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I This IATEX vignette document is created using the R function Sweave) on the R package ggenealogy. It is automat-

ically downloaded with the package and can be accessed with the R command vignette("ggenealogy").



Summary

Description

The ggenealogy package provides tools to examine genealogical data, generating basic statistics on
their graphical structures using parent and child connections, and displaying the results. The geneal-
ogy can be drawn in relation to additional variables, such as development year, and the shortest path
distances between genetic lines can be determined and displayed. Production of pairwise distance
matrices and phylogenetic diagrams constrained by generation count are also available in the visual-
ization toolkit. This vignette is intended to walk readers through the different methods available in
the ggenealogy package.

Caution

igraph must be used with version >= 0.7.1

Introduction

Installation

R is a open source software project for statistical computing, and can be freely downloaded from
the Comprehensive R Archive Network (CRAN) website. The link to contributed documentation on
the CRAN website offers practical resources for an introduction to R , in several languages. After
downloading and installing R , the installation of additional packages is straightforward. To install the
ggenealogy package from R | use the command:

> install.packages ("ggenealogy")

The ggenealogy package should now be successfully installed. Next, to render it accessible to the
current R session, simply type:

> library(ggenealogy)

To access help pages with example syntax and documentation for the available functions of the gge-
nealogy package, please type:

> help(package="ggenealogy")

To access more detailed information about a specific function in the ggenealogy package, use the
following help command on that function, such as:

> help(getChild)



The above command will return the help file for the getChild function. The help file often includes
freestanding example syntax to illustrate how function commands are executed. In the case of the
getChild function, the example syntax is the following three lines, which can be pasted directly into
an R session.

> data(sbGeneal)
> getChild("Tokyo", sbGeneal)
> getChild("Essex", sbGeneal)

Preprocessing pipeline

In the ggenealogy package, there is an example dataset containing genealogical information on soybean
varieties called sbGeneal.rda. It may be helpful to load that example file so that you can follow along
with the commands and options introduced in this vignette. To ensure that you have uploaded the
correct, raw sbGeneal .rda file, you can observe the first six lines of the file, and determine its dimension
and structure:

> data(sbGeneal)
> head(sbGeneal)

child year yield year.imputed parent

1 5601T 1981 NA TRUE Hutcheson
2 Adams 1948 2734 FALSE Dunfield
3 A.X. 1910 NA TRUE <NA>
4 A.K. (Harrow) 1912 2665 FALSE A K.
5 Altona 1968 NA FALSE Flambeau
6 Amcor 1979 2981 FALSE Amsoy 71

> dim(sbGeneal)

[1] 412 5

> str(sbGeneal)

'data.frame': 412 obs. of b5 variables:

$ child : chr "5601T" "Adams" "A.K." "A.K. (Harrow)"

$ year : num 1981 1948 1910 1912 1968 ...

$ yield : int NA 2734 NA 2665 NA 2981 2887 2817 NA NA ...
$ year.imputed: logi TRUE FALSE TRUE FALSE FALSE FALSE ...

$ parent : chr '"Hutcheson" "Dunfield" NA "A.K."

We see that the sbGeneal data file is a data frame structure with 412 rows (observations) and 5
columns (variables). Each row contains a child node character label and parent node character label.
Each row also contains a numeric value corresponding to the year the child node was introduced, an



integer value of the protein yield of the child node, and a logical value year. imputed, which indicates
whether or not the year of introduction of the child node was imputed.

Now that the sbGeneal file has been loaded as a data frame, it must next be converted into a graph
object using the dfToIG() function. The dfToIG() function requires a data frame as input, and
that data frame should be structured such that each row represents an edge with a child and parent
relationship. For more information, try using the help command on the function:

> help(dfToIG)

We see that the function takes optional parameter arguments, such as vertexinfo (a list of columns
of the data frame which provide information for the starting “child” vertex, or a separate data frame
containing information for each vertex with the first column as the vertex name), edgeweights (a
column that contains edge values, with a default value of unity), and isDirected (a boolean value
that describes whether the graph is directed (true) or undirected (false); the default is false).

In this example, we want to produce an undirected graph object that contains all edge weight values
of one, because our goal is to set an edge value of unity for every pair of vertices (individuals) that
are related as parent and child. The dfToIG() function uses the software igraph to convert the data
frame into a graph object. For clarity, we will assign the outputted graph object the name ig (for
igraph object), and then examine its class type:

> ig <- dfToIG(sbGeneal)
> class(ig)

[1] "igraph"

Above, we confirmed that the ig object is of class type igraph. The ig object is required as input in
many ggenealogy functions, which will be demonstrated below.

General (non-plotting) methods of genealogical data

The ggenealogy package offers several functions that result in useful information beside plots. Below
is a brief introduction to some of the available non-plotting functions.

Functions for individual vertices

The ggenealogy package offers several functions that you can use to obtain information for individual
vertices. First, the function isParent() can return a logical variable to indicate whether or not the
second variety is a parent of the first variety.

> isParent ("Young", "Essex",sbGeneal)

[1] TRUE



> isParent ("Essex", "Young", sbGeneal)

[1] FALSE

We see that “Essex” is a parent of “Young”, and not vice-versa. Similarly, the function isChild() can
return a logical variable to indicate whether or not the first variety is a child of the second variety.

> isChild("Young", "Essex",sbGeneal)

[1] TRUE

> isChild("Essex", "Young",sbGeneal)

[1] FALSE

We see that, as expected, “Young” is a child of “Essex”, and not vice-versa. It is also possible to derive
the year of a given variety using the getYear () function:

> getYear("Young",sbGeneal)

[1] 1968

> getYear("Essex",sbGeneal)

[1] 1962

Fortunately, the returned year values are consistent, as the “Young” variety (1968) is a child to the
“Essex” variety (1962) by an age difference of 6 years. In some cases, you may wish to obtain a complete
list of all the parents of a given variety. This can be achieved using the getParent () function:

> getParent ("Young",sbGeneal)

[1] "Davis" "Essex"

> getParent ("Tokyo",sbGeneal)

character (0)

> getYear("Tokyo", sbGeneal)



[1] 1907

9, &

We learn from this that “Essex” is not the only parent of “Young”; “Young” also has a parent “Davis”.
We also see that “Tokyo” does not have any documented parents in this dataset, and has an older year
of introduction (1907) than other varieties we have examined thusfar. Likewise, in other cases, you
may wish to obtain a complete list of all the children of a given variety. This can be achieved using
the getChild () function:

> getChild("Tokyo",sbGeneal)

[1] "Ogden" "Volstate"

> getChild("Ogden",sbGeneal)

[1] "c1069" "C1079" "D51-2427" "D55-4090"
[5] "D55-4159" "D55-4168" "Kent" "N44-92"
[9] "N45-745" "N48-1101" "Ogden x CNS" "Ralsoy x Ogden"

We find that even though the “Tokyo” variety is a grandparent of the dataset, it only has two children,
“Ogden” and “Volstate”. However, one of its children, “Ogden”, produced 12 children.

If we want to obtain a list that contains more than just one generation past or previous to a given
variety, then we can use the getAncestors() and getDescendants() functions, where we specify the
number of generations we wish to view. This will return a data frame to us with the labels of each
ancestor or descendant, along with the number of generations each one is from the given variety.

If we only look at one generation of ancestors of the “Young” variety, we should see the same information
we did earlier when we used the getParent () function of the Young variety:

> getAncestors ("Young",sbGeneal, 1)

label gen
2 Davis 1
1 Essex 1

Indeed, we consistently see that the “Young” variety has only 2 ancestors within one generation, “Davis”
and “Essex”. However, if we view the first five generations of ancestors of the “Young” variety, we can
view four more generations of ancestors past simply the parents:

