, all subjects are assessed with the same time intervals. In many cases, these assumptions
are not met, resulting in biased parameter estimates. This concept is illustrated in Figure
1. In the upper panel, Figure 1 shows a true autoregressive effect of .80 between observed
variables (represented by squares), assuming equal intervals of length ∆t = 1 (represented by
equal distances between observed variables), while the lower panel shows a process with two
intervals of ∆t = 1 and one interval ∆t = 2. In the top panel, the meaning of the estimate
of .80 is clear – it refers to the autoregression estimate for 1 unit of time. In the lower case,
however, the autoregression estimate of .73 is ambiguous – it is too low to characterise the
relation between the first three occasions (correct value of .80 is in brackets) and too high
between the last two occasions (correct value of .64).

Figure 1: Two autoregressive processes, each exhibiting a true autoregressive effect of .80
for 1 unit of time. The top process is measured with equal time intervals (represented by the
space between observations) of 1 unit, while the lower process has unequal intervals.

Obviously, parameter estimates and, thus, scientific conclusions, are biased when observation
intervals vary and this is not adequately accounted for. In simple cases, such as the example
in Figure 1, additional variables – so called phantom variables (Rindskopf 1984), with missing
values for all individuals – could be added in order to artificially create equally spaced time
intervals. For example, an additional variable could be specified at t4, resulting in equal
time intervals and permitting the use of standard discrete time models. For complex patterns
of individually varying time intervals, however, this approach quickly becomes untenable
(Voelkle and Oud 2013). Furthermore, based on discrete time models it is difficult to compare
results obtained from different studies with unequal time intervals, which poses a limitation
to the production of cumulative knowledge in science (Voelkle, Oud, Davidov, and Schmidt
2012).

Continuous time models overcome these problems, offering researchers the possibility to es-
timate parameters free from bias due to unequal intervals, easily compare between studies
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and datasets with different observation schedules, gather data with variable time intervals
between observations, and parsimoniously specify complex dynamics. Although continuous
time models have a long history (Coleman 1964; Hannan and Tuma 1979), their use in the
social sciences is still uncommon. At least in part, this is due to a lack of suitable software
to specify and estimate continuous time models. With the introduction of ctsem in this ar-
ticle, we want to overcome this limitation. Although we will define continuous time models
in the next section and provide several examples in the sections thereafter, a comprehensive
treatment of continuous time models is beyond the scope of this article. For a more general
introduction to continuous time models by means of SEM, the reader is referred to Voelkle
et al. (2012). For additional information on the technical details we refer the reader to Oud
and Jansen (2000).

The R package ctsem interfaces to OpenMx (Boker et al. 2011), a powerful general purpose
SEM package for R (R Core Team 2014). This allows ctsem to capitalize on all the possibilities
of structural equation models, including manifest and latent variables, flexibility in imposing
parameter constraints, multiple group functionality, as well as the use of different fitting
functions and non-linear constraints. Most importantly, by interfacing to OpenMx the user
may tailor standard continuous time models to his or her specific needs. OpenMx was chosen
as the basis for ctsem because of its capacity to incorporate the necessary matrix algebra
constraints, such as the matrix exponential.

The remainder of this article is organised as follows: in Section 2, we provide a formal def-
inition of continuous time models. In Section 3 we will show how to install ctsem and give
an overview of the package. In Section 4, we will review different data structures and dis-
cuss the role of time in continuous time models. In Section 5, we will show how to specify
continuous time models in ctsem, followed by a discussion of model estimation and testing in
Section 6. In Section 7 we will discuss various extensions of basic continuous time models,
including unobserved heterogeneity, time dependent and time independent exogenous predic-
tors, time series, multiple group models, additional models of the diffusion process, and the
analysis of oscillations. We will end with some discussion of various specification options and
tips for model fitting in Section 8, and point to current limitations and future research and
development directions in Section 9.

2. Continuous time models: fundamentals

The class of continuous time models implemented in ctsem is represented by the multivariate
stochastic differential equation:

ηi (t ) =
(

Aηi (t ) + Bzi +Mxi (t ) + ξi

)

dt +GdWi (t ) (1)

Vector ηi (t ) ∈ R
v×1 is a v -variable vector of the processes of interest at time t , for subject i.

The v×v matrix A represents the so-called drift matrix, with auto effects on the diagonal and
cross effects on the off-diagonals characterising the temporal relationships of the processes.

B is a v × p matrix with parameters describing the effect of the vector of time independent
predictors z ∈ Rp×1 on ηi (t ).

M is a v × l matrix with parameters describing the effect of time dependent predictors xi (t ) ∈
R
l×1 on ηi (t ).
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The base level of the processes is captured by the v -length vector of random variables ξi ,
with ξ ∼ N(κ,ϕξ ), where the value κ denotes the continuous time intercepts, and value ϕξ

the covariance across subjects. The continuous time intercepts set the long-term level of the
processes – without them the processes of a stable model would always trend towards zero in
the long-run.

Wi (t ) represents the diffusion process, specifically here the Wiener process, a random-walk
in continuous time. This is multiplied by G which determines the variance and covariance.
Q, where Q = GG⊤, represents the variance-covariance matrix of the diffusion process in
continuous time.

The solution of the stochastic differential Equation 1 for any time interval t − t0 is:

ηi (t) = e
A(t−t0 )ηi (t0) +

A−1[eA(t−t0 )
− I]Bzi +

∫ t

t0

eA(t−s )Mxi (s )ds+

A−1[eA(t−t0 )
− I]ξi +

∫ t

t0

eA(t−s )GdWi (s ) (2)

The five terms of this equation correspond to the five terms of Equation 1, and give the link
between the continuous model and discrete instantiations of the process. The last term, the
integral of the diffusion over the given time interval, exhibits covariance matrix:

cov
[

∫ t

t0

eA(t−s )GdWi (s )

]

=

∫

⊤

t0

eA(t−s )QeA
T (t−s )ds = irow

{

A−1# [eA# (t−t0 )
− I] rowQ

}

(3)

Where A# = A ⊗ I+ I ⊗A, with ⊗ denoting the Kronecker-product, row is an operation that
takes elements of a matrix rowwise and puts them in a column vector, and irow is the inverse
of the row operation.

Within ctsem time dependent predictors observed at time u are treated as singular impulses
on the processes, as such the third term becomes:

eA(t−u )Mxi (u) (4)

The process vector ηi (t ) may be directly observed or latent with measurement model

Yi (t ) = Γi + Ληi (t ) + δi (t ), where δ(t ) ∼ N(0,Θ), and Γ ∼ N(τ, ϵ) (5)

where c-length vector τ is the expected value of Γi , which is distributed across subjects
according to c × c covariance matrix ϵ (referred to later as manifest traits – see Section 7.1).
Λ is a c ×v matrix of factor loadings, Yi (t ) ∈ R

c×1 is a c-variable vector of manifest variables,
and residual vector Θ is distributed across individuals according to c × c covariance matrix
δi ∈ R

c×1.
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2.1. Continuous time and SEM

Continuous time models have already been implemented as structural equation models, using
either non-linear algebraic constraints (Oud and Jansen 2000) or linear approximations of
the matrix exponential (Oud 2002). Our formulation uses either the SEM RAM (reticular
action model) specification as per McArdle and McDonald (1984), or the state space form
recently added to OpenMx (Neale et al. 2015; Hunter 2014). For details on the equivalence
and differences between SEM and state space modelling techniques, see Chow, Ho, Hamaker,
and Dolan (2010). Expectation matrices are generated for each individual according to the
specified inputs, constraints, and observed timing data. Optimization using either full infor-
mation maximum likelihood or the Kalman filter within OpenMx is then used to estimate
the parameters. For more detailed information on the specification of continuous time struc-
tural equation models, the reader is referred to Oud and Jansen (2000); Arnold (1974); Singer
(1998); Voelkle et al. (2012). Note that while earlier incarnations of continuous time mod-
elling focused on approaches to implement the matrix exponential, OpenMx now includes a
form of the exponential recommended in computational contexts, the scaling and squaring
approach with Pade approximation (Higham 2009), which has been implemented in ctsem

accordingly.

