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Abstract

We describe the form of the linear mixed-effects and generalized
linear mixed-effects models fit by lmer and give details of the repre-
sentation and the computational techniques used to fit such models.
These techniques are illustrated on several examples.

1 A simple example

The Rail data set from the nlme package is described in ? as consisting of
three measurements of the travel time of a type of sound wave on each of six
sample railroad rails. We can examine the structure of these data with the
str function
> str(Rail)

'data.frame': 18 obs. of 2 variables:
$ travel: num 55 53 54 26 37 32 78 91 85 92 ...
$ Rail : Ord.factor w/ 6 levels "2"<"5"<"1"<"6"<..: 3 3 3 1 1 1 5 5 5 6 ...

Because there are only three observations on each of the rails a dotplot
(Figure 1) shows the structure of the data well.
> print(dotplot(Rail ~ travel, Rail, xlab = "Travel time (ms)",
+ ylab = "Rail number"))

In building a model for these data
> Rail
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Figure 1: Travel time of sound waves in a sample of six railroad rails. There
were three measurements of the travel time on each rail. The rail numbers
are sorted by increasing mean travel time.

travel Rail
1 55 1
2 53 1
3 54 1
4 26 2
5 37 2
6 32 2
7 78 3
8 91 3
9 85 3
10 92 4
11 100 4
12 96 4
13 49 5
14 51 5
15 50 5
16 80 6
17 85 6
18 83 6

we wish to characterize a typical travel time, say µ, for the population of such
railroad rails and the deviations, say bi, i = 1, . . . , 6 of the individual rails
from this population mean. Because these specific rails are not of interest by
themselves as much as the variation in the population we model the bi, which
are called the “random effects” for the rails, as having a normal (Gaussian)
distribution of the form N (0, σ2

b ). The jth measurement on the ith rail is
expressed as

yij = µ + bi + εij bi ∼ N (0, σ2
b ), εij ∼ N (0, σ2) i = 1, . . . , 6 j = 1, . . . , 3

(1)
The parameters of this model are µ, σ2

b and σ2. Technically the bi, i =
1, . . . , 6 are not parameters but instead are considered to be unobserved ran-
dom variables for which we form “predictions” instead of “estimates”.
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To express generalizations of models like (1) more conveniently we switch
to a matrix/vector representation in which the 18 observations of the travel
time form the response vector y, the fixed-effect parameter µ forms a 1-
dimensional column vector β and the six random effects bi, i = 1, . . . , 6 form
the random effects vector b. The structure of the data and the values of any
covariates (none are used in this model) are used to create model matrices
X and Z.

Using these vectors and matrices and the 18-dimensional vector ε that
represents the per-observation noise terms the model becomes

y = Xβ + Zb + ε, ε ∼ N ,
(
0, σ2I

)
, b ∼ N

(
0, σ2Σ

)
and b ⊥ ε (2)

In the general form we write p for the dimension of β, the fixed-effects
parameter vector, and q for the dimension of b, the vector of random ef-
fects. Thus the model matrix X has dimension n × p, the model matrix
Z has dimension n × q and the relative variance-covariance matrix, Σ, for
the random-effects has dimension q × q. The symbol ⊥ indicates indepen-
dence of random variables andN denotes the multivariate normal (Gaussian)
distribution.

We say that matrix Σ is the relative variance-covariance matrix of the
random effects in the sense that it is the variance of b relative to σ2, the
scalar variance of the per-observation noise term ε. Although it size, q, can
be very large, Σ is highly structured. It is symmetric, positive semi-definite
and zero except for the diagonal elements and certain elements close to the
diagonal.