> getAncestors("Young",sbGeneal,5)

label gen
27 Davis 1
26 Essex 1



25 Ralsoy x Ogden 2
24 Roanoke x (Ogden x CNS) 2
23 Lee 2
22 856-7075 2
21 Ogden 3
20 Ralsoy 3
19 Ogden x CNS 3
17 CNS 3
18 Roanoke 3
16 S 100 3
15 N48-1248 3
14 Perry 3
10 Ogden 4
13 PI 54610 4
12 Tokyo 4
11 CNS 4
9 Clemson 4
6 Roanoke 4
8 I1lini 4
7 N45-745 x (Ogden x CNS) 4
4 PI 54610 5
3 Tokyo 5
1 Ogden x CNS 5
5 Clemson 5
2 AK. 5

> nrow(getAncestors("Young",sbGeneal,5))
[1] 27

In the second line of code above, we determined the dimensions of the returned data frame, and see
that there are 27 ancestors within the first five ancestral generations of the “Young” variety.

Similarly, if we only look at the first generation of descendants of the “Ogden” variety, we should see
the same information as we did earlier when we used the getChild () function on the “Ogden” variety:

> getDescendants("Ogden",sbGeneal, 1)

label gen
12 C1069
11 C1079
10 D51-2427
9 D55-4090
8 D55-4159
7 D55-4168
6 Kent
5 N44-92
4 N45-745

e



3 N48-1101 1
2 Ogden x CNS 1
1 Ralsoy x Ogden 1

Indeed, we see again that “Ogden” has 12 children. Additionally, if we want to view not only the
children, but also the grandchildren, of the “Ogden” variety, then we can use this function, only now
specifying two generations of descendants:

> getDescendants("Ogden",sbGeneal,2)

label gen
28 C1069 1
27 c1079 1
26 D51-2427 1
25 D55-4090 1
24 D55-4159 1
23 D55-4168 1
22 Kent 1
21 N44-92 1
20 N45-745 1
19 N48-1101 1
18 Ogden x CNS 1
17 Ralsoy x Ogden 1
16 Columbus 2
15 Cutler 2
14 C1266R 2
13 Semmes 2
11 D60-7965 2
12 D60-7965 2
10 D59-9289 2
9 Beeson 2
8 Calland 2
7 Hood 2
6 N48-1867 2
5 D52-810 2
4 N45-745 x (Ogden x CNS) 2
3 R54-168 2
2 Roanoke x (Ogden x CNS) 2
1 Davis 2

We see that variety “Ogden” has 16 grandchildren from its 12 children.

Functions for pairs of vertices

Say you have a pair of vertices, and you wish to determine the degree of the shortest path between
them, where edges represent parent-child relationships. You can accomplish that with the getDegree ()
function.



> getDegree ("Tokyo", "Ogden", ig, sbGeneal)
[11 1

> getDegree ("Tokyo", "Holladay", ig, sbGeneal)
(11 7

As expected, the shortest path between the “Tokyo” and “Ogden” varieties has a value of 1, as we
already determined that they have a direct parent-child relationship. However, the shortest path
between “Tokyo” and one of its descendants, “Holladay”, has a much higher degree of 7.

Note that degree calculations in this case are not limited to one linear string of parent-child relation-
ships; cousins and siblings and products thereof will also have computable degrees via nonlinear strings
of parent-child relationships.

Functions for the full genealogical structure

There are many parameters about the full genealogical structure that you may wish to know that can-
not easily be obtained through images and tables. The function getBasicStatistics() will return
graph theoretical measurements of the full genealogy. For instance, is the full genealogy connected?
If not, how many separated components does it contain? In addition to these parameters, the get-
BasicStatistics() function will also return the number of nodes, the number of edges, the average
path length, the graph diameter, among others:

> getBasicStatistics(ig)

$isConnected
[1] FALSE

$numComponents
[1] 11

$avePathLength
[1] 5.333746

$graphDiameter
[1] 13

$numNodes
[1] 230

$numEdges
[1] 340

$logN
[1] 5.438079



In this case, we learn that our full genealogical structure is not all connected by parent-child edges.
Instead, it is composed of 11 separate components. The average path length of the full genealogy is
5.333746, that the graph diameter is 13, and that the logN value is 5.438079. We also see that the
number of nodes in the full genealogy is 230, and the number of edges in the full genealogy is 340.

But can we view a list of these nodes and edges? To do so, we can call the getNodes () and getEdges ()
commands to obtain lists of all the unique nodes and edges in the full genealogical structure. Here, we
obtain a list of the 340 edges (with each row containing the names of the two connected vertices, and
an edge weight, if existent). We will simply view the first six rows of the object, and determine the
number of edges by counting the number of rows (340):

> eList = getEdges(ig, sbGeneal)
> head(eList)

child parent
[1,] "5601T" "Hutcheson"
[2,] "Adams" "Dunfield"
[3,] "A.XK. (Harrow)" "A.K."
[4,] "Altona" "Flambeau"
[5,] "Amcor" "Amsoy 71"
[6,] "Amsoy" "Adams"

> nrow(eList)
[1] 340

We then obtain a list of the 230 nodes. Again, we only view the first six rows of the object, and
determine the number of nodes by counting the number of indices (230).

> nList = getNodes (sbGeneal)
> head(nList)

[1] "5601T" "Adams" "AK." "A.K. (Harrow)"
[5] "Altona" "Amcor"

> length(nList)

[1] 230

Plotting methods of genealogical data

Until this point, the vignette has introduced functions that return lists, data frames, and statistics
about the genealogical dataset. However, the ggenealogy package also contains visualization tools
for genealogical datasets. Access to various types of visual plots and diagrams of the lineage can
allow genealogical researchers to more efficiently and accurately explore an otherwise complicated data
structure. Below, we introduce functions in ggenealogy that produce visual outputs of the dataset.
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Plotting the ancestors and descendants of a vertex

One visualization tool, plotAncDes (), allows the user to view the ancestors and descendants of a given
variety. The inputted variety is highlighted in the center of the plot, ancestors are displayed to the
left of the center, and descendants are displayed to the right of the center. The further left or right
from the center, the larger the number of generations that particular ancestor/descendant is from the
inputted and centered variety.

As such, this plotting command does not provide visual information about specific years associated
with each related variety (as is done in some of the visualization tools introduced later), but it does
group all varieties from each generation group onto the same position of the horizontal axis. Here, we
specify that we want to plot 5 ancestor generations and 4 descendant generations of the variety “Lee”:

> plotAncDes("Lee", sbGeneal,5,4)

We immediately see in Figure 1 that this visual representation of the ancestors and descendants of
a given variety can often provide enhanced readability compared to the list output provided in the
previous functions, getAncestors() and getDescendants (). We notice that even though we specified
for 5 generations of ancestors, the extent of documented ancestors of “Lee” includes only 3 generations.

We also see now that some node labels are repeated. For instance, the “5601T” variety appears twice,
once as a great-grandchild (third generation descendant) of “Lee”, and once as a great-great-granchild
(fourth generation descendant) of “Lee”. This is because there are two separate parent-child pathways
between “Lee” and “5601T”, one pathway with only two nodes (“Essex” and “Hutchson”) between them,
and one pathway with three nodes (“Essex”, “T'80-69”, and “TN89-39”) between them.

Why does this happen? In this visual tool, we are constraining the horizontal axis to generation count.
Without allowing nodes to repeat, this data information cannot be clearly and succinctly presented.
Most graph visualization software that genealogists might use to view their datasets do not allow for
repeated nodes, as per the definition of a graph. Hence, the plotAncDes() function is one of the more
unique visual tools of the ggenealogy package.

It should be noted that the plotAncDes () function, by default, highlights the centered variety label in
pink. However, the user can alter this color, as we will show next. Furthermore, the user can specify
additional grammar of graphics plotting tools (from the ggplot2 package) to tailor the output of the
plotAncDes () function, which we also show below.

For example, we will now change the color of the center variety label vColor to be highlighted in
blue. Also, we will add a horizontal axis label called “Generation index”, using the ggplot2 syntax.
Note that this time we do not specify the generational count for ancestors and descendants, and so
the default value of three generations is applied to both cases. Remember, to determine such default
values, as well as all function parameters, simply run the help command on the function of interest.

> plotAncDes("Tokyo", sbGeneal, vColor = "blue") + ggplot2::labs(x="Generation index",y="")

We verify immediately from Figure 2 that the “Tokyo” variety does not have any ancestors in this
dataset, an observation consistent with what we discovered earlier. We also see the “Tokyo” variety
only has two children, but has many more grandchildren, and great-grand children.

11
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Figure 1: Ancestors and descendants of the “Lee” variety, constrained on the horizontal axis by gener-

ational separation from “Lee”.
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Figure 2: Ancestors and descendants of the “Tokyo” variety, constrained on the horizontal axis by
generational separation from “Tokyo”.
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Plotting the shortest path between two vertices

As this data set deals with soybean lineages, it may be useful for agronomists to track how two varieties
are related to each other via parent-child relationships. Then, any dramatic changes in protein yield,
SNP varieties, and other measures of interest between the two varieties can be tracked across their
genetic timeline, and pinpointed to certain paths within their historical lineage.

The ggenealogy software allows users to select two varieties of interest, and determine the shortest
pathway of parent-child relationships between them, using the getPath() function. This will return a
list path object that contains the variety names and their years in the path. The returned path object
can then be plotted using the plotPath() function, which we now demonstrate.

The getPath() function determines the shortest path between the two inputted vertices, and takes
into account whether or not the graph is directed with the parameter isDirected, which defaults to
false. The getPath() function will check both directions and return the path if it exists:

> getPath("Brim", "Bedford", ig, sbGeneal, isDirected=FALSE)

$pathVertices
[1] "Brim" "Young" "Essex" "T80-69" "J74-40" '"Forrest" "Bedford"

$yearVertices
[1] m1977" "1968" "1962" "1975" "1975" "1973" "1978"

We see that there is a path between “Brim” and “Bedford” varieties, with 5 varieties separating them.
We are not considering direction, however, because the ig object is undirected. However, to demon-
strate the importance of direction, we will recompute the path where the direction matters. We first
produce a directed igraph object dirIG, and then try to determine the path between the same two
vertices, “Brim” and “Bedford”.

> dirIG = dfToIG(sbGeneal, isDirected = TRUE)
> getPath("Brim", "Bedford", dirIG, sbGeneal, isDirected = TRUE)

list ()

Now that we are considering the direction, we are only considering paths where each edge represents
a parent-child relationship in the same direction as the one before it. We now receive an empty return
list with a warning that there is no path between those two vertices. We next try to reverse the input
order of the vertices, as shown below, but we will receive the same empty return list and warning:

> getPath("Bedford", "Brim", dirIG, sbGeneal, isDirected=TRUE)
list ()

We can derive from the empty list returned in the last two commands that the varieties “Brim” and
“Bedford” are not connected by a linear sequence of parent-child relationships. Rather, the path
between them branches at some point, involving siblings and/or cousins.

14



Hence, unless you are working with a dataset that must be analyzed as a directed graph, it is best to
use the getPath() function with the default third parameter indicating lack of direction, and to use
an igraph object without direction, such as our original ig object. We do just that, and save the path
between these two varieties to a variable called path:

> pathBB = getPath("Bedford","Brim", ig, sbGeneal, isDirected=FALSE)

Now that we have a non-empty pathBB object that consists of two lists (for variety names and years),
we can plot the relationship between the two using the plotPath() function.

> plotPath(pathBB)

This produces a neat visual (see Figure 3) that informs us of all the varieties involved in the shortest
path between “Brim” and “Bedford”. In this plot, the years of all varieties involved in the path are

Brim
Youn
Essex
T80-69
J74-40
Forrest
Bedford
19|65 19|70 19|75

Year

Figure 3: The shortest path between varieties “Brim” and “Bedford” is not strictly composed of unidi-
rectional parent-child relationships, but instead, includes cousin-like relationships.
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indicated on the horizontal axis, while the vertical axis has no meaning other than to simply to display
the labels evenly spaced vertically.

Although a call to the ggenealogy function getYear () indicates that “Bedford” was developed in 1978
and “Brim” in 1977, we quickly determine from the plot that “Brim” is not a parent, grandparent, nor
any great-grandparent of “Bedford”. Instead, we see that these two varieties are not related through
a unidirectional parent-child lineage, but have a cousin-like relationship. The oldest common ancestor
between “Bedford” and “Brim” is the variety “Essex”, which was developed in 1962.