3. ctsem package overview and installation

3.1. Package overview

Estimating continuous time models via ctsem comprises five steps: First, ctsem must be
correctly configured, which we detail in Section 3.2. Second, the data must be adequately
prepared (Section 4). Next, the continuous time model must be specified by creating a ctsem

model object using the function ctModel (Sections 5 and 7). After specification, the model
must be fit to the data using the function ctFit, after which summary and plot methods may
be used to examine parameter estimates, standard errors, and fit statistics (Section 6). We
will discuss these steps in the following.

3.2. Package installation

As ctsem is an R package, it requires R to be installed, available from www.r-project.org

(R Core Team 2014). The R package OpenMx (Neale et al. 2015) is required, and is available
from http://openmx.psyc.virginia.edu/ , but will anyway be installed automatically when
needed by ctsem. To install and load ctsem within R:

R> install.packages("ctsem", repos = "http://r-forge.r-project.org", type = ✬source✬)

R> library(✬ctsem✬)

4. Data structure

The internal functions of ctFit use data in a wide layout, with all data for each individual in
a single row, including the time intervals between measurement occasions for this individual.

www.r-project.org
http://openmx.psyc.virginia.edu/
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Because this is the format used internally when fitting, for the sake of transparency it is
also required as the input format, and is detailed below in Section 4.1. In some cases it
may however be simpler to maintain data in a long format, and use the ctLongToWide and
ctIntervalise functions we provide to convert from long format with absolute times to wide
format with time intervals. This functionality is discussed in Section 4.2. The choice of time
scale and treatment of the initial time point can influence results and will be discussed in
Section 4.3, though first time users may find it easier to return to later.

4.1. Wide format

This is the data format required when fitting a model with ctsem. The example data below
depicts two individuals, observed at three occasions, on three manifest variables, one time
dependent predictor, and two time independent predictors. A corresponding path diagram of
one possible model for this data is shown in Figure 2. The data are ordered into blocks as fol-
lows: Manifest process variables, time dependent predictors, time intervals, time independent
predictors. Manifest variables are grouped by measurement occasion and ordered within this
by variable. In the example there are three manifest variables (Y1, Y2, Y3) assessed across
three measurement occasions. In this case, the first three columns of the data (Y1 T0, Y2 T0,
Y3 T0) represent the three manifest variables at the first measurement occasion, time point 0,
followed by the columns of the second measurement occasion and so on. Note that measure-
ment occasions subsequent to the first may occur at different times for different individuals.
Also note the naming convention, wherein the variable name is followed by an underscore and
T, followed by an integer denoting the measurement occasion. After the manifest variables,
any time dependent predictors (there need not be any) are grouped by variable and ordered
within this by measurement occasion. This change of ordering compared to the dependent
variables reflects the fact that relations between exogenous predictors are not of interest. If
they are, then they should instead be included as additional latent processes. Note also that
in continuous time modelling a cause must always precede an effect in time, precluding in-
stantaneous effects. For this reason, no time dependent predictors may be included at the
last measurement occasion, because there would be no time for an effect to occur. In the data
below and the model in Figure 2, there is only one time dependent predictor, TD1, though a
second could be added by inserting its’ two columns directly after TD1 T1). After the time
dependent predictors, T -1 time intervals are specified in chronological order, with column
names dT followed by the number of the measurement occasion occurring after the interval.
That is, dT1 refers to the time interval between the first measurement occasion, T0, and the
second, T1. In continuous time modelling it is imperative to know the time point at which
an observation takes place. Thus, missing values on time intervals are not allowed. Finally,
two time independent predictors (TI1, TI2 – the naming here is only with variable names)
are contained in the last two columns of the data structure.

Y1_T0 Y2_T0 Y3_T0 Y1_T1 Y2_T1 Y3_T1 Y1_T2 Y2_T2 Y3_T2 TD1_T0 TD1_T1 dT1 dT2

1 2.5 NA 2.2 2.3 5.1 2.3 4.8 3.9 3.7 0 6.0 4 9

2 5.6 3.7 5.0 NA 7.0 4.4 2.5 4.6 4.7 0 5.3 1 14

TI1 TI2

1 -0.6 -0.6

2 -0.5 -0.2
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Figure 2: The first three time points of a two process continuous time model, with three
manifest indicators (blue) measuring 2 latent processes (purple), one time dependent predic-
tor(dark green), and two time independent predictors (light green). Variance / covariance
paths are in orange, regressions in red. Light grey paths indicate those that are constrained
to a function of other parameters. Note that the value of parameters for all paths to latents at
time 2 and higher do not directly represent the effect, rather, the effect depends on a function
of the shown parameter and the time interval ∆t. Covariances between the time dependent
predictor and traits (yellow) are not drawn.
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4.2. Conversion from long format with absolute times

Although ctsem uses the wide format as default data input, often data are stored in long
format, that is, each subject has multiple rows of data, with each row reflecting a particular
measurement occasion. In addition, time intervals may not be readily available at the individ-
ual level, instead the absolute time when a measurement took place is recorded. To convert
from long format, the data must contain a subject identification column, columns for every
observed variable, and a time variable. In the example below, three manifest variables of
interest (Y1, Y2, Y3) have been observed across a number of occasions, along with one time
dependent predictor (TD1) and two time independent predictors (TI1, TI2). The variable
’Time’ contains the time when the measurement took place (e.g., in weeks from the beginning
of the study).

subject Y1 Y2 Y3 TD1 Time TI1 TI2

[1,] 1 3.13 NA 4.59 0.32625 0 NA -0.609

[2,] 1 2.30 5.11 2.31 -0.00972 1 -0.607 -0.609

[3,] 1 3.85 4.45 NA NA NA NA NA

[4,] 1 3.05 3.02 3.11 -0.26912 2 -0.607 -0.609

[5,] 2 5.26 6.06 5.55 0.07493 3 -0.529 -0.233

[6,] 2 5.68 5.64 7.96 -0.63566 4 -0.529 -0.233

[7,] 2 4.68 5.43 4.79 0.26527 5 -0.529 -0.233

Given the specific wide structure required by ctsem, and that the time points of measurement
may vary across individuals, restructuring from long to wide can be complicated, so we have
included functions to manage this. First, the long format data with information on the
absolute time of measurement must be converted to the wide format, using the ctLongToWide
function (The number of Tpoints in the generated data is also messaged to the user at this
point, to be used in the next step). Then, subject specific time intervals based on the absolute
time information must be generated, using the function ctIntervalise. One should take care
that the defaults used by ctIntervalise for structuring the data and handling missing time
information are appropriate.1

R> data(✬longexample✬)

R> wideexample <- ctLongToWide(datalong = longexample, id = "subject",

+ time = "Time", manifestNames = c("Y1", "Y2", "Y3"),

+ TDpredNames = "TD1", TIpredNames = c("TI1", "TI2"))

R> wide <- ctIntervalise(datawide = wideexample, Tpoints = 3, n.manifest = 3,

+ n.TDpred = 1, n.TIpred = 2, manifestNames = c("Y1", "Y2", "Y3"),

+ TDpredNames = "TD1", TIpredNames = c("TI1", "TI2") )

4.3. Choice of initial time point and time scale

1By default, when timing information is missing, variables measured at that time are also set to NA
for the individual missing the information. Once this is done the actual time of measurement no longer
influences parameter estimates or likelihood, so we can set it to an arbitrary minimum interval. By default,
the mininterval argument to ctIntervalise is set to .001. This argument must be set lower than the
minimum time interval recorded in the data, so that later observations can be adjusted without problems.
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Choice of initial time point: Pre-determined or stationary?

An important aspect of continuous time modelling is the choice of how to handle the initial
time point. In principle, there are two different ways to do so. One approach is to treat the
first time point as predetermined, where no assumptions are made about the process prior to
the initial time point. In this case, all parameters for the first time point (means, variances,
effect of predictors and unit level heterogeneity) are freely estimated. This is the default in
ctsem, though requires some constraining if fitting a single individual.2 When treating the
first time point as predetermined, it is important to choose a meaningful starting point, as
the process will gradually transition from the variances and means of the initial parameters,
towards those of the parameters when the model is stationary. In principle, the initial time
point does not have to reflect the first measurement occasion, and can also be set to any time
prior. For example it may be meaningful to set T0 to the beginning of the school year, although
the first measurement was only taken two weeks after start of school. This can be specified
using the startoffset argument to ctIntervalise, specifying the amount of time prior
to the first observed measurement occasion. The other approach is to assume a stationary
model, that is, a model where the first observations are merely random instantiations of a long
term process with time-invariant mean and variance expectations. Or, put another way, we
assume that sufficient time has elapsed from the unobserved, hypothetical start of the process
to our first measurement occasion, such that whatever the start values were, they no longer
influence the process. Strictly speaking, this requires an infinite length of time, or a process
that began in a stationary state. However, in some practical cases without clear trends in
the data it is possible that the improvement in estimation due to the stationarity assumption
outweighs related losses (this may also be tested). To implement the stationarity assumption
the means and variances of the first measurement occasion are constrained according to the
model predicted means and variances across all time points. This is specified by including
a character vector of the T0 matrices to constrain in the ctFit arguments: stationary =

c(’T0VAR’, ’T0MEANS’) constrains both means and variances to stationarity. The ctModel

specification of any matrices that are constrained to stationarity is ignored. Note that any
between-subject variance parameters, factor loadings, manifest residuals, as well as drift and
diffusion parameters, are inherantly stationary (given the configuration of ctsem). More
complex model specification within ctsem, or direct modification of the generated OpenMx

model, is necessary for modelling time variability in the parameters.

Choice of time scale: Individual or sample relative time?

An additional consideration when treating the first time point as predetermined is necessary
in cases of individually varying time intervals. Here, two alternatives need to be distinguished.
The default option is to treat the observation times as relative to the individual, the other is
to treat them as relative to the sample. When we treat time as relative to the individual, the
first observation of every individual is set to measurement occasion T0, even though different
individuals may have been recorded many years apart. However if we treat time as relative to
the sample, every individual’s observation times are set relative to the very first observation
in the entire sample. This may result in a larger and sparser data matrix, potentially with
only a single observation at the first measurement occasion. To specify sample relative time
when converting from absolute time to intervals, set the argument individualRelativeTime

2Either T0VAR or T0MEANS must be fixed, see Section 7.3.
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= FALSE in the ctIntervalise function. The choice between the individual or sample relative
time may influence parameter estimates when the processes are not stationary. One way of
deciding between the two may be to observe whether the changes of the individuals’ processes
is more closely aligned with the sample relative or individual relative time. The change
in processes may be more aligned with individual relative time when we expect that the
activity of measurement relates to changes in the process. Consider for instance the relation
between abstinence behaviour and mood among individuals attending an alcohol addiction
clinic. Different individuals may come and go from the clinic over many years, but the mean
level of abstinence is likely related to when each individual began attending the clinic and
being measured – not the specific date the observation took place. In contrast, sample relative
time could be more appropriate for a study of linguistic abilities in a cohort of schoolchildren
over the years, with some individuals observed early and some only observed later, once they
are older and more developed. In this case, we may expect changes in the average linguistic
ability related to sample time. Another example that becomes conveniently available with
continuous time models and these functions is to arrange the data in individual relative fashion
but using age as the timing variable. In this case, age-related developmental trajectories
may be studied. When considering these options one should be aware that consistent up or
down trends over time may confound dynamic parameter estimates, if the innovation (latent
residual) at t is correlated with the process at t − 1. Pre-processing approaches that remove
trend components, such as controlling for age or year, removing a linear trend, or differencing
scores, may provide some check on model estimates, but the ramifications of these should be
carefully considered. Alternatively one may wish to explicitly model the diffusion process,
discussed in Section 7.5.

5. Model specification

Continuous time models are specified via the ctModel function. This function takes as input
a series of arguments and parameter matrices, and outputs a list object containing matrices
to be later evaluated by the ctFit function. The ctModel function contains many defaults
that should be generally applicable and safe, in that most parameters are specified to be
freely estimated, with a few exceptions.3 However, as with all default settings, they should
be checked as they may not be applicable. The arguments to the ctModel function and the
relation to equations in Section 2 are shown in Table 1 (required specification) and Table 2
(optional specification). The matrices can be specified with either character labels, to indicate
free parameter names, or numeric values, which indicate fixed values. A mixture of both in
one matrix is fine. These generally need to be set when constraining parameters to equality
(same character label), when fixing certain parameters to specific values (for instance, when
you do not wish to have a certain parameter in the model, or when testing if an effect is
different from 0), or when assigning non-standard names to output parameters. An example
model specification relying heavily on the defaults is:

R> examplemodel <- ctModel(n.latent = 2, n.manifest = 2, Tpoints = 3,

+ LAMBDA = diag(2))

3
ctModel defaults that may not be considered safe, as they are not freely estimated, are the MANIFEST-

MEANS, TRAITVAR and MANIFESTTRAITVAR matrices. These were set to ensure that the defaults are
appropriate also for single indicator and N = 1 cases, and because generally only one of the two trait matrices
can be set at once. See Section 7.3 regarding manifest means, and Section 7.1 regarding the trait matrices.
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Argument Sign Meaning

n.manifest c Number of manifest indicators per individual at each measurement occasion.
n.latent v Number of latent processes.
Tpoints Number of time points, or measurement occasions, in the data.
LAMBDA Λ n.manifest × n.latent loading matrix relating latent to manifest variables.

Table 1: Required arguments for ctModel.

Argument Sign Default Meaning.

manifestNames Y1, Y2, etc n.manifest length character vector of manifest names.
latentNames eta1, eta2, etc n.latent length character vector of latent names.
T0VAR free symmetric n.latent × n.latent matrix of latent process initial

variance / covariance.
T0MEANS free n.latent × 1 matrix of latent process means at first time point,

T0.
MANIFESTMEANS τ 0 n.manifest × 1 matrix of manifest means.
MANIFESTVAR Θ free diag symmetric n.manifest × n.manifest matrix of variance / co-

variance between manifests (i.e., measurement error).
DRIFT A free n.latent × n.latent matrix of continuous auto and cross effects.
CINT κ free n.latent × 1 matrix of continuous intercepts.
DIFFUSION Q free symmetric n.latent × n.latent matrix of diffusion process vari-

ance / covariance.
TRAITVAR ϕξ NULL NULL if no trait variance, or lower diagonal n.latent ×

n.latent cholesky matrix of trait variance / covariance.
MANIFESTTRAITVAR ϵ NULL NULL if no trait variance on manifest indicators, or

n.manifest × n.manifest lower diagonal variance / covariance
cholesky matrix.

n.TDpred l 0 Number of time dependent predictors in the dataset.
TDpredNames TD1, TD2, etc n.TDpred length character vector of time dependent predictor

names.
TDPREDMEANS free n.TDpred × (Tpoints-1) rows × 1 column matrix of time de-

pendent predictor means.
TDPREDEFFECT M free n.latent × n.TDpred matrix of effects from time dependent

predictors to latent processes.
T0TDPREDCOV free n.latent × ((Tpoints-1) × n.TDpred) covariance matrix be-

tween latents at T0 and time dependent predictors.
TDPREDVAR free symmetric (n.TDpred × (Tpoints-1)) × (n.TDpred ×

(Tpoints-1)) lower diagonal variance / covariance cholesky
matrix for time dependent predictors.

TRAITTDPREDCOV free n.latent rows × (n.TDpred × (Tpoints-1)) columns covariance
matrix for latent traits and time dependent predictors.

TDTIPREDCOV free (n.TDpred × (Tpoints-1)) rows × n.TIpred columns covari-
ance matrix between time dependent and independent pre-
dictors.

n.TIpred p 0 Number of time independent predictors.
TIpredNames TI1, TI2, etc n.TIpred length character vector of time independent predic-

tor names.
TIPREDMEANS free n.TIpred × 1 matrix of time independent predictor means.
TIPREDEFFECT B free n.latent × n.TIpred effect matrix of time independent predic-

tors on latent processes.
T0TIPREDEFFECT free n.latent × n.TIpred effect matrix of time independent predic-

tors on latents at T0.
TIPREDVAR free symmetric n.TIpred × n.TIpred lower diagonal variance / co-

variance cholesky matrix for time independent predictors.
startValues NULL a named vector, where the names of each value must match

a parameter in the specified model, and the value sets the
starting value for that parameter during optimization.

Table 2: Optional arguments for ctModel.
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A visual representation of this model is shown in Figure 3. With n.latent = 2, we have
specified a model with 2 latent processes, shown in purple. Each of these is measured
by a single manifest indicator (in blue), for a total of 2 manifest variables, specified with
n.manifest = 2. Loadings between latents and manifests are fixed to 1.00 (indicated by
the 2×2 diagonal LAMBDA matrix) at 3 measurement occasions, specified by Tpoints =

3. Because no other parameters are specified, the model defaults are used, resulting in a
bivariate latent process model where each manifest variable has a measurement error vari-
ance (manifestvar Y1 Y1, manifestvar Y2 Y2), and a mean fixed to 0. The initial latent
variables of each process each have a freely estimated mean (T0mean eta1, T0mean eta2),
variance (T0var eta1 eta1, T0var eta2 eta2), and covariance (T0var eta2 eta1). Subsequent
latent variables of each process all have an innovation term, with the variance dependent on a
function of the diffusion matrix (variances diffusion eta1 eta1, diffusion eta2 eta2, covariance
diffusion eta2 eta1), drift matrix, and time interval ∆t (Note that although we speak here of
variance and covariance parameters for the sake of intuitive understanding, ctsem works with
cholesky decomposed covariance matrices, discussed in Section 5.1). Each latent variable in
our two processes has continuous auto effects on itself according to the drift eta1 eta1 and
drift eta2 eta2 parameters (the diagonals of the drift matrix), and cross effects to the other
process according to the drift eta1 eta2 and drift eta2 eta1 parameters (the off diagonals).
This drift matrix combines with time interval ∆t to generate the auto and cross regressions
shown in the diagram. As usual, the first process listed in the parameter name represents
the row of the drift matrix, and the second the column, with the direction of effects flowing
from column to row – so the parameter drift eta1 eta2 represents the effect of a change in
process 2 on later values of process 1. Each process also has a continuous intercept (cint eta1,
cint eta2), which, in combination with the drift matrix, sets the level to which each process
asymptotes. To develop an understanding of the parameter matrices or simply view a model,
printing the model object (e.g. print(examplemodel)) is recommended. To track how these
matrices are used within the complete SEM specification, one must first estimate the model
(discussed in Section 6), and may then view the A, S, F or M matrices typical to a RAM
specification McArdle and McDonald (1984) via example1fit$mxobj$A (for the A matrix).

5.1. Parameter transformations

Rather than directly operate on covariance matrices, ctsem takes as input cholesky decom-
posed covariance matrices (as these allow for unbounded estimation). The cholesky decom-
position is such that variance / covariance matrix Σ = LL⊤, where L is lower-triangular. This
means that input variance / covariance matrices for ctsem must be lower triangular. The
meaning of a 0 in the matrix, or diagonals constrained to equality, is the same for both co-
variance and cholesky decomposition approaches. Note that internally, ctsem optimizes over
the natural logarithm of the diagonal of any variance / covariance matrices (and the natural
logarithm of the negative diagonal of the DRIFT matrix). While these transformations may
be seen in the raw OpenMx parameter output section of the output summary, this requires no
specific knowledge or action, as the transformations take place internally, and the full DRIFT
and variance / covariance matrices are displayed in the summary matrices.

6. Model estimation
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Figure 3: A two process continuous time model with manifest indicators (blue) measuring
latent processes (purple). Variance / covariance paths are in orange, regressions in red.
Light grey paths indicate those that are either fixed to certain values or constrained to other
parameters. Note that the value of the parameters for all paths to latents at time 2 and
higher do not directly represent the effect, rather, the effect depends on a function of the
shown parameter and the time interval ∆t.
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The ctFit function estimates the specified model, calling the data in wide format along with
the ctsemmodel object. For an example, we can fit a similar model to that defined in Section 5.
We first load an example dataset contained in the ctsem package, then use the ctFit function
for parameter estimation. Output information can be obtained via the summary function. The
dataset used in this example, is a simulation of the relation between leisure time and happiness
for 100 individuals across 6 measurement occasions. Because our data here does not use the
default manifest variable names of Y1 and Y2, but rather LeisureTime and Happiness, we
must include a manifestNames character vector in our model specification. Because each
manifest directly measures a latent process, we can use the same character vector for the
latentNames argument, though one could specify any character vector of length 2 here, or
rely on the defaults of eta1 and eta2.

R> data(✬ctExample1✬)

R> example1model <- ctModel(n.latent = 2, n.manifest = 2, Tpoints = 6,

+ manifestNames = c(✬LeisureTime✬, ✬Happiness✬),

+ latentNames = c(✬LeisureTime✬, ✬Happiness✬), LAMBDA = diag(2))

R> example1fit <- ctFit(datawide = ctExample1, ctmodelobj = example1model)

R> summary(example1fit)

The output of summary after fitting such a model includes a range of matrices representing the
continuous time parameters (e.g., DRIFT), discrete time transformations of these parameters
for the time interval ∆t = 1 (e.g., discreteDRIFT), and when appropriate, asymptotic values
for the parameters as the time interval ∆t approaches ∞ (e.g., asymDIFFUSION). When
appropriate, standardised matrices are output with the suffix ‘std’.4 The $omxsummary portion
of the summary output contains information directly from the OpenMx summary function,
including the estimated parameters and fit information such as the -2LL, AIC, and BIC. See
the OpenMx user guide (Boker et al. 2014) for further details.

R> summary(example1fit)[✬discreteDRIFTstd✬]

$discreteDRIFTstd

LeisureTime Happiness

LeisureTime 0.9698 -0.0438

Happiness 0.0131 0.8440

The output above shows the standardised discrete time equivalent of the DRIFT matrix for
time interval ∆t = 1 as reported by summary. This is provided for convenience, but one should
note that it only represents the temporal effects given the specific interval of 1 unit of time (The
specific interval shown for the dicrete summary matrices may be modified with the argument
timeInterval). The unstandardised discreteDRIFT matrix may be calculated from the con-
tinuous drift matrix for any desired interval, with the code expm(summary(example1fit)$DRIFT
* desiredinterval), see Equation 2. From the diagonals of the matrix we see that changes
in the amount of leisure time one has tend to persist longer (indicated by a higher autoregres-
sion) than happiness. The cross-regression in row 2 column 1 suggests that as leisure time

4Standardisations are based on only the relevant variance, not the total. For instance, DRIFT parameters
are standardised using only the within-subject variance, asymDIFFUSION, because DRIFT parameters are
typically intended to represent individual, or average individual, temporal dynamics.
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increases, this tends to be followed by increases in happiness. However, the cross-regression
in row 1 column 2 suggests that as happiness increases, this tends to be followed by reductions

in leisure time. While these results are accurate for the specified model, they do not represent
the generating model for this data, which we explain more of in Section 7.1 on unobserved
heterogeneity.

6.1. Comparing different models

Suppose we wanted to test the model we fit above against a model where the effect of happiness
on later leisure time (parameter drift LeisureTime Happiness) was constrained to 0. First we
specify and fit the model under the null hypothesis by taking our previous model and fixing
the desired parameter to 0:

R> testmodel <- example1model

R> testmodel$DRIFT[1, 2] <- 0

R> testfit <- ctFit(datawide = ctExample1, ctmodelobj = testmodel)

The result may then be compared to the original model with a likelihood ratio test, using the
OpenMx function mxCompare. To use this function a base model fit object and a comparison
model fit object must be specified, with the latter being a constrained version of the former.
Note that ctsem stores the original OpenMx fit object under a $mxobj sub-object, which must
be referenced when using OpenMx functions directly.

R> mxCompare(example1fit$mxobj, testfit$mxobj)

base comparison ep minus2LL df AIC diffLL diffdf p

1 ctsem <NA> 16 2905 1184 537 NA NA NA

2 ctsem ctsem 15 2920 1185 550 14.8 1 0.000117

According to the conventional p < .05 criterion, results show that the more constrained model
fits the data significantly worse, that is, happiness has a significant effect on later leisure time
for this model and data. An alternative to this approach is to estimate likelihood based 95%
confidence intervals for our parameters of interest:

R> example1cifit <- ctFit(datawide = ctExample1, ctmodelobj = example1model,

+ confidenceintervals = ✬DRIFT✬)

lbound estimate ubound

ctsem.DRIFT[1,1] -0.0511 -0.0285 -0.00908

ctsem.DRIFT[2,1] -0.0102 0.0264 0.06316

ctsem.DRIFT[1,2] -0.1305 -0.0836 -0.04010

ctsem.DRIFT[2,2] -0.4016 -0.3205 -0.25492

Now the summary function reports 95% confidence bounds for the continuous drift param-
eters, which in case of drift LeisureTime Happiness does not include 0. For complicated
models, the estimation of confidence intervals may increase computation time considerably.
Note that although the standard errors of parameter estimates may be automatically returned
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via OpenMx and displayed via summary, likelihood based confidence intervals are the recom-
mended approach because confidence intervals are unlikely to be symmetric around the point
estimate for many parameters in a continuous time model.

6.2. Plots

A visual depiction of the relationships between the processes over time can be obtained by
using the plot function on any fit object created by ctFit. This will show the latent processes’
mean trajectories, within-subject variance, stable between-subject variance (when applicable),
autoregression, and cross regression plots. Autoregression plots show the impact of a 1 unit
change in a process on later values of that process, while cross regression plots show the
impact of a 1 unit change in one process on later values of other processes. Plots of the
discrete time autoregressive and cross regression coefficients for the above fitted model are
shown in the top row of Figure 4.

7. Continuous time models: extensions

7.1. Unobserved heterogeneity

When modelling panel data, the continuous intercept parameter κ reflects the expected value
for continuous time intercept ξ, which, along with the initial means, determines the average
level and mean trajectory of a process. In panel data, however, it is common that individuals
exhibit stable differences in the level. Within ctsem we call such stable differences traits, but
they may also be thought of more abstractly as unit level or between person differences, or
unobserved heterogeneity. When individuals exhibit this trait variance, fitting a model that
fails to account for it will result in parameter estimates that will not reflect the processes
of individual subjects, but will mix between and within-person information (Balestra and
Nerlove 1966; Oud and Jansen 2000; Halaby 2004). To account for this bias, individual
differences can be incorporated in two different ways. One way is to control for observed
covariates as will be discussed in Section 7.2.1. As covariates are likely to be insufficient, one
may also estimate the latent trait variance by estimating the variance and covariance ϕξ of

the intercept parameters ξ across individuals.5 In ctsem, freely estimated latent trait variance
may be added with the argument TRAITVAR = "auto" to the ctModel command. If the user
is interested in a specific variance-covariance structure, it is of course also possible to specify
the n.latent × n.latent matrix of free or fixed parameters by hand. To illustrate the inclusion
of trait variance, we fit the same model on simulated leisure time and happiness introduced
above, but also model the trait variance.

R> data(✬ctExample1✬)

R> traitmodel <- ctModel(n.manifest = 2, n.latent = 2, Tpoints = 6,

5Note that this is a substantially different approach to achieve unbiased effect estimates than the common
fixed effects approach (see for example Mundlak 1978), as our SEM specification, while essentially a random

effects model which have typically been associated with bias for within effects, allows unbiased estimation of
within and between effects at the same time. For further details on the estimation of unobserved heterogeneity
in an SEM context, see Bollen and Brand (2010), and in the continuous time case Voelkle, Driver, and Oud
(2015).
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+ LAMBDA = diag(2), manifestNames = c(✬LeisureTime✬, ✬Happiness✬),

+ latentNames = c(✬LeisureTime✬, ✬Happiness✬), TRAITVAR = "auto")

R> traitfit <- ctFit(datawide = ctExample1, ctmodelobj = traitmodel)

0 5 10 15 20

0.
0

0.
4

0.
8

Autoregression

V
al

ue

drift_LeisureTime_LeisureTime
drift_Happiness_Happiness

0 5 10 15 20

−
1.

0
0.

0
0.

5
1.

0

Standardised crossregression

V
al

ue

drift_Happiness_LeisureTime
drift_LeisureTime_Happiness

0 5 10 15 20

0.
0

0.
4

0.
8

Autoregression

V
al

ue

drift_LeisureTime_LeisureTime
drift_Happiness_Happiness

0 5 10 15 20

−
1.

0
0.

0
0.

5
1.

0

Standardised crossregression
V

al
ue

drift_Happiness_LeisureTime
drift_LeisureTime_Happiness

Figure 4: Top row shows parameter plots without accounting for trait variance, bottom row
with trait variance accounted for.

From Figure 4, we can see that after accounting for differences in the base levels of leisure
time and happiness, the estimated auto and cross regression effects between latent processes
are very different. Auto effects (persistence) have reduced, and the magnitude and sign of the
cross effects have switched. Now, rather than a decrease in leisure time predicting an increase

in happiness, after controlling for unobserved heterogeneity we see instead that increases in

leisure time predict later increases in happiness.

Traits at the indicator level

Beyond differences in the level of the latent process, it is also possible that stable individual
differences in the level of some or all indicators of a process may exist, and as such may be
better accounted for at the measurement level. Take for instance a latent process, happiness,
estimated using three survey questions at 10 time points for multiple individuals. The means
for question one are fixed to 0 to identify the model, while those for questions two and
three are 2.50 and 1.20 respectively. According to the models we have described so far, the
estimated (or fixed) manifest means apply equally to all individuals, and deviations from
this are taken to represent genuine information about the latent process. However, consider
that question three queries happiness with work, which may for some people be consistently
high, independent of their actual latent happiness, and for some may be consistently low.
Calculating the latent process using the same mean for happiness with work again confounds
between and within person information, but we can account for this by using what we will
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refer to as manifest traits – an additional, time invariant variance-covariance structure on
the measurement level. These are specified by including the MANIFESTTRAITVAR matrix in the
ctModel specification, either as MANIFESTTRAITVAR = "auto" wherein time invariant variance
and covariance for all indicators is freely estimated, or the n.manifest × n.manifest matrix
can be specified explicitly as usual. Such a specification may allow for improved fit of factor
models, more realistic estimates of the dynamics of individual processes, and the testing of
measurement related hypotheses. Note however that because process level traits are likely
to be difficult to identify in a model that also contains manifest level traits, it is important
to decide at which level to account for unobserved heterogeneity, or how to constrain and
identify the model.

7.2. Predictors

ctsem allows the inclusion of time independent as well as time time dependent predictors. Time
independent predictors could be variables such as gender, personality or socio-demographic
background variables that remain constant over time. An example of a time dependent
predictor could be a financial crisis, which all individuals in the sample experience at the
same time, or the death of a loved one, which only some individuals may experience and for
whom the time point of the event may differ. Both events may be thought of as adding some
relatively distinct and sudden change to an individual’s life, which influences the processes of
interest. Time dependent predictors are distinguished from the endogenous latent processes
in that they are assumed to be independent of fluctuations in the processes – changes in the
latent processes do not lead to changes in the predictor. Furthermore, no temporal structure
between different time points is modelled. Because of these two assumptions, in any case
where the time dependent predictor depends on earlier values of either itself or the latent
process, it may be better to model it as an additional latent process.

Time independent predictors

Time independent predictors are added by including the data as per the structures shown
in Section 4, and specifying the number of time independent predictors, n.TIpred, in the
ctmodel arguments. If not using the default variable naming, a TIpredNames character
vector should also be specified. For an example, we add the ’number of close friends’ as a time
independent predictor to the earlier leisure time and happiness model. Note that, just like in
any conventional regression analysis, if time independent predictors are not centered around
0, the estimate of continuous intercept parameters depends on the mean of the predictor.

R> data(✬ctExample1TIpred✬)

R> tipredmodel <- ctModel(n.manifest = 2, n.latent = 2, n.TIpred = 1,

+ manifestNames = c(✬LeisureTime✬, ✬Happiness✬),

+ latentNames = c(✬LeisureTime✬, ✬Happiness✬),

+ TIpredNames = ✬NumFriends✬,

+ Tpoints = 6, LAMBDA = diag(2), TRAITVAR = "auto")

R> tipredfit <- ctFit(datawide = ctExample1TIpred, ctmodelobj = tipredmodel)

R>

R> summary(tipredfit)[✬TIPREDEFFECT✬]

R> summary(tipredfit)[✬discreteTIPREDEFFECT✬]

R> summary(tipredfit)[✬asymTIPREDEFFECT✬]
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R> summary(tipredfit)[✬addedTIPREDVAR✬]

$TIPREDEFFECT

NumFriends

LeisureTime 0.061

Happiness 0.132

$discreteTIPREDEFFECT

NumFriends

LeisureTime 0.0503

Happiness 0.1076

$asymTIPREDEFFECT

NumFriends

LeisureTime 0.156

Happiness 0.316

$addedTIPREDVAR

LeisureTime Happiness

LeisureTime 0.0263 0.0533

Happiness 0.0533 0.1078

The matrices output from summary(tipredfit) will now include matrices related to time
independent predictors, while the estimated parameters now also includes a range of vari-
ance, covariance, and effect parameters for time independent predictors. The parameters
TIpred_LeisureTime_NumFriends and TIpred_Happiness_NumFriends reflect the continu-
ous time effects of the number of close friends (TI1) on the processes of leisure time and
happiness, however these effects may be more easily understood by referring to the matrix
output. Matrix TIPREDEFFECT displays the continuous time parameters, however dis-
creteTIPREDEFFECT shows the effect added to the processes for each unit of time, which
may provide a useful comparison with discrete time models. asymTIPREDEFFECT (Asymp-
totic time independent predictor effect) shows the expected increase in process means given
an increase of 1 on the time independent predictor. From these matrices we see that the
number of close friends has a positive relationship to both leisure time and happiness. The
final matrix, addedTIPREDVAR, displays the stable between-subject variance and covariance
in the processes accounted for by the time independent predictors.

Time dependent predictors

ctsem allows the specification of time dependent predictors: The fundamental form of such a
predictor is that of a sudden impulse to the system which then dissipates back to the process
mean, however with some thought it is possible to specify a wide range of effect shapes. Figure
5 provides an example of two different extremes, the basic impulse form and a permanent level
change form. A single time dependent predictor can be incorporated in a ctsem model by
adding the argument n.TDpred = 1 to the ctModel function, as well as a TDpredNames vector
if not using the default variable naming in your data, then fitting as usual. In the following
example, we use the same two simulated processes as above and include an intervention
that all individuals experience at time 5. For example, let us assume everyone receives a large
amount of money and we are interested in the impact of this monetary gift on leisure time and
happiness. We expect that some short term increase in both leisure time and happiness may
occur, as people may take holidays or enjoy the unexpected boon otherwise, but we also want
to check whether the gift we provide may also cause a longer term adjustment in leisure time
or happiness. To this end we first fit a model with the basic impulse effect, coded in the data
as a 1 when the intervention occurs and a 0 otherwise.6 To aid estimation, because we know

6While this form of dummy coding works well, if there are predictors with no variance and the TDPREDVAR
matrix is not specified, ctsem warns the user and fixes TDPREDVAR to a diagonal 0.01 matrix.
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Figure 5: Two shapes of time dependent predictors: both plots show 5 selected individuals
data, all experiencing a time dependent predictor at time point 5. The model-based expected
trajectory of the predictor effect (including autoregression) is also shown as a solid black
line. On the left, the processes spike up and then dissipate, reflecting a transient change, or
impulse. On the right, the processes trend upwards towards a new equilibrium, reflecting a
stable change in the level.

that our intervention was neither related to individuals initial (T0) levels, or their average

levels over time (TRAITVAR), we fix the relevant covariance matrices (T0TDPREDCOV and
TRAITTDPREDCOV) to 0.

R> data(✬ctExample2✬)

R> tdpredmodel <- ctModel(n.manifest = 2, n.latent = 2, n.TDpred = 1,

+ Tpoints = 8, manifestNames = c(✬LeisureTime✬, ✬Happiness✬),

+ TDpredNames = ✬MoneyInt✬, latentNames = c(✬LeisureTime✬, ✬Happiness✬),

+ T0TDPREDCOV = matrix(0, nrow = 2, ncol=7),

+ TRAITTDPREDCOV = matrix(0, nrow = 2, ncol=7),

+ LAMBDA = diag(2), TRAITVAR = "auto")

R> tdpredfit <- ctFit(datawide = ctExample2, ctmodelobj = tdpredmodel)

R>

R> summary(tdpredfit)[✬TDPREDEFFECT✬]

R> summary(tdpredfit)[✬discreteTDPREDEFFECT✬]

$TDPREDEFFECT

MoneyInt

LeisureTime 0.633

Happiness 0.742

$discreteTDPREDEFFECT

MoneyInt

LeisureTime 0.558

Happiness 0.464

The matrices reported from summary(tdpredfit) will now include those related to the time
dependent predictor, and the parameters section will include all the additional free param-
eters estimated, including many variance and covariance related parameters, and the effect
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parameters TDpred LeisureTime MoneyInt and TDpred Happiness MoneyInt. Looking at
the summary matrices, TDPREDEFFECT shows us the initial impact, and discreteTDPRE-
DEFFECT shows the impact remaining after 1 unit of time. From the matrices, we can see
that the monetary intervention relates directly to subsequent increases in leisure time, with
also an additional direct effect on happiness. Standardised estimates are not provided be-
cause we assume no model for the variance of time dependent predictors. To test the longer
term changes introduced via the monetary intervention, we must instead model the impact of
the predictor via an additonal latent process: We fix the intercepts (T0MEANS and CINT)
and random variance (T0VAR, DIFFUSION, and TRAITVAR) of the additional process to
0; set changes to persist indefinitely via a diagonal DRIFT value of 0; fix the impact of the
predictor on the new process to 1 (to identify the effect); fix the impact of the two original
latent processes on the new to 0 (via the off-diagonals in the third row of DRIFT); and es-
timate the impact of the additional process on our original two processes of interest (via the
off-diagonals in the third column of DRIFT). Alternatively, one could also estimate the time
course of predictor effects by freeing the persistence parameter of the additional process.

