
Option Pricing Functions to Accompany

Derivatives Markets

Robert McDonald

June 27, 2016

Contents

1 Introduction 2

2 European Calls and Puts 2

3 Barrier Options 2

4 Perpetual American Options 3

5 Option Greeks 4

6 Binomial Pricing of European and American Options 7

7 Asian Options 9
7.1 Geometric Asian Options . . . . . . . . . . . . . . . . . . . . . . 9
7.2 Arithmetic Asian Options . . . . . . . . . . . . . . . . . . . . . . 10

8 Jumps and Stochastic Volatility 10

9 Bonds 11

10 Functions with Graphical Output 11
10.1 Quincunx or Galton Board . . . . . . . . . . . . . . . . . . . . . 11
10.2 Plotting the Solution to the Binomial Pricing Model . . . . . . . 12

A Vectorization 17
A.1 Automatic Vectorization . . . . . . . . . . . . . . . . . . . . . . . 17
A.2 Limitations of Automatic Vectorization . . . . . . . . . . . . . . 17
A.3 Three Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.3.1 Use a Booleans in Place of ifelse . . . . . . . . . . . . . . 19
A.3.2 Create a Data Frame . . . . . . . . . . . . . . . . . . . . . 19
A.3.3 Create a Vectorization Function . . . . . . . . . . . . . . 20
A.3.4 Why Worry About Vectorization? . . . . . . . . . . . . . 22

1



B Bibliography 23

1 Introduction

This vignette is an overview to the functions in the derivmkts package, which
was conceived as a companion to my book Derivatives Markets (McDonald,
2013). The material has an educational focus. There are other option pricing
packages for R, but this package has several distinguishing features:

• function names (mostly) correspond to those in Derivatives Markets.

• vectorized Greek calculations are convenient both for individual options
and for portfolios

• the quincunx function illustrates the workings of a quincunx (Galton board).

• binomial functions include a plotting function that provides a visual de-
piction of early exercise

2 European Calls and Puts

Table 1 lists the Black-Scholes related functions in the package. The functions
bscall, bsput, and bsopt provide basic pricing of European calls and puts. There
are also options with binary payoffs: cash-or-nothing and asset-or-nothing op-
tions. All of these functions are vectorized. The function bsopt by default
provides option greeks. Here are some examples:

s <- 100; k <- 100; r <- 0.08; v <- 0.30; tt <- 2; d <- 0

bscall(s, k, v, r, tt, d)

[1] 24.02

bsput(s, c(95, 100, 105), v, r, tt, d)

[1] 7.488 9.239 11.188

3 Barrier Options

There are pricing functions for the following barrier options:

• down-and-in and down-and-out barrier binary options

• up-and-in and up-and-out barrier binary options

• more standard down- and up- calls and puts, constructed using the barrier
binary options

Naming for the barrier options generally follows the convention
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Function Description
bscall European call
bsput European put
bsopt European call and put and associated Greeks: delta, gamma, vega,

theta, rho, psi, and elasticity
assetcall Asset-or-nothing call
assetput Asset-or-nothing put
cashcall Cash-or-nothing call
cashput Cash-or-nothing put

Table 1: Black-Scholes related option pricing functions

[u|d][i|o][call|put]

which means that the option is “up” or “down”, “in” or “out”, and a call or
put.1 An up-and-in call, for example, would be denoted by uicall. For binary
options, we add the underlying, which is either the asset or $1: cash:

[asset|cash][u|d][i|o][call|put]

H <- 115

bscall(s, c(80, 100, 120), v, r, tt, d)

[1] 35.28 24.02 15.88

uicall(s, c(80, 100, 120), v, r, tt, d, H)

[1] 34.55 23.97 15.88

bsput(s, c(80, 100, 120), v, r, tt, d)

[1] 3.450 9.239 18.141

uoput(s, c(80, 100, 120), v, r, tt, d, H)

[1] 2.328 5.390 9.070

4 Perpetual American Options

The functions callperpetual and putperetual price infinitely-lived American op-
tions. The pricing formula assumes that all inputs (risk-free rate, volatility,
dividend yield) are fixed. This is of course usual with the basic option pricing
formulas, but it is more of a conceptual stretch for an infinitely-lived option
than for a 3-month option.

1This naming convention differs from that in Derivatives Markets, in which names are
callupin, callupout, etc. Thus, I have made both names are available for these functions.
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In order for the option to have a determined value, the dividend yield on the
underlying asset must be positive if the option is a call. If this is not true, the
call is never exercised and the price is undefined.2 Similarly, the risk-free rate
must be positive if the option is a put.

By default, the perpetual pricing formulas return the price. By setting
showbarrier=TRUE, the function returns both the option price and the stock price at
which the option is optimally exercised (the “barrier”). Here are some examples:

s <- 100; k <- 100; r <- 0.08; v <- 0.30; tt <- 2; d <- 0.04

callperpetual(s, c(95, 100, 105), v, r, d)

[1] 44.71 43.82 43.00

callperpetual(s, c(95, 100, 105), v, r, d, showbarrier=TRUE)

$price

[1] 44.71 43.82 43.00

$barrier

[1] 338.6 356.4 374.2

5 Option Greeks

Greeks for vanilla and barrier options can be computed using the greeks function,
which is a wrapper for any pricing function that returns the option price and
which uses the default naming of inputs.3

H <- 105

greeks(uicall(s, k, v, r, tt, d, H))

uicall

Price 18.719815

Delta 0.605436

Gamma 0.008011

Vega 0.480722

Rho 0.836133

Theta -0.012408

Psi -1.210530

Elasticity 3.234200

2A well-known result (Merton, 1973) is that a standard American call is never exercised
before expiration if the dividend yield is zero and the interest rate is non-negative. A perpetual
call with δ = 0 and r > 0 would thus never be exercised. The limit of the option price as
δ → 0 is s, so in this case the function returns the stock price as the option value.

3In this version of the package, I have two alternative functions that return Greeks:

• The bsopt function by default produces prices and Greeks for European calls and puts.

• The greeks2 function takes as arguments the name of the pricing function and then
inputs as a list.

These may be deprecated in the future. greeks2 is more cumbersome to use but may be more
robust. I welcome feedback on these functions and what you find useful.
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The value of this approach is that you can easily compute Greeks for spreads
and custom pricing functions. Here are two examples. First, the value at time
0 of a prepaid contract that pays Sa

T at time T is given by the powercontract()

function:

powercontract <- function(s, v, r, tt, d, a) {
price <- exp(-r*tt)*s^a* exp((a*(r-d) + 1/2*a*(a-1)*v^2)*tt)

}

We can easily compute the Greeks for a power contract:

greeks(powercontract(s=40, v=.08, r=0.08, tt=0.25, d=0, a=2))

powercontract

Price 1634.936

Delta 81.747

Gamma 2.044

Vega 0.654

Rho 4.087

Theta -0.387

Psi -8.175

Elasticity 2.000

Second, consider a bull spread in which we buy a call with a strike of k1
and sell a call with a strike of k2. We can create a function that computes the
value of the spread, and then compute the greeks for the spread by using this
newly-created function together with greeks():

bullspread <- function(s, v, r, tt, d, k1, k2) {
bscall(s, k1, v, r, tt, d) - bscall(s, k2, v, r, tt, d)

}
greeks(bullspread(39:41, .3, .08, 1, 0, k1=40, k2=45))

bullspread_39 bullspread_40 bullspread_41

Price 2.0020318 2.1551927 2.306e+00

Delta 0.1542148 0.1519426 1.487e-01

Gamma -0.0017692 -0.0027545 -3.614e-03

Vega -0.0080732 -0.0132218 -1.822e-02

Rho 0.0401235 0.0392251 3.793e-02

Theta -0.0005476 -0.0003164 -8.246e-05

Psi -0.0601438 -0.0607771 -6.099e-02

Elasticity 3.0041376 2.8200287 2.645e+00

The Greeks function is vectorized, so you can create vectors of greek values
with a single call. This example plots, for a bull spread, the gamma as a function
of the stock price; see Figure 1.

sseq <- seq(1, 100, by=0.5)

x <- greeks(bullspread(sseq, .3, .08, 1, 0, k1=40, k2=45))

plot(sseq, x['Gamma',], type='l')

This code produces the plots in Figure 2:

k <- 100; r <- 0.08; v <- 0.30; tt <- 2; d <- 0

S <- seq(.5, 250, by=.5)
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Figure 1: Gamma for a 40-45 bull spread.
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Figure 2: All option Greeks, computed using the greeks() function

Call <- greeks(bscall(S, k, v, r, tt, d))

Put <- greeks(bsput(S, k, v, r, tt, d))

y <- list(Call=Call, Put=Put)

par(mfrow=c(4, 4)) ## create a 4x4 plot

par(mar=c(2,2,2,2))

for (i in names(y)) {
for (j in rownames(y[[i]])) { ## loop over greeks

plot(S, y[[i]][j, ], main=paste(i, j), ylab=j, type='l')

}
}

6 Binomial Pricing of European and American
Options

There are two functions related to binomial option pricing:

binomopt computes prices of American and European calls and puts. The
function has three optional parameters that control output:

• returnparams=TRUE will return as a vector the option pricing inputs,
computed parameters, and risk-neutral probability.

• returngreeks=TRUE will return as a vector the price, delta, gamma, and
theta at the initial node.

7



• returntrees=TRUE will return as a list the price, greeks, the full stock
price tree, the exercise status (TRUE or FALSE) at each node, and the
replicating portfolio at each node.

binomplot displays the asset price tree, the corresponding probability of being
at each node, and whether or not the option is exercised at each node. This
function is described in more detail in Section 10.2.

Here are examples of pricing, illustrating the default of just returning the
price, and the ability to return the price plus parameters, as well as the price,
the parameters, and various trees:

s <- 100; k <- 100; r <- 0.08; v <- 0.30; tt <- 2; d <- 0.03

binomopt(s, k, v, r, tt, d, nstep=3)

price

20.8

binomopt(s, k, v, r, tt, d, nstep=3, returnparams=TRUE)

price s k v r tt d nstep

20.7961 100.0000 100.0000 0.3000 0.0800 2.0000 0.0300 3.0000

p up dn h

0.4391 1.3209 0.8093 0.6667

binomopt(s, k, v, r, tt, d, nstep=3, putopt=TRUE)

price

12.94

binomopt(s, k, v, r, tt, d, nstep=3, returntrees=TRUE, putopt=TRUE)

$price

price

12.94

$greeks

delta gamma theta

-0.335722 0.010614 -0.007599

$params

s k v r tt d nstep p

100.0000 100.0000 0.3000 0.0800 2.0000 0.0300 3.0000 0.4391

up dn h

1.3209 0.8093 0.6667

$oppricetree

[,1] [,2] [,3] [,4]

[1,] 12.94 3.816 0.000 0.00

[2,] 0.00 21.338 7.176 0.00

[3,] 0.00 0.000 34.507 13.49

[4,] 0.00 0.000 0.000 47.00

$stree

[,1] [,2] [,3] [,4]

[1,] 100 132.09 174.47 230.45
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[2,] 0 80.93 106.89 141.19

[3,] 0 0.00 65.49 86.51

[4,] 0 0.00 0.00 53.00

$probtree

[,1] [,2] [,3] [,4]

[1,] 1 0.4391 0.1928 0.08464

[2,] 0 0.5609 0.4926 0.32441

[3,] 0 0.0000 0.3146 0.41445

[4,] 0 0.0000 0.0000 0.17650

$exertree

[,1] [,2] [,3] [,4]

[1,] FALSE FALSE FALSE FALSE

[2,] FALSE FALSE FALSE FALSE

[3,] FALSE FALSE TRUE TRUE

[4,] FALSE FALSE FALSE TRUE

$deltatree

[,1] [,2] [,3]

[1,] -0.3357 -0.1041 0.0000

[2,] 0.0000 -0.6471 -0.2419

[3,] 0.0000 0.0000 -0.9802

$bondtree

[,1] [,2] [,3]

[1,] 46.51 17.56 0.00

[2,] 0.00 73.71 33.03

[3,] 0.00 0.00 94.81

7 Asian Options

There are analytical functions for valuing geometric Asian options and Monte
Carlo routines for valuing arithmetic Asian options. Be aware that the greeks()

function at this time will not work automatically with geometric Asian options
nor (for different reasons) with arithmetic Asian options. I plan to address this
in a future release.4

7.1 Geometric Asian Options

Geometric Asian options can be valued using the Black-Scholes formulas for
vanilla calls and puts, with modified inputs. The functions return both call and
put prices with a named vector:

4At this time the greeks() function will not work with options valued using Monte Carlo.
The reason is that each invocation of the pricing function will start with a different random
number seed, resulting in some price variation that is due solely to random variation. Random
number generation and setting the seed is a global change. In a future release I hope to
address this by saving and restoring the seed within the greeks function. For the curious, a
Stackoverflow post discusses this issue.
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s <- 100; k <- 100; r <- 0.08; v <- 0.30; tt <- 2; d <- 0.03; m <- 3

geomavgpricecall(s, 98:102, v, r, tt, d, m)

[1] 14.01 13.56 13.12 12.70 12.28

geomavgpricecall(s, 98:102, v, r, tt, d, m, cont=TRUE)

[1] 10.952 10.498 10.058 9.632 9.219

geomavgstrikecall(s, k, v, r, tt, d, m)

[1] 9.058

7.2 Arithmetic Asian Options

Monte Carlo valuation is used to price arithmetic Asian options. For efficiency,
the function arithasianmc returns call and put prices for average price and average
strike options. By default the number of simulations is 1000. Optionally the
function returns the standard deviation of each estimate

arithasianmc(s, k, v, r, tt, d, 3, numsim=5000, printsds=TRUE)

Call Put sd Call sd Put

Avg Price 14.313 8.034 22.40 11.556

Avg Strike 8.323 5.139 14.53 7.233

Vanilla 20.446 10.983 33.76 15.073

The function arithavgpricecv uses the control variate method to reduce the
variance in the simulation. At the moment this function prices only calls, and
returns both the price and the regression coefficient used in the control variate
correction:

arithavgpricecv(s, k, v, r, tt, d, 3, numsim=5000)

price beta

13.98 1.04

8 Jumps and Stochastic Volatility

The mertonjump function returns call and put prices for a stock that can jump
discretely. A poisson process controls the occurrence of a jump and the size of
the jump is lognormally distributed. The parameter lambda is the mean number
of jumps per year, the parameter alphaj is the log of the expected jump, and
sigmaj is the standard deviation of the log of the jump. The jump amount is
thus drawn from the distribution

Y ∼ N (αJ − 0.5σ2
J , σ

2
J)
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mertonjump(s, k, v, r, tt, d, lambda=0.5, alphaj=-0.2, vj=0.3)

Call Put

23.98 15.02

c(bscall(s, k, v, r, tt, d), bsput(s, k, v, r, tt, d))

[1] 19.96 11.00

9 Bonds

The simple bond functions provided in this version compute the present value of
cash flows (bondpv), the IRR of the bond (bondyield), Macaulay duration (duration
), and convexity (convexity).

coupon <- 8; mat <- 20; yield <- 0.06; principal <- 100;

modified <- FALSE; freq <- 2

price <- bondpv(coupon, mat, yield, principal, freq)

price

[1] 123.1

bondyield(price, coupon, mat, principal, freq)

[1] 0.06

duration(price, coupon, mat, principal, freq, modified)

[1] 11.23

convexity(price, coupon, mat, principal, freq)

[1] 170.3

10 Functions with Graphical Output

Several functions provide visual illustrations of some aspects of the material.

10.1 Quincunx or Galton Board

The quincunx is a physical device the illustrates the central limit theorem. A
ball rolls down a pegboard and strikes a peg, falling randomly either to the left
or right. As it continues down the board it continues to strike a series of pegs,
randomly falling left or right at each. The balls collect in bins and create an
approximate normal distribution.

The quincunx function allows the user to simulate a quincunx, observing the
path of each ball and watching the height of each bin as the balls accumulate.
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Figure 3: Output from the Quincunx function

More interestingly, the quincunx function permits altering the probability that
the ball will fall to the right.

Figure 3 illustrates the function after dropping 200 balls down 20 levels of
pegs with a 70% probability that each ball will fall right:

par(mar=c(2,2,2,2))

quincunx(n=20, numballs=200, delay=0, probright=0.7)

10.2 Plotting the Solution to the Binomial Pricing Model

The binomplot function calls binomopt to compute the option price and the various
trees, which it then uses in plotting:

The first plot, figure 4, is basic:

binomplot(s, k, v, r, tt, d, nstep=6, american=TRUE, putopt=TRUE)

The second plot, figure 5, adds a display of stock prices and arrows connect-
ing the nodes.
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Figure 4: Basic option plot showing stock prices and nodes at which the option
is exercised.
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Figure 5: Same plot as Figure 4 except that values and arrows are added to the
plot.

binomplot(s, k, v, r, tt, d, nstep=6, american=TRUE, putopt=TRUE,

plotvalues=TRUE, plotarrows=TRUE)

As a final example, consider an American call when the dividend yield is
positive and nstep has a larger value. Figure 6 shows the plot, with early exercise
evident.

d <- 0.06

binomplot(s, k, v, r, tt, d, nstep=40, american=TRUE)

The large value of nstep creates a high maximum terminal stock price, which
makes details hard to discern in the boundary region where exercise first occurrs.
We can zoom in on that region by selecting values for ylimval; the result is in
Figure 7.

d <- 0.06

binomplot(s, k, v, r, tt, d, nstep=40, american=TRUE, ylimval=c(75, 225))

14



●●●●●●●●●●●●●●
●●●●●●

●●●●●●●

●

●●●●●●●

●

●●●●●●●●

●

●
●●●●●●●●

●

●

●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●
●●●●●●●●●●

●

●

●

●●●●●●●●●●
●

●

●

●

●
●●●●●●●●●●

●

●

●

●

●
●●●●●●●●●●●

●

●

●

●

●

●
●●●●●●●●●●

●
●

●

●

●

●

●
●●●●●●●●●●●

●
●

●

●

●

●

●

●●●●●●●●●●●●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●
●
●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●
●
●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●
●
●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●●●●●●●●●●●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●●●●●●●●●●●●●

●
●
●

●

●

0.0 0.5 1.0 1.5 2.0

0
50

0
10

00
15

00

American Call

Binomial Period

S
to

ck
 P

ric
e

Stock = 100, Strike = 100, Time = 2 years, Price = 16.732

Figure 6: Binomial plot when nstep is 40.
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Figure 7: Binomial plot when nstep is 40 using the argument ylimval to focus
on a subset.
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A Vectorization

Where possible, I have tried to make sure that the pricing functions return
vectors. This is automatic in many cases (for example, with the Black-Scholes
formula), but there are situations in which achieving robust vectorization re-
quires care when constructing a function. The purpose of this section is to
explain the problems I encountered and the solutions I considered. Perhaps I
overlooked the obvious or I am ignorant of some details of R. In either case I
hope you will let me know! Otherwise, I hope this discussion is helpful to others.

A.1 Automatic Vectorization

f = function(a, b, k) a*b + k

f(3, 5, 1)

[1] 16

f(1:5, 5, 1)

[1] 6 11 16 21 26

f(1:6, 1:2, 1)

[1] 2 5 4 9 6 13

In this example, R automatically vectorizes the multiplication using the re-
cycling rule. It’s worth noting that the third example, in which both arguments
are vectorized, but with different length vectors, is an unusual programming
construct.5 This property makes it trivial to perform what-if calculations for
an option pricing formula.

A.2 Limitations of Automatic Vectorization

A problem with automatic vectorization occurs when there are conditional state-
ments. With barrier options, for example, it is necessary to check whether the
asset price is past the barrier. R’s if statement is not vectorized, and the ifelse

function returns output that has the dimension of the conditional.

cond1 <- function(a, b, k) {
if (a > b) {

a*b + k

} else {
k

}
}
cond1(5, 3, 1)

[1] 16

5You can produce the same output in python using the itertools module.

17



cond1(5, 7, 1)

[1] 1

cond1(3:7, 5, 1)

Warning in if (a > b) {: the condition has length > 1 and only the first element will

be used

[1] 1

The third invocation of cond1 causes an error because the if statement is not
vectorized. This can be fixed by rewriting the conditional using ifelse, which
is vectorized. The following examples all compute correctly because if either a
or b are vectors, the conditional statement is vectorized:

cond2 <- function(a, b, k) {
ifelse(a > b,

a*b + k,

k

)

}
cond2(5, 3, 1)

[1] 16

cond2(5, 7, 1)

[1] 1

cond2(3:7, 5, 1)

[1] 1 1 1 31 36

There will, however, be a problem if only k is a vector. Suppose we set a = 5,
b = 7, k = 1 : 3. Because a < b, we want to produce the output 1, 2, 3. The
following example does not work as desired because neither of the variables in
the conditional (a and b) are a vector. Thus the calculation is not vectorized:

cond2(5, 7, 1:3)

[1] 1

The ifelse function returns output with the dimension of the conditional
expression, which in this case is a vector of length 1.

A.3 Three Solutions

One solution is to write the function so as to vectorize all the inputs to match
the vector length of the longest input. There are at least three ways to do this.
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A.3.1 Use a Booleans in Place of ifelse

We can create a boolean variable that is true if a > b. This will then control
which expression is returned:

cond2b <- function(a, b, k) {
agtb <- (a > b)

agtb*(a*b + k) + (1-agtb)*k

}

cond2b(5, 3, 1)

[1] 16

cond2b(5, 7, 1)

[1] 1

cond2b(3:7, 5, 1)

[1] 1 1 1 31 36

cond2b(5, 7, 1:3)

[1] 1 2 3

Whether this solution works in other functions depends on the structure of
the calculation and the nature of the output. In particular, if the value of a
boolean controls the data structure the function returns (a vector vs a list, for
example), then this solution does not work.

A.3.2 Create a Data Frame

We can enforce the recycling rule for all variables by creating a data frame
consisting of the inputs and assigning the columns back to the original variables:

cond2c <- function(a, b, k) {
tmp <- data.frame(a, b, k)

for (i in names(tmp)) assign(i, tmp[[i]])

ifelse(a > b,

a*b + k,

k

)

}

cond2c(5, 3, 1)

[1] 16

cond2c(5, 7, 1)

[1] 1

cond2c(3:7, 5, 1)
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[1] 1 1 1 31 36

cond2c(5, 7, 1:3)

[1] 1 2 3

One drawback of this solution is that we have to be careful to update the
data.frame() definition within the function if we change the function inputs. It
may be easy to overlook this when editing the function. The next solution is a
more robust version of the same idea.

A.3.3 Create a Vectorization Function

A final alternative is to create a vectorization function that exploits R’s func-
tional capabilities and does not require modifications if the function definition
changes. This approach can become quite complicated, but is relatively easy to
understand in simple cases. We create a vectorizeinputs() function that creates
a data frame and vectorizes all variables:

vectorizeinputs <- function(e) {
## e is the result of match.call() in the calling function

e[[1]] <- NULL

e <- as.data.frame(as.list(e))

for (i in names(e)) assign(i, eval(e[[i]]),

envir=parent.frame())

}

This function assumes that match.call() has been invoked in the calling func-
tion. The result of that invocation is manipulated to provide information about
the parameters passed to the function and used to create the data frame and
pass the variables back to the calling function.

cond3 <- function(a, b, k) {
vectorizeinputs(match.call())

ifelse(a > b, a*b + k, k)

}
cond3(5, 7, 1:3)

[1] 1 2 3

cond3(3:7, 5, 1)

[1] 1 1 1 31 36

cond3(3:7, 5, 1:5)

[1] 1 2 3 34 40

cond3(k=1:5, 3:7, 5)

[1] 1 2 3 34 40
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This approach becomes more complicated if there are implicit parameters in
the function. If truly implicit, these will not be available via match.call(), but
they can affect the solution. Here is an example:

cond4 <- function(a, b, k, multby2=TRUE) {
vectorizeinputs(match.call())

ifelse(multby2,

2*(a*b + k),

a*b + k

)

}
cond4(5, 7, 1:3)

[1] 72

cond4(3:7, 5, 1)

[1] 32

cond4(3:7, 5, 1:5)

[1] 32

cond4(k=1:5, 3:7, 5)

[1] 32

The output is not vectorized because the implicit parameter multby2 is im-
plicit — it is not explicit in the function call — and therefore it is not vectorized.
One way to handle this case is to rewrite the vectorizeinputs function to retrieve
the full set of function inputs for the called function. The name of the function
is available through match.call()[[1]], and the function parameters are available
using the formals function. We can then add the implicit parameters to the
vectorized set of inputs. The function vectorizeinputs2 takes this approach:

vectorizeinputs2 <- function(e) {
funcname <- e[[1]]

fvals <- formals(eval(funcname))

fnames <- names(fvals)

e[[1]] <- NULL

e <- as.data.frame(as.list(e))

implicit <- setdiff(fnames, names(e))

if (length(implicit) > 0) e <- data.frame(e, fvals[implicit])

for (i in names(e)) assign(i, eval(e[[i]]),

envir=parent.frame())

}

cond5 <- function(a, b, k, multby2=TRUE, altmult=1) {
vectorizeinputs2(match.call())

ifelse(multby2,

2*(a*b + k),

altmult*(a*b + k)

)

}
cond5(5, 7, 1:3)
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[1] 72 74 76

cond5(3:7, 5, 1)

[1] 32 42 52 62 72

cond5(3:7, 5, 1:5)

[1] 32 44 56 68 80

cond5(k=1:5, 3:7, 5)

[1] 32 44 56 68 80

cond5(k=1:5, 3:7, 5, multby2=FALSE)

[1] 16 22 28 34 40

cond5(k=1:5, 3:7, 5, multby2=FALSE, altmult=5)

[1] 80 110 140 170 200

A.3.4 Why Worry About Vectorization?

R provides looping constructs and apply functions. It might seem that it’s not
necessary to worry about vectorization. There are two reasons that I choose to
vectorize where feasible.

First, I personally find vectorization convenient and transparent. I find
vectorized code easier to read and it fits the way I like to work. This is an
aesthetic argument.

Second, in my experience the apply functions are a real hurdle for new
R users. Automatic vectorization makes it possible to perform complicated
calculations in a straightforward and intuitive way.
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