However, there are other cases of pairs of varieties that are connected by a linear, unidirectional
combination of parent-child relationships, as we see below:

> pathNT = getPath("Narow", "Tokyo", ig, sbGeneal, isDirected=FALSE)
> plotPath(pathNT)

ToRyo

Volstate

Jackson

R66-873

Narow

1 1 1 1
1920 1940 1960 1980
Year

Figure 4: The shortest path between varieties “Narow” and “Tokyo” is strictly composed of a unidirec-
tional sequence of parent-child relationships.

16



From the output, shown in Figure 4, we see that the variety “Tokyo” is an ancestor of “Narow” via four
linear parent-child relationships. Because of this, we can still view the pathway, even when we use an
igraph object dirIG that is directed, and set the boolean isDirected variable to true.

Either ordering of the two varieties will produce the exact same result. In other words, the following
two code blocks would produce the same figure we saw in Figure 4:

> pathNT = getPath("Narow", "Tokyo", dirIG, sbGeneal, isDirected=TRUE)
> plotPath(pathNT)

> pathTN = getPath("Tokyo", "Narow", dirIG, sbGeneal, isDirected=TRUE)
> plotPath(pathTN)

Plotting shortest paths superimposed on full genealogical structure

Now that we can create and plot path objects, we may wish to know how those paths are positioned
in comparison to the genealogical lineage of the entire data structure. For instance, of the documented
soybean cultivar lineage varieties, where does the shortest path between two varieties of interest exist?
Are these two varieties comparatively older compared to the overall data structure? Are they newer?
Or, do they span the entire structure, and represent two extreme ends of documented time points?

There is a function available in the ggenealogy package, plotPathOnA1l (), that allows users to quickly
visualize their path of interest superimposed over all varieties and edges present in the whole data
structure. Here we will produce a plot of the previously-determined shortest path between varieties
“Tokyo” and “Narow” across the entire dataset (in this particular dataset, some edges are not plotted,
as they contain NA values):

> plotPathOnAll(pathNT, sbGeneal, ig, binVector = 1:3)

The resulting plot is shown in Figure 5.

While the first three explicit parameters to the function plotPathOnAll () have been introduced earlier,
the fourth parameter (binVector) requires some explanation. The motivation of the plotPathOnAll ()
function is to write variety text labels on a plot, with the center of each variety label constricted on
the horizontal axis to its developmental year. As is the case for the plots before, the vertical axis has
no specific meaning. Unfortunately, for large datasets, this motivation can be a difficult task because
the text labels of the varieties can overlap if they are assigned a similar y coordinate, have a similar
year (x coordinate), and have labels with large numbers of characters (width of x coordinate).

For each variety, the x coordinate (year) and width of the x coordinate (text label width) cannot be
altered, as they provide useful information. However, the vertical coordinate is arbitrary. Hence, in an
attempt to mitigate text overlap, the plotPathOnAl1l() function does not randomly assign the vertical
coordinate. Instead, it allows users to specify the number of bins (binVector), which partially controls
the vertical positions.

If the user determines to produce a plot using three bins, as in the example code above, then the
varieties are all grouped into three bins based on their years of development. In other words, there will
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Figure 5: Plot of the shortest path, highlighted in green, between the varieties “Tokyo” and “Narow”
superimposed on the full genealogical structure, using a binVector size of 3.

be bin 1 (the “oldest bin”) which includes the one-third of all varieties with the oldest developmental
years, bin 2 (the “middle bin”), and bin 3 (the “youngest bin”).

Then, in order to decrease text overlap, consecutively increasing vertical positions are alternatively
bin 1, then bin 2, then bin 3, etc.) repeatedly until all
varieties are accounted. This algorithm means that there are at least two vertical positions separating
any pair of varieties from the same bin.

In this plot, edges not on the path of interest are thin and gray, whereas edges on the path of interest



are bolded and green, by default. Also, variety labels in the path of interest are boldfaced, by default.