R> data(✬ctExample2✬)

R> tdpredmodel <- ctModel(n.manifest = 2, n.latent = 3, n.TDpred = 1,

+ Tpoints = 8, manifestNames = c(✬LeisureTime✬, ✬Happiness✬),

+ TDpredNames = ✬MoneyInt✬,

+ latentNames = c(✬LeisureTime✬, ✬Happiness✬, ✬MoneyIntLatent✬),

+ T0TDPREDCOV = matrix(0, nrow = 3, ncol = 7),

+ TRAITTDPREDCOV = matrix(0, nrow = 3, ncol = 7),

+ LAMBDA = matrix(c(1,0, 0,1, 0,0), ncol = 3), TRAITVAR = "auto")

R>

R> tdpredmodel$TRAITVAR[3, ] <- 0

R> tdpredmodel$TRAITVAR[, 3] <- 0

R> tdpredmodel$DIFFUSION[, 3] <- 0

R> tdpredmodel$DIFFUSION[3, ] <- 0

R> tdpredmodel$T0VAR[3, ] <- 0

R> tdpredmodel$T0VAR[, 3] <- 0

R> tdpredmodel$CINT[3] <- 0

R> tdpredmodel$T0MEANS[3] <- 0

R> tdpredmodel$TDPREDEFFECT[3, ] <- 1

R> tdpredmodel$DRIFT[3, ] <- 0

R>

R> tdpredfit <- ctFit(datawide = ctExample2, ctmodelobj = tdpredmodel)

R>

R> summary(tdpredfit)[✬DRIFT✬]

$DRIFT

LeisureTime Happiness MoneyIntLatent

LeisureTime -0.2284 -0.0317 0.07430

Happiness 0.0427 -0.4563 -0.04648

MoneyIntLatent 0.0000 0.0000 -0.00001

R> summary(tdpredfit, timeInterval = 20)[✬discreteTDPREDEFFECT✬]
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$discreteTDPREDEFFECT

MoneyInt

LeisureTime 0.3376

Happiness -0.0699

MoneyIntLatent 0.9998

Now, if we look at column 3 of the DRIFT matrix, we see that the long term monetary
intervention process appears to cause increases in leisure time, but potentially reductions
in happiness. The discreteTDPREDEFFECT matrix after 20 time units shows the total
expected effect of the predictor (both the impulse and level component) on the processes, and
these effects can also be seen in the means when plotting.

7.3. N = 1 time series with multiple indicators

In the examples so far, we have dealt with multiple individuals with relatively few measure-
ment occasions, and latent processes have been estimated by a single indicator. However,
ctsem may also be used for the analysis of time series data for single subjects observed at
many measurement occasions, as well as the estimation of latent factors estimated from mul-
tiple indicators. With single-subject data, a Kalman filter implementation is typically far
quicker than the matrix arrangement we use for multiple subjects, however ctsem allows ei-
ther to be used. To illustrate these features, we perform a dynamic factor analysis on a single
individual, with three manifest indicators measured at 50 occasions. Because the model is
fitted to a single individual, we cannot freely estimate both the latent variance and mean
at the first measurement occasion, but we must fix the 1 × 1 T0VAR matrix to a reasonable
value, or implement stationarity constraints as discussed in Section 4.3. The precise fixed
value becomes irrelevant as the time series length increases (Durbin and Koopman 2012).
Note that in this example the LAMBDA matrix specifies a loading of 1.00 for manifest Y1,
while loadings for Y2 and Y3 are freely estimated. Similarly, the mean for Y1 is fixed to 0,
with the others free (by default these would be fixed to 0, but this may be too restrictive for
a factor model). These constraints serve to identify the measurement model without further
constraining it. Note also that although ctsem uses the Kalman filter by default when a single
subject is specified, this can be overridden by specifying the objective = "mxRAM" argument
to ctFit, if one wishes to use the slower RAM implementation. The Kalman filter may also
be specified for multiple subjects. In this case, between subject trait or time independent
predictor matrices are ignored, and instead any free continuous intercept parameters are esti-
mated as different for each individual (Depending on the amount of data, this approach may
be more likely to overfit).

R> data(✬ctExample3✬)

R> model <- ctModel(n.latent = 1, n.manifest = 3, Tpoints = 100,

+ LAMBDA = matrix(c(1, ✬lambda2✬, ✬lambda3✬), nrow = 3, ncol = 1),

+ MANIFESTMEANS = matrix(c(0, ✬manifestmean2✬, ✬manifestmean3✬), nrow = 3,

+ ncol = 1))

R> fit <- ctFit(data = ctExample3, ctmodelobj = model, objective = ✬Kalman✬,

+ stationary = c(✬T0VAR✬))
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7.4. Multiple group continuous time models

In some cases, certain groups or individuals may exhibit different model parameters. We can
investigate group or individual level differences by specifying a multiple group model using the
ctMultigroupFit function. For this example, we will use the same model structure as in the
single subject example from Section 7.3, but apply it to two groups of 10 individuals, whom
we expect to exhibit differences in the loading of the third manifest variable. When using
ctMultigroupFit, all parameters are free across groups by default. However, in addition to
the standard model specification you may also specify either a fixed model, or a free model.
A fixed model should be of the same structure as the base model, with any parameters you
wish to constrain across groups set to the character string ’groupfixed’. The value for any
other parameters is not important. Alternatively, one may specify a free model, where any
parameters to freely estimate for each group are given the label ’groupfree’, and all others
will be constrained across groups. In this example, because we only want to examine group
differences on one parameter, we specify a free model in which the loading parameter between
manifest3 and our latent process eta1 is labelled ’groupfree’ – this estimates distinct lambda3
parameters for each group, and constrains all other parameters across the two groups to
equality. The group specific parameter estimates will appear in the resulting summary prefixed
by the specified grouping vector. This is the final requirement for ctMultigroupFit and is
simply a vector specifying a group label for each row of our data. In this case we have groups
one and two, containing the first and the last 10 rows of data respectively, prefixed by the
letter ’g’ to denote group.

R> data(✬ctExample4✬)

R>

R> basemodel <- ctModel(n.latent = 1, n.manifest = 3, Tpoints = 20,

+ LAMBDA = matrix(c(1, ✬lambda2✬, ✬lambda3✬), nrow = 3, ncol = 1),

+ TRAITVAR=✬auto✬, MANIFESTMEANS = matrix(c(0, ✬manifestmean2✬,

+ ✬manifestmean3✬), nrow = 3, ncol = 1))

R>

R> freemodel <- basemodel

R> freemodel$LAMBDA[3, 1] <- ✬groupfree✬

R> groups <- paste0(✬g✬, rep(1:2, each = 10), ✬_✬)

R>

R> multif <- ctMultigroupFit(datawide = ctExample4, groupings = groups,

+ ctmodelobj = basemodel, freemodel = freemodel)

g1__lambda3 g2__lambda3

1.417 0.208

Looking at the estimated parameters from summary, we indeed see a difference between pa-
rameters g1 lambda3 (group 1) and g2 lambda3 (group 2), and could test this with the usual
approaches discussed in Section 6.1. A point to note is that the multiple group and Kalman
filter implementations can be easily combined by specifying a distinct group for each row of
data. This can allow for an interesting mixture of individual and group level parameters.

7.5. Moving average and oscillations - dynamics on the diffusion process
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In the models discussed so far, the latent error term was independent over time. However,
what about a situation where we have frequently measured variables which show very slow
patterns of change, upwards or downwards trajectories that are maintained over many obser-
vations? In exactly the same way as the expected value of the process depends on prior values,
in such a situation the expected value of the innovation would also be predictable based on
prior values, rather than always 0. This can provide for oscillations and slower patterns of
change, as for example with damped linear oscillators, or moving average effects within the
ARMA modelling framework.

Continuous time models of this variety are theoretically plausible, as changes to the level
of a process are not necessarily always random in direction, but may depend on contextual
circumstances that have some persistence. Consider an individual’s overall health over the
course of 20 years, sampled every few months. If the individual changes exercise or eating
habits, changes in health do not manifest instantly, rather we could expect either a slow
increase or slow reduction, depending on whether the change of habits was positive or negative.
Thus, for many measurements, the change in health from the previous measurement will likely
be in the same direction as the change was one step earlier. The following details how to specify
such a model, generate data using the ctGenerate function, simply plot the generated data,
and estimate the parameters.

R> testm <- ctModel(Tpoints = 200, n.latent = 2, n.manifest = 1,

+ LAMBDA = matrix(c(1, 0), nrow = 1, ncol = 2),

+ DIFFUSION = matrix(c(0, 0, 0, 1), 2),

+ MANIFESTVAR = diag(.4,1),

+ DRIFT = matrix(c(0, -.1, 1, -.3), nrow = 2),

+ CINT = matrix(c(1, 0), nrow = 2))

R>

R> data<-ctGenerate(testm,n.subjects=1,burnin=200,dT=1)

R>

R> ctIndplot(data,n.subjects=1,n.manifest=1,Tpoints=200)

R>

R> model <- ctModel(Tpoints = 200, n.latent = 2, n.manifest = 1,

+ LAMBDA = matrix(c(1, 0), nrow = 1, ncol = 2),

+ DIFFUSION = matrix(c(0, 0, 0, ✬diffusion✬), 2),

+ DRIFT = matrix(c(0, ✬regulation✬, 1, "diffusionAR"), nrow = 2),

+ CINT = matrix(c("processCINT", 0), nrow = 2))

R>

R> fit<-ctFit(data,model,stationary=c(✬T0MEANS✬,✬T0VAR✬))

In the above, we focus on a model for a single subject, and specify with LAMBDA that a
single manifest variable measures only the first latent process. With DIFFUSION we specify
that only the 2nd process, our unobserved diffusion process, experiences standard random
innovations. With DRIFT, we specify that the 2nd process has a freely estimated autoregres-
sion term, that the diffusion process directly impacts the first process with a 1:1 relationship,
and that as the level of the main process increases, the level of the diffusion process decreases
– providing necessary regulation. With CINT we specify that only the main process has a
freely estimated continuous intercept (necessary for identification in this case). Voelkle and
Oud (2013) discuss modelling a damped linear oscillator in detail, however here we demon-



Charles C. Driver, Johan H. L. Oud, Manuel C. Voelkle 25

strate how to load the data and fit the oscillating model from their paper. In this case, we
also specify good starting values with the startValues argument to ctModel.

R> data(✬Oscillating✬)

R>

R> inits <- c(-38, -.5, 1, 1, .1, 1, 0, .9)

R> names(inits) <- c(✬cross✬,✬auto✬, ✬diffusion22✬,

+ ✬T0var11✬, ✬T0var21✬, ✬T0var22✬,✬m1✬, ✬m2✬)

R>

R> oscillatingm <- ctModel(n.latent = 2, n.manifest = 1, Tpoints = 11,

+ MANIFESTVAR = matrix(c(0), nrow = 1, ncol = 1),

+ LAMBDA = matrix(c(1, 0), nrow = 1, ncol = 2),

+ T0VAR = matrix(c(✬T0var11✬, ✬T0var21✬, 0, ✬T0var22✬), nrow = 2, ncol = 2),

+ DRIFT = matrix(c(0, "crosseffect", 1, "autoeffect"), nrow = 2, ncol = 2),

+ CINT = matrix(0, ncol = 1, nrow = 2),

+ DIFFUSION = matrix(c(0, 0, 0, "diffusion"), nrow = 2, ncol = 2),

+ startValues = inits)

R>

R> oscillatingf <- ctFit(Oscillating, oscillatingm)

8. Additional specification options and tips for model estimation

Given the complexity of parameter constraints, model estimation is sometimes more difficult
than for standard structural equation models. To ensure reliable estimation, there are some
additional approaches that may be helpful. The simplest approach is to try fitting using the
argument carefulFit = TRUE for the ctFit function. This initiates a two-step procedure,
in which the first step penalises the likelihood7 to help maintain potentially problematic pa-
rameters close to 0, and then uses these estimates as starting values for maximum likelihood
estimation. Beyond this, as a general guideline we suggest starting with simpler, more con-
strained models and freeing parameters in a stepwise fashion. This could involve developing
the measurement model separately, estimating only autoregressive parameters of the DRIFT
matrix at first (in simple models, this means constraining the off-diagonals of the DRIFT
matrix to 0), or fixing the factor loading matrix prior to free estimation. If progression to ad-
ditional complexity results in worse likelihood values, the optimization has resulted in a local
rather than global optimum. In such a case, ensure that sensible starting values are specified.
These may be specified in the startValues argument of ctModel, as shown in the oscillating
example of Section sec:diffusiondynamics, or alternatively, the raw OpenMx parameters may
be extracted from a previous fit using the OpenMx function omxGetParameters, and used
with ctFit via the omxStartValues argument. The following code is an example of how this
would be applied to the first fitting example, from Section 6.

R> omxInits <- omxGetParameters(example1fit$mxobj)

R>

7The sum of squares of each parameter that is neither a loading nor mean related is multipled by 1 thou-
sandth of the likelihood, then added to the likelihood
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R> fitWithInits <- ctFit(data = ctExample1, ctmodelobj = example1model,

+ omxStartValues = omxInits)

If stepwise model building with starting values based on simpler fits still fails to produce an
improved solution, some of the following suggestions may be helpful. The time scale, although
theoretically unimportant in the sense that all time ranges can be accounted for, can be com-
putationally very relevant. It is helpful to choose a scale that roughly matches the expected
dynamics – for instance a time scale of nanoseconds for panel data measured yearly would
be problematic, instead, a yearly or monthly time scale could be used. Centering the grand

mean of the variables to 0 can be useful, as can standardising the variances, particularly in
cases where both a measurement model and dynamic model are estimated. Trying a different
optimizer may help, by default the SLSQP optimizer is requested via OpenMx, but setting the
argument optimizer=’NPSOL’ to ctFit may in some cases be better. Note that for NPSOL,
OpenMx must be downloaded directly via the OpenMx website, rather than via CRAN. One
way to search for an improved solution is simply to try many times with varying starting
values. This is automated by default using the mxTryHard function from OpenMx, however
you may want to increase the retryattempts argument to ctFit, or simply re-run ctFit

many times, as it generates unspecified starting values with some randomness. However, since
both automated procedures begin within a similar range, for truly problematic cases one may
consider adding more extensive randomness to the starting values manually. In situations
with a limited number of time points, you may implement the stationarity assumption, so
that parameters related to the first time point are no longer estimated, but constrained to
the asymptotic effects, when the time interval ∆t → ∞. This can make optimization more
straightforward, and may serve as a useful basis for determining starting values, or as a vi-
able model in itself. For more discussion regarding stationarity conditions see Section 4.3.
When time intervals vary for every individual, optimization can be quite slow. To quickly
estimate approximate versions of a model, you may use the meanIntervals = TRUE argument
to ctFit, which will set every individual’s time intervals to the mean of the interval across
all individuals. A step further even is to specify the argument objective = ’cov’ in order
to estimate a covariance matrix from the supplied data and fit directly to that. In cases with
variability in time intervals these approaches will substantially speed up optimization, but
also waste information and bias parameters. Using such an approach in combination with a
constrained DRIFT matrix to generate starting values can be an excellent way to increase
both speed and reliability of estimation for large or complex problems.

9. Limitations and future directions

Currently, a number of assumptions are present in the specification of continuous time models
implemented in ctsem. Although the processes are allowed to begin at different levels and
variances, from then on a time-invariant model is assumed. Thus, ctsem cannot presently
account for time-varying aspects of the processes, except in the form of observed exogenous
inputs via time dependent predictors. Although as with many discrete models we could free
various parameters across measurement occasions, their meaning would become unclear, as
each measurement occasion (set of n.manifest columns in the wide format data) may contain
observations from many different times. Instead, models which allow parameters to vary as a
function of time could be incorporated in the future as per the time-varying specification in
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Oud and Jansen (2000). As we fit using full information maximum likelihood, standard as-
sumptions regarding multivariate normality apply to any manifest variables. Generalisations
of the measurement model to allow for non-normal indicators could be easily implemented
using the regular OpenMx functionality however. Although we allow for heterogeneity in the
level of the processes across individuals, heterogeneity in other parameters is not accounted
for, and can only be examined crudely via multiple group approaches. Presently, effects are
assumed to be transmitted near instantaneously, as we do not estimate a dead time between
inputs and the effect of inputs. Thus, when there is a dead time between an input and its’
effect, the model is misspecified. We believe this is unlikely to severely impact estimates
unless the dead time is of a similar or greater order of magnitude as observation intervals,
however such a parameter can be estimated and incorporated within the continuous time
equations (Richard 2003). Although in such areas ctsem may benefit from expansion, ctsem
as it stands allows for the straightforward specification of continuous time dynamic models
for both panel and time series data, which may include a measurement model, exogenous
predictors, multiple processes, unobserved heterogeneity, multiple groups, as well as easy to
specify parameter constraints and more complex dynamic specifications.
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