
gMCP - an R package for a graphical approach to weighted

multiple test procedures

Kornelius Rohmeyer

April 15, 2011

Contents

1 Introduction 1

1.1 Example and diving in . 2

2 Creating the graph 3

2.1 Using R . 4

2.1.1 graph2matrix and matrix2graph . 5

2.2 Using the GUI . 6

3 The sequentially rejective MTP 7

3.1 Using R . 7

3.1.1 Adjusted p-values and simultaneous confidence intervals 8

3.2 Using the GUI . 9

4 Weighted parametric tests 9

5 Epsilon edges 9

6 Options and Import/Export 11

6.1 Options . 11

6.2 Import/Exports . 11

6.3 Important TikZ commands for optimizing the reports 12

7 Case Studies 13

8 Appendix - Multiple Testing Basics 13

Index 14

Literatur 15

1 Introduction

This package provides functions and graphical user interfaces for graph based multiple test proce-
dures. These graphs define a weighting strategy for all subsets of null hypotheses and following the
closed test procedure weighted tests can be performed on these subsets leading to a multiple test

1

procedure controlling the family wise error rate in the strong sense. In some cases shortcuts are
available, for example the weighted Bonferroni procedure leads to a sequentially rejective multiple
test procedure.

At all steps either graphical user interfaces or the R Console with S4 objects and methods can be
used.

Please note that this is still a beta release and the API will most likely still change in future
versions.

1.1 Example and diving in

Let’s start with a well-known procedure and see how it fits into this graphical approach to weighted
multiple test procedures: The Bonferroni-Holm-Procedure [6].

Theorem 1.1 (Bonferroni-Holm-Procedure). Let T1, . . . , Tm be test statistics for m ∈ N null
hypotheses H1, . . . ,Hm and p1, . . . , pm the associated p-values. Then the following test will control
the familywise error rate at level α ∈]0, 1[in the strong sense:

Denote the ordered p-values by p(1) < p(2) < . . . < p(m) and the corresponding hypotheses by
H(1), H(2), . . . ,H(m).

Reject H(1), H(2), . . . ,H(j) such that

p(i) ≤ α

n− i+ 1
for all 1 ≤ i ≤ j.

The corresponding graph for the Bonferroni-Holm-Procedure for three hypotheses is given in Figure
1. We see a fully connected graph, where each node represents a hypothesis and the nodes and
edges have weights.

H1

1
3
α

H2

1
3
α

H3

1
3
α

1
2

1
2

1
2

1
2

1
2

1
2

Figure 1: Graph representing the Bonferroni-Holm-Procedure for three hypotheses.

A null hypothesis can be rejected, when the p-value is less than the alpha level of the corresponding
node. In this case the graph will be updated and the alpha level of this node is passed according
to the edge weights.

Example 1.2. We give an example for the Bonferroni-Holm-Procedure that will be used repeatedly
throughout this manual. Of course this package is made for more advanced tests (you find a
selection in section 7), but since most readers are already familiar with this procedure, for a first
introduction of gMCP, we stick to this simple example.

Let p1 = 0.01, p2 = 0.07 and p3 = 0.02 be three p-values and α = 0.05. In the first step H1 can
be rejected since p1 < α/3. The updated graph can be seen in figure 2 and now also H3 can be
rejected since p1 < α/2. Again the graph is updated, but H2 can not be rejected.

Let’s reproduce this with the gMCP package. We start R and enter:

> library(gMCP)

> graphGUI()

The GUI seen in Figure 4 is shown and we select from the menu ”Example graphs” the entry
”Bonferroni-Holm Test”. We enter the three p-values in the respective fields on the right side. By
clicking on the button with the green arrow we start the test procedure and can sequentially reject
all three hypotheses.

If we don’t want to use the GUI we can also use R:

2

H1

1
3
α

H2

1
3
α

H3

1
3
α

1
2

1
2

1
2

1
2

1
2

1
2

↓ reject H1

H1

0

H2

1
2
α

H3

1
2
α

1

1

↓ reject H3

H1

0

H2

α

H3

0

Figure 2: Example showing how two null hypotheses can be rejected with p-values p1 = 0.01,
p2 = 0.07 and p3 = 0.02.

> library(gMCP)

> graph <- createBonferroniHolmGraph(3)

> gMCP(graph, pvalues = c(0.01, 0.07, 0.02), alpha = 0.05)

gMCP-Result

Initial graph:

A graphMCP graph

H1 (not rejected, weight=0.3333)

H2 (not rejected, weight=0.3333)

H3 (not rejected, weight=0.3333)

Edges:

H1 -(1/2)-> H2

H1 -(1/2)-> H3

H2 -(1/2)-> H1

H2 -(1/2)-> H3

H3 -(1/2)-> H1

H3 -(1/2)-> H2

P-values:

H1 H2 H3

0.01 0.07 0.02

Adjusted p-values:

H1 H2 H3

0.03 0.07 0.04

Alpha: 0.05

Hypothesis rejected:

H1 H2 H3

TRUE FALSE TRUE

Final graph after 2 steps:

A graphMCP graph

H1 (rejected, weight=0)

H2 (not rejected, weight=1)

H3 (rejected, weight=0)

No edges.

2 Creating the graph

In the first step a graph that describes the multiple test procedures must be created.

3

H11

1
3
α

H21

1
3
α

H31

1
3
α

H12

0

H22

0

H32

0

1
2

1
2

1
3

1
3

1
3

1
2

1
2

1
1
2

1
2 1

Figure 3: Example graph from [2] that we will create in this vignette.

2.1 Using R

We build upon the package graph [4], more precisely we declare a new class graphMCP that is a
subclass of graphNEL. The initialize method of this subclass differs only in an extra argument
alpha, the initial allocation of the significance level alpha to the individual hypotheses. Declaration
of the nodes and edges is inherited from class graphNEL.

As an example we now create the graph from Bretz et al. [2] that you can see in figure 3.

> hnodes <- c("H11", "H21", "H31", "H12", "H22", "H32")

> weights <- c(1/3, 1/3, 1/3, 0, 0, 0)

> edges <- list()

> edges[["H11"]] <- list(edges = c("H21", "H12"), weights = c(1/2, 1/2))

> edges[["H21"]] <- list(edges = c("H11", "H31", "H22"), weights = c(1/3, 1/3, 1/3))

> edges[["H31"]] <- list(edges = c("H21", "H32"), weights = c(1/2, 1/2))

> edges[["H12"]] <- list(edges = "H21", weights = 1)

> edges[["H22"]] <- list(edges = c("H11", "H31"), weights = c(1/2, 1/2))

> edges[["H32"]] <- list(edges = "H21", weights = 1)

> graph <- new("graphMCP", nodes = hnodes, edgeL = edges, weights = weights)

Let’s print the newly created graph:

> print(graph)

A graphMCP graph

H11 (not rejected, weight=0.3333)

H21 (not rejected, weight=0.3333)

H31 (not rejected, weight=0.3333)

H12 (not rejected, weight=0)

H22 (not rejected, weight=0)

H32 (not rejected, weight=0)

Edges:

H11 -(1/2)-> H21

H11 -(1/2)-> H12

H21 -(1/3)-> H11

H21 -(1/3)-> H31

H21 -(1/3)-> H22

H31 -(1/2)-> H21

H31 -(1/2)-> H32

H12 -(1)-> H21

H22 -(1/2)-> H11

H22 -(1/2)-> H31

H32 -(1)-> H21

Since we also want to visualize the graph, we use the method nodeRenderInfo from package graph
to set appropriate x- and y-coordinates in the renderInfo. (We are compatible to the renderInfo
usage from package Rgraphviz [5].)

> nodeX <- c(H11 = 100, H21 = 300, H31 = 500, H12 = 100, H22 = 300, H32 = 500)

> nodeY <- c(H11 = 100, H21 = 100, H31 = 100, H12 = 300, H22 = 300, H32 = 300)

> nodeRenderInfo(graph) <- list(nodeX = nodeX, nodeY = nodeY)

4

Coordinates are interpretated as pixels in the GUI and big points in LATEX (72 bp = 1 inch).