Using the plot, we immediately recognize that the path spans most of the years in the full data
structure: “Tokyo” appears to be the oldest variety in the data, and “Narow” appears to be among the
youngest. We note that many varieties have development years between 1950 and 1970.

However, this plot has significant empty spaces between the distinct bins, and almost all text labels
are overlapping, causing decreased readability. To force variety text labels into these spaces, the user
may consider choosing a larger number of bins. Hence, we next examine a binVector size of six:

> plotPathOnAll (pathNT, sbGeneal, ig, binVector = 1:6)

Figure 6 shows that the binVector size of six successfully mitigated text overlap compared to Figure 5,
which had a binVector size of three. Most of the remaining textual overlap is confined to the range
of years (1950-1970) of which the most varieties had development years.

Plotting pairwise distance matrices between a set of vertices

It may also be of interest to generate matrices where the cell colors indicate the magnitude of a variable
(such as the degree of the shortest path) between all pairwise combinations of inputted varieties. The
package ggenealogy also provides a function plotDegMatrix () for that purpose.

Here, we plot a distance matrix for a set of 8 varieties, defining both the x- and y- axes titles as “Soybean
label”, and the legend label as “Degree”. Syntax from the ggplot2 package can be appended to tailor
the output of the plotDegMatrix () function. In this case, we denote pairs with small degrees to be
colored white, and pairs with large degrees to be colored dark green, using scale_fill_continuous:

> varieties=c("Brim", "Bedford", "Calland", "Narow", "Pella", "Tokyo", "Young", "Zane")
> p = plotDegMatrix(varieties, ig, sbGeneal, "Soybean label", "Soybean label", "Degree")
> p + ggplot2::scale_fill_continuous(low="white", high="darkgreen")
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Figure 7 shows that the degree of the shortest path between varieties “Bedford” and “Zane” seems to

be the largest in the dataset, which should be around 10. We can verify this simply with:

> getDegree("Bedford", "Zane", ig, sbGeneal)

[1]1 10

Indeed, the degree of the shortest path between “Bedford” and “Zane” is 10. The distance matrix plot
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Figure 6: Plot of the shortest path, highlighted in green, between the varieties “Tokyo” and “Narow”

superimposed on the full genealogical structure, using a binVector size of 6.
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provides us additonal information: The degree of 10 may be a comparatively large degree within the
given soybean dataset sbGeneal, seeing that the degrees of the shortest paths for the other 27 pairwise
combinations of the eight varieties that we explored here are less than 10.

In a similar function plotYearMatrix (), the difference in years between all pairwise combinations of
vertices can be constructed and viewed:

> varieties=c("Brim", "Bedford", "Calland", "Narow", "Pella", "Tokyo", "Young", "Zane")
> plotYearMatrix(varieties, sbGeneal)

Here, we did not change any defaults. As such, the resulting plot in Figure 8 contains the default
values of “Variety” for the x-and y-axis labels, and “Difference in years” for the legend label. It also
uses the default colors of dark blue for small year difference and light blue for large year difference.

Running this function on this particular set of eight vertices suggests that most combinations of
varieties are only one or two decades apart in year introduction, with the exception of the “Tokyo”
variety, which appears to be separated from each of the other seven varieties by about six decades.

This is not surprising, because we have seen througout the tutorial that the “Tokyo” variety is the
oldest variety in the dataset.
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Figure 7: Colored matrix plot showing the degrees of the shortest paths between all pair combinations
from a set of eight varieties of interest.
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Figure 8: Colored matrix plot showing the year differences between all pair combinations from a set
of eight varieties of interest.

Conclusions

The ggenealogy package offers various plotting tools that can assist those studying genealogical lin-
eages in the data exploration phases. As each plot comes with its advantages and disadvantages, we
recommend for users to explore several of the available visualization tools.

This vignette briefly introduced some of the capabilities of the ggenealogy package. Inevitably, new
approaches will necessitate new features in subsequent versions and might reveal unforeseen bugs.
Please send comments, suggestions, questions, and bug reports to lrutter@iastate.edu.
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