1.1 Fitting the model and examining the results

The maximum likelihood estimates for parameters in model (1) fit to the
Rail data are obtained as
> Rm1ML <- lmer2(travel ~ 1 + (1 | Rail), Rail, method = "ML",
+ control = list(msVerbose = 1))

0 149.289: 0.942809
1 137.531: 1.94281
2 132.389: 2.85077
3 129.942: 3.73815
4 128.945: 4.52610
5 128.629: 5.12723
6 128.566: 5.47713
7 128.560: 5.60451
8 128.560: 5.62581
9 128.560: 5.62686
10 128.560: 5.62686
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In this fit we have set the control parameter msVerbose to 1 indicating that
information on the progress of the iterations should be printed after every
iteration. Each line gives the iteration number, the value of the deviance
(negative twice the log-likelihood) and the value of the parameter s which is
the standard deviation of the random effects relative to the standard devia-
tion of the residuals.

The printed form of the model
> Rm1ML

Linear mixed-effects model fit by maximum likelihood
Formula: travel ~ 1 + (1 | Rail)

Data: Rail
AIC BIC logLik MLdeviance REMLdeviance

132.6 134.3 -64.28 128.6 122.2
Random effects:
Groups Name Variance Std.Dev.
Rail (Intercept) 541.971 23.2803
Residual 17.118 4.1373

Number of obs: 18, groups: Rail, 6

Fixed effects:
Estimate Std. Error t value

(Intercept) 66.500 9.285 7.162

provides additional information about the parameter estimates and some of
the measures of the fit such as the log-likelihood (-64.28), the deviance for
the maximum likelihood criterion (128.6), the deviance for the REML cri-
terion (122.2), Akaike’s Information Criterion (AIC= 132.6) and Schwartz’s
Bayesian Information Criterion (BIC= 134.3).

The model matrices Z and X and the negative of the response vector −y
are stored in the ZXyt slot in the transposed form. Extracting the transpose
of this slot
> t(Rm1ML@ZXyt)

18 x 8 sparse Matrix of class "dgCMatrix"

[1,] . . 1 . . . 1 -55
[2,] . . 1 . . . 1 -53
[3,] . . 1 . . . 1 -54
[4,] 1 . . . . . 1 -26
[5,] 1 . . . . . 1 -37
[6,] 1 . . . . . 1 -32
[7,] . . . . 1 . 1 -78
[8,] . . . . 1 . 1 -91
[9,] . . . . 1 . 1 -85

[10,] . . . . . 1 1 -92
[11,] . . . . . 1 1 -100
[12,] . . . . . 1 1 -96
[13,] . 1 . . . . 1 -49
[14,] . 1 . . . . 1 -51
[15,] . 1 . . . . 1 -50
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[16,] . . . 1 . . 1 -80
[17,] . . . 1 . . 1 -85
[18,] . . . 1 . . 1 -83

The first 6 columns of this matrix are Z, the seventh column is X and the
eighth and final column is −y. As indicated in the display of the matrix, it
is stored as a sparse matrix. The elements represented as ‘.’ are known to
be zero and are not stored explicitly.

The columns of Z are indicator columns (that is, the ith column has a 1
in row j if the jth observation is on rail i, otherwise it is zero) but they are
not in the usual ordering. This is because the levels of the Rail factor have
been reordered according to increasing mean response for Figure 1.

The crossproduct of the columns of this matrix are stored as a symmetric,
sparse matrix in the A slot.
> Rm1ML@A

8 x 8 sparse Matrix of class "dsCMatrix"

[1,] 3 . . . . . 3 -95
[2,] . 3 . . . . 3 -150
[3,] . . 3 . . . 3 -162
[4,] . . . 3 . . 3 -248
[5,] . . . . 3 . 3 -254
[6,] . . . . . 3 3 -288
[7,] 3 3 3 3 3 3 18 -1197
[8,] -95 -150 -162 -248 -254 -288 -1197 89105

The L component of this fitted model is a Cholesky factorization of a
matrix A∗(θ) where θ is a parameter vector determining Σ(θ). This matrix
can be factored as Σ = TSST T, where T is a unit, lower triangular matrix
(that is, all the elements above the diagonal are zero and all the elements
on the diagonal are unity) and S is a diagonal matrix with non-negative
elements on the diagonal. The matrix A∗(θ) is

A∗(θ) =

Z∗TZ∗ + I Z∗TX −Z∗Ty
XTZ∗ XTX −XTy
−yTZ∗ −yTX yTy


=

T TS 0 0
0 I 0
0 0 1

A

ST 0 0
0 I 0
0 0 1

 +

I 0 0
0 0 0
0 0 0

 .