Let’s take a look at the graph in LATEX rendered with TikZ [8] (you can see the compiled result in
figure 3):

> cat(graph2latex(graph))

\begin{tikzpicture}[scale=1]

\node (H11) at (100bp,-100bp)[draw,circle split,fill=green!80] {$H11$ \nodepart{lower} $\frac{1}{3}\alpha$};

\node (H21) at (300bp,-100bp)[draw,circle split,fill=green!80] {$H21$ \nodepart{lower} $\frac{1}{3}\alpha$};

\node (H31) at (500bp,-100bp)[draw,circle split,fill=green!80] {$H31$ \nodepart{lower} $\frac{1}{3}\alpha$};

\node (H12) at (100bp,-300bp)[draw,circle split,fill=green!80] {$H12$ \nodepart{lower} 0};

\node (H22) at (300bp,-300bp)[draw,circle split,fill=green!80] {$H22$ \nodepart{lower} 0};

\node (H32) at (500bp,-300bp)[draw,circle split,fill=green!80] {$H32$ \nodepart{lower} 0};

\draw [->,line width=1pt] (H11) to[bend left=15] node[near start,above,fill=blue!20] {$\frac{1}{2}$} (H21);

\draw [->,line width=1pt] (H11) to[auto] node[near start,above,fill=blue!20] {$\frac{1}{2}$} (H12);

\draw [->,line width=1pt] (H21) to[bend left=15] node[near start,above,fill=blue!20] {$\frac{1}{3}$} (H11);

\draw [->,line width=1pt] (H21) to[bend left=15] node[near start,above,fill=blue!20] {$\frac{1}{3}$} (H31);

\draw [->,line width=1pt] (H21) to[auto] node[near start,above,fill=blue!20] {$\frac{1}{3}$} (H22);

\draw [->,line width=1pt] (H31) to[bend left=15] node[near start,above,fill=blue!20] {$\frac{1}{2}$} (H21);

\draw [->,line width=1pt] (H31) to[auto] node[near start,above,fill=blue!20] {$\frac{1}{2}$} (H32);

\draw [->,line width=1pt] (H12) to[auto] node[near start,above,fill=blue!20] {1} (H21);

\draw [->,line width=1pt] (H22) to[auto] node[near start,above,fill=blue!20] {$\frac{1}{2}$} (H11);

\draw [->,line width=1pt] (H22) to[auto] node[near start,above,fill=blue!20] {$\frac{1}{2}$} (H31);

\draw [->,line width=1pt] (H32) to[auto] node[near start,above,fill=blue!20] {1} (H21);

\end{tikzpicture}

We can even change the position of the edge labels for further fine tuning of the graphical repre-
sentation. With the following command we place the label for the edge from H1 to H2 at position
(200, 80):

> edgeData(graph, "H11", "H21", "labelX") <- 200

> edgeData(graph, "H11", "H21", "labelY") <- 80

2.1.1 graph2matrix and matrix2graph

We can also constuct a graph from a given adjacency matrix via the command matrix2graph:

> m <- matrix(rep(1/3, 16), nrow = 4)

> diag(m) <- c(0, 0, 0, 0)

> graph <- matrix2graph(m)

> print(graph)

A graphMCP graph

H1 (not rejected, weight=0.25)

H2 (not rejected, weight=0.25)

H3 (not rejected, weight=0.25)

H4 (not rejected, weight=0.25)

Edges:

H1 -(1/3)-> H2

H1 -(1/3)-> H3

H1 -(1/3)-> H4

H2 -(1/3)-> H1

H2 -(1/3)-> H3

H2 -(1/3)-> H4

H3 -(1/3)-> H1

H3 -(1/3)-> H2

H3 -(1/3)-> H4

H4 -(1/3)-> H1

H4 -(1/3)-> H2

H4 -(1/3)-> H3

> graph2matrix(graph)

H1 H2 H3 H4

H1 0.0000 0.3333 0.3333 0.3333

H2 0.3333 0.0000 0.3333 0.3333

H3 0.3333 0.3333 0.0000 0.3333

H4 0.3333 0.3333 0.3333 0.0000

5

2.2 Using the GUI

The creation of graphMCP objects as seen in the last section with basic R commands is very straight
forward, but still takes some time and typos may occur. More convenient for the average user is
the use of the graphical user interface for creating and editing MCP graphs that the gMCP package
includes.

It is called by the command graphGUI() and takes as optional argument a variable name, given
as a character string, of the graph to edit or under which a newly created graphMCP object will be
available from the R command line.

> graphGUI("graph")

Figure 4: The graphical user interface allows testing, calculation of confidence intervals and
adjusted p-values.

Let’s take a look at the icon panel:

This button lets you add a new node to the graph. After pressing the button click somewhere
on the graph panel and a new node will appear at this place.

This button lets you add a new edge between two nodes. After pressing the button click on
the node the edge should start and after that on the node the edge should end.

For really big graphs the ability to zoom in and out is usefull.

Starts the testing procedure / goes back to the graph modification.

Calculates the adjusted p-values.

Calculates simultaneous confidence intervals.

With drag and drop you can move nodes and also adjust edges.

6

3 The sequentially rejective MTP

For a full description of the sequentially rejective multiple testing procedure take a look at Bretz
et al. [1].

3.1 Using R

You can either specify each rejection step yourself or simply use the method gMCP:

> graph <- createGraphFromBretzEtAl()

> # We can reject a single node:

> print(rejectNode(graph, "H11"))

A graphMCP graph

H11 (rejected, weight=0)

H21 (not rejected, weight=0.5)

H31 (not rejected, weight=0.3333)

H12 (not rejected, weight=0.1667)

H22 (not rejected, weight=0)

H32 (not rejected, weight=0)

Edges:

H21 -(2/5)-> H31

H21 -(2/5)-> H22

H21 -(1/5)-> H12

H31 -(1/2)-> H21

H31 -(1/2)-> H32

H12 -(1)-> H21

H22 -(1/2)-> H31

H22 -(1/4)-> H21

H22 -(1/4)-> H12

H32 -(1)-> H21

> # Or given a vector of pvalues let the function gMCP do all the work:

> pvalues <- c(0.1, 0.008, 0.005, 0.15, 0.04, 0.006)

> result <- gMCP(graph, pvalues)

> print(result)

gMCP-Result

Initial graph:

A graphMCP graph

H11 (not rejected, weight=0.3333)

H21 (not rejected, weight=0.3333)

H31 (not rejected, weight=0.3333)

H12 (not rejected, weight=0)

H22 (not rejected, weight=0)

H32 (not rejected, weight=0)

Edges:

H11 -(1/2)-> H21

H11 -(1/2)-> H12

H21 -(1/3)-> H11

H21 -(1/3)-> H31

H21 -(1/3)-> H22

H31 -(1/2)-> H21

H31 -(1/2)-> H32

H12 -(1)-> H21

H22 -(1/2)-> H11

H22 -(1/2)-> H31

H32 -(1)-> H21

P-values:

H11 H21 H31 H12 H22 H32

0.100 0.008 0.005 0.150 0.040 0.006

Adjusted p-values:

H11 H21 H31 H12 H22 H32

0.1200 0.0160 0.0150 0.1500 0.1200 0.0225

Alpha: 0.05

7

Hypothesis rejected:

H11 H21 H31 H12 H22 H32

FALSE TRUE TRUE FALSE FALSE TRUE

Final graph after 3 steps:

A graphMCP graph

H11 (not rejected, weight=0.6667)

H21 (rejected, weight=0)

H31 (rejected, weight=0)

H12 (not rejected, weight=0)

H22 (not rejected, weight=0.3333)

H32 (rejected, weight=0)

Edges:

H11 -(2/3)-> H12

H11 -(1/3)-> H22

H12 -(1/2)-> H11

H12 -(1/2)-> H22

H22 -(1)-> H11

>

We can create a TikZ graphic from the last graph with graph2latex(result@graphs[[4]]) that
is shown in figure 5.

H11

2
3
α

H21

0

H31

0

H12

0

H22

1
3
α

H32

0

2
3

1
3

1
2

1
2

1

Figure 5: Final graph from the test procedure after rejection of H21, H31 and H32.

The command gMCPReport generates a full report of the testing procedure:

> gMCPReport(result, "Report.tex")

3.1.1 Adjusted p-values and simultaneous confidence intervals

Also adjusted p-values and simultaneous confidence intervals can be computed.

Let’s assume the tests for hypotheses H1 : θ1 ≤ 0, H2 : θ2 ≤ 0 and H3 : θ3 ≤ 0 are three
t-tests with degree of freedom 9. The estimates are θ̂1 = 0.981, θ̂2 = 1.089 and θ̂3 = 0.8706, the
sample standard deviations s1 = 0.876, s2 = 1.291 and s3 = 0.8571 the t-statistics 3.541, 2.666 and
3.212 and the corresponding p-values 0.0063, 0.02577 and 0.01062. We want to adjust for multiple
testing by using the Bonferroni-Holm-Procedure with α = 0.025.

> # Estimates:

> est <- c("H1"=0.860382, "H2"=0.9161474, "H3"=0.9732953)

> # Sample standard deviations:

> ssd <- c("H1"=0.8759528, "H2"=1.291310, "H3"=0.8570892)

> pval <- c(0.01260, 0.05154, 0.02124)/2

> simConfint(createBonferroniHolmGraph(3), pvalues=pval,

+ confint=function(node, alpha) {

+ c(est[node]-qt(1-alpha,df=9)*ssd[node]/sqrt(10), Inf)

+ }, alpha=0.025, mu=0, alternative="greater")

8

lower bound upper bound

H1 0.0000 Inf

H2 -0.0076 Inf

H3 0.0000 Inf

> # Note that the sample standard deviations will be calculated from the pvalues and estimates.

> # For example by estimates/dist(pvalues) for alternative="less".

> simConfint(createBonferroniHolmGraph(3), pvalues=pval,

+ confint="t", df=9, estimates=est, alpha=0.025, alternative="greater")

lower bound upper bound

[1,] 0.000000 Inf

[2,] -0.007581 Inf

[3,] 0.000000 Inf

>

3.2 Using the GUI

Figure 6: For normal and t-distributions simultaneous CI can be calculated by the GUI.

Use the following two buttons:

See [3].

4 Weighted parametric tests

Figure 7: You can also specify a correlation between the tests.

In the lower right panel with p-values, it is also possible to specify a known correlation between
these values (see figure 7).

For further information please take a look at the vignette ”Weighted parametric tests defined by
graphs”.

5 Epsilon edges

The GUI supports epsilon edges. You can enter the weights in R syntax, e.g. 1-2*e+1/3*e^2 for
1− 2e+ 1

3e
2.

9

H1

1
2
α

H2

1
2
α

H3

0

H4

0

1
2

1
2

1
2 1

2

1

1

H1

1
2
α

H2

1
2
α

H3

0

H4

0

1
2

1
2

1
2 1

2

1 − ε

ε

1 − ε

ε

Figure 8: The Parallel Gatekeeping and the Improved Parallel Gatekeeping Procedure.

> graph <- createGraphForImprovedParallelGatekeeping()

> graph

A graphMCP graph

H1 (not rejected, weight=0.5)

H2 (not rejected, weight=0.5)

H3 (not rejected, weight=0)

H4 (not rejected, weight=0)

Edges:

H1 -(1/2)-> H3

H1 -(1/2)-> H4

H2 -(1/2)-> H3

H2 -(1/2)-> H4

H3 -(1-e)-> H4

H3 -(e)-> H1

H4 -(1-e)-> H3

H4 -(e)-> H2

> substituteEps(graph, eps=0.001)

A graphMCP graph

H1 (not rejected, weight=0.5)

H2 (not rejected, weight=0.5)

H3 (not rejected, weight=0)

H4 (not rejected, weight=0)

Edges:

H1 -(1/2)-> H3

H1 -(1/2)-> H4

H2 -(1/2)-> H3

H2 -(1/2)-> H4

H3 -(999/1000)-> H4

H3 -(1/1000)-> H1

H4 -(999/1000)-> H3

H4 -(1/1000)-> H2

> gMCP(graph, pvalues=c(0.02, 0.04, 0.01, 0.02), eps=0.001)

gMCP-Result

Initial graph:

A graphMCP graph

H1 (not rejected, weight=0.5)

H2 (not rejected, weight=0.5)

H3 (not rejected, weight=0)

H4 (not rejected, weight=0)

Edges:

H1 -(1/2)-> H3

H1 -(1/2)-> H4

H2 -(1/2)-> H3

H2 -(1/2)-> H4

H3 -(1-e)-> H4

H3 -(e)-> H1

H4 -(1-e)-> H3

H4 -(e)-> H2

10

P-values:

H1 H2 H3 H4

0.02 0.04 0.01 0.02

Adjusted p-values:

H1 H2 H3 H4

0.04 0.04 0.04 0.04

Alpha: 0.05

Hypothesis rejected:

H1 H2 H3 H4

TRUE TRUE TRUE TRUE

Final graph after 4 steps:

A graphMCP graph

H1 (rejected, weight=0)

H2 (rejected, weight=1)

H3 (rejected, weight=0)

H4 (rejected, weight=0)

No edges.

>

6 Options and Import/Export

6.1 Options

This subsection is work in progress, but fortunately the options in figure 9 should be fairly self-
explanatory.

Figure 9: You can configure many things in the option dialog.

6.2 Import/Exports

This subsection is work in progress, but fortunately the menu entries in figure 10 should be fairly
self-explanatory.

11

You can export graphs to png files. The background of these png files will be made transperant, so
that they will fit into whichever document you insert them. Note that some image viewers visualize
transparency with a checkerboard pattern.

Figure 10: Import and export of graphs.

6.3 Important TikZ commands for optimizing the reports

A clear automatic placement of edges and weight labels without overlapping is a very difficult
task and for complicated graphs the gMCP package will often fail to accomplish this. There is the
possibilty to adjust the edges and labels in the GUI, but since the LATEX graph layout is not (yet)
exactly the same, there is perhaps the need for adjusting the graphs in the TikZ code. The TikZ
program is very useful and we recommend it for many purposes, but perhaps you don’t have the
time to read the 560 pages manual [8], so here is a short overview of the most important commands
for this kind of graphs.

Let’s start with this graph in figure 11:

\begin{ t i k z p i c t u r e } [s c a l e =1]
\node (H11) at (200bp ,200bp) [draw , c i r c l e s p l i t , f i l l =green ! 8 0] {$H11$ \nodepart { lower } $0 .0333$} ;
. . .
\draw [−>, l i n e width=1pt] (H11) to [bend l e f t =15] node [near s ta r t , above , f i l l =blue ! 2 0] {0.667} (H12) ;
. . .
\end{ t i k z p i c t u r e }

H11

8
15
α

H21

0

H31

0

H12

0

H22

1
5
α

H32

4
15
α

5
8

1
4

1
8

2
5

2
5

1
5

2
3

1
3

1
2

1
2

Figure 11: Graph from graph2latex that does not look optimal.

You can scale the TikZ graphic by changing the [scale=1] option. By default graph2latex

doesn’t scale TikZ graphics, but has an optional parameter scale.

For an explanation what green!80 means and how you can specify other colors, please take a look
at the xcolor manual [7].

You can choose between the following label positions above, below, right, left, above right,

above left, below right, and below left. In addition these positions can take an optional
dimension argument, so that for example below=1pt can be used to place a label below and addi-
tionally shift it 1pt downwards.

12

You can change the position where the edge weight label is placed to at start, very near

start, near start, midway, near end, very near end and at end or simply use something
like pos=0.5. If you add an argument sloped, the text label will be rotated so that a parallel line
to the base line becomes a tangent to the edge.

Often it is useful to reduce the bending angle in [bend left=15] below 15. You could also specify
and change out=15 and in=165 separately.

A powerful feature is the use of styles, since this will effect all objects of a given class. But for this
please take a look directly at the TikZ manual [8].

7 Case Studies

This section is work in progress.

8 Appendix - Multiple Testing Basics

This section is work in progress.

Definition 8.1.

13

Index

adjusted p-values, 8

Bonferroni-Holm-Procedure, 2

coordinates, 5

epsilon edges, 9
export, 11

gatekeeping
improved parallel, 10
parallel, 10

graph2latex, 12
graph2matrix, 5

import, 11

matrix2graph, 5

nodeRenderInfo, 4

options, 11

parallel gatekeeping, 10

report generation, 8

simultaneous confidence intervals, 8

TikZ, 5

14

References

[1] F. Bretz, W. Maurer, W. Brannath, and M. Posch. A graphical approach to sequentially
rejective multiple test procedures. Statistics in medicine, 28(4):586–604, 2009. URL www.

meduniwien.ac.at/fwf_adaptive/papers/bretz_2009_22.pdf.

[2] F. Bretz, W. Maurer, and G. Hommel. Test and power considerations for multiple endpoint
analyses using sequentially rejective graphical procedures. Statistics in medicine, 2010 (in
press).

[3] F. Bretz, M. Posch, E. Glimm, F. Klinglmueller, W. Maurer, and K. Rohmeyer. Graphical
approaches for multiple comparison problems using weighted bonferroni, simes or parametric
tests. Biometrical Journal, page to appear, 2011.

[4] R. Gentleman, E. Whalen, W. Huber, and S. Falcon. graph: A package to handle graph
data structures, 2010. URL http://CRAN.R-project.org/package=graph. R package version
1.26.0.

[5] Jeff Gentry, Li Long, Robert Gentleman, Seth Falcon, Florian Hahne, Deepayan Sarkar, and
Kasper Hansen. Rgraphviz: Provides plotting capabilities for R graph objects, 2010. URL
http://www.bioconductor.org/packages/2.6/bioc/html/Rgraphviz.html. R package ver-
sion 1.26.0.

[6] S. Holm. A simple sequentially rejective multiple test procedure. Scand. J. Statist., 6:65–70,
1979.

[7] Uwe Kern. Extending LaTeX’s color facilities: the xcolor package, 2007. URL http://www.

ctan.org/tex-archive/macros/latex/contrib/xcolor/.

[8] Till Tantau. The Tik Z and PGF Packages Manual for version 2.00, 2008. URL http://www.

ctan.org/tex-archive/graphics/pgf/base/doc/generic/pgf/pgfmanual.pdf.

15

www.meduniwien.ac.at/fwf_adaptive/papers/bretz_2009_22.pdf
www.meduniwien.ac.at/fwf_adaptive/papers/bretz_2009_22.pdf
http://CRAN.R-project.org/package=graph
http://www.bioconductor.org/packages/2.6/bioc/html/Rgraphviz.html
http://www.ctan.org/tex-archive/macros/latex/contrib/xcolor/
http://www.ctan.org/tex-archive/macros/latex/contrib/xcolor/
http://www.ctan.org/tex-archive/graphics/pgf/base/doc/generic/pgf/pgfmanual.pdf
http://www.ctan.org/tex-archive/graphics/pgf/base/doc/generic/pgf/pgfmanual.pdf

	Introduction
	Example and diving in

	Creating the graph
	Using R
	graph2matrix and matrix2graph

	Using the GUI

	The sequentially rejective MTP
	Using R
	Adjusted p-values and simultaneous confidence intervals

	Using the GUI

	Weighted parametric tests
	Epsilon edges
	Options and Import/Export
	Options
	Import/Exports
	Important TikZ commands for optimizing the reports

	Case Studies
	Appendix - Multiple Testing Basics
	Index
	Literatur