(3)

For model (1) the matrices T and S are particularly simple, T = I6,
the 6 × 6 identity matrix and S = s1,1I6 where s1,1 = σb/σ is the standard
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deviation of the random effects relative to the standard deviation of the per-
observation noise term ε.

The Cholesky decomposition of A∗ is a lower triangular sparse matrix L
> as(Rm1ML@L, "sparseMatrix")

8 x 8 sparse Matrix of class "dtCMatrix"

[1,] 9.797 . . . . . . .
[2,] . 9.797 . . . . . .
[3,] . . 9.797 . . . . .
[4,] . . . 9.797 . . . .
[5,] . . . . 9.797 . . .
[6,] . . . . . 9.797 . .
[7,] 1.723 1.723 1.723 1.723 1.723 1.723 0.4330 .
[8,] -54.562 -86.150 -93.042 -142.435 -145.881 -165.408 -28.7977 17.06

As explained in later sections the matrix L provides all the information
needed to evaluate the ML deviance or the REML deviance as a function
of θ. The components of the deviance are given in the deviance slot of the
fitted model
> Rm1ML@deviance

ML REML ldZ ldX lr2
128.560037 122.237086 27.385123 -1.673815 5.673323

The element labelled ldZ is the logarithm of the square of the determinant of
the upper left 6×6 section of L. This corresponds to log

∣∣Z∗TZ∗ + Iq

∣∣ where
Z∗ = ZTS. We can verify that the value 27.38292 can indeed be calculated
in this way.
> L <- as(Rm1ML@L, "sparseMatrix")
> 2 * sum(log(diag(L)[1:6]))

[1] 27.38512

The lr2 element of the deviance slot is the logarithm of the penalized
residual sum of squares. It can be calculated as the logarithm of the square
of the last diagonal element in L.
> 2 * log(L[8, 8])

[1] 5.673323

For completeness we mention that the ldX element of the deviance slot
is the logarithm of the product of the squares of the diagonal elements of L
corresponding to columns of X.
> 2 * log(L[7, 7])

[1] -1.673815

This element is used in the calculation of the REML criterion.
Another slot in the fitted model object is dims, which contains information

on the dimensions of the model and some of the characteristics of the fit.
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> Rm1ML@dims

nf n p q REML glmm
1 18 1 6 0 0

We can reconstruct the ML estimate of the residual variance as the penalized
residual sum of squares divided by the number of observations.
> exp(Rm1ML@deviance["lr2"])/Rm1ML@dims["n"]

lr2
16.16667

The profiled deviance function

D̃(θ) = log
∣∣∣Z∗TZ∗ + Iq

∣∣∣ + n log

(
1 +

2πr2

n

)
= n

[
1 + log

(
2π

n

)]
+ log

∣∣∣Z∗TZ∗ + Iq

∣∣∣ + n log r2

(4)

is a function of θ only. In this case θ = σ1, the relative standard deviation
of the random effects, is one-dimensional. The maximum likelihood esti-
mate (mle) of θ minimizes the profiled deviance. The mle’s of all the other
parameters in the model can be derived from the estimate of this parameters.

The term n [1 + log (2π/n)] in (4) does not depend on θ. The other two
terms, log

∣∣Z∗TZ∗ + Iq

∣∣ and n log r2, measure the complexity of the model
and the fidelity of the fitted values to the observed data, respectively. We
plot the value of each of the varying terms versus σ1 in Figure 2.

The component log
∣∣SZTZS + I

∣∣ has the value 0 at σ1 = 0 and increases
as σ1 increases. It is unbounded as σ1 → ∞. The component n log (r2) has
a finite value at σ1 = 1 from which it decreases as σ1 increases. The value at
σ1 = 0 corresponds to the residual sum of squares for the regression of y on
the columns of X.
> 18 * log(deviance(lm(travel ~ 1, Rail)))

[1] 164.8714

As σ1 → ∞, n log (r2) approaches the value corresponding to the residual
sum of squares for the regression of y on the columns of X and Z. For this
model that is
> 18 * log(deviance(lm(travel ~ Rail, Rail)))

[1] 94.82145
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Figure 2: The profiled deviance, and those components of the profiled de-
viance that vary with θ, as a function of θ in model Rm1ML for the Rail data.
In this model the parameter θ is the scalar σ1, the standard deviation of
the random effects relative to the standard deviation of the per-observation
noise.

2 Structure of Σ and Z

The columns of Z and the rows and columns of Σ are associated with the
levels of one or more grouping factors in the data. For example, a common
application of linear mixed models is the analysis of students’ scores on the
annual state-wide performance tests mandated by the No Child Left Behind
Act. A given score is associated with a student, a teacher, a school and a
school district. These could all be grouping factors in a model.

We write the grouping factors as fi, i = 1, . . . k. The number of levels of
the ith factor, fi, is ni and the number of random effects associated with each
level is qi. For example, if f1 is “student” then n1 is the number of students
in the study. If we have a simple additive random effect for each student
then q1 = 1. If we have a random effect for both the intercept and the slope
with respect to time for each student then q1 = 2. The qi, i = 1, . . . , k are
typically very small whereas the ni, i = 1, . . . , k can be very large.

In the statistical model we assume that random effects associated with
different grouping factors are independent, which implies that Σ is block
diagonal with k diagonal blocks of sizes niqi × niqi, i = 1, . . . , k. That is

Σ =


Σ1 0 . . . 0
0 Σ2 . . . 0
...

...
. . .

...
0 0 . . . Σk

 (5)
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Figure 3: The part of the deviance that varies with σ1 as a function of σ1

near the optimum. The component log
∣∣SZTZS + I

∣∣ is shown at the bottom
of the frame. This is the component of the deviance that increases with
σ1. Added to this component is n log [r2(σ1)] − n log [r2(∞)], the comonent
of the deviance that decreases as σ1 increases. Their sum is minimized at
σ̂1 = 5.626.

Furthermore, random effects associated with different levels of the same
grouping factor are assumed to be independent and identically distributed,
which implies that Σi is itself block diagonal in ni blocks and that each of
these blocks is a copy of a qi × qi matrix Σ̃i. That is

Σi =


Σ̃i 0 . . . 0

0 Σ̃i . . . 0
...

...
. . .

...

0 0 . . . Σ̃i

 = Ini
⊗ Σ̃i i = 1, . . . , k (6)

where ⊗ denotes the Kronecker product.
The condition that Σ is positive semi-definite holds if and only if the

Σ̃i, i = 1, . . . , k are positive semi-definite. To ensure that the Σ̃i are positive
semi-definite, we express them as

Σ̃i = T̃iS̃iS̃iT̃
T
i , i = 1, . . . , k (7)

where T̃i is a qi× qi unit lower-triangular matrix (i.e. all the elements above
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the diagonal are zero and all the diagonal elements are unity) and S̃i is a
qi × qi diagonal matrix with non-negative elements on the diagonal.

This is the “LDL” form of the Cholesky decomposition of positive semi-
definite matrices except that we express the diagonal matrix D, which is on
the variance scale, as the square of the diagonal matrix S, which is on the
standard deviation scale. The profiled deviance behaves more like a quadratic
on the standard deviation scale than it does on the variance scale so the use
of the standard deviation scale enhances convergence.

The niqi×niqi matrices Si, Ti, i = 1, . . . , k and the q× q matrices S and
T are defined analogously to (6) and (5). In particular,

Si = Ini
⊗ S̃i, i = 1, . . . , k (8)

Ti = Ini
⊗ T̃i, i = 1, . . . , k (9)

Note that when qi = 1, T̃i = I and hence Ti = I. Furthermore, Si is a
multiple of the identity matrix in this case.

The parameter vector θi, i = 1, . . . , k consists of the qi diagonal elements
of S̃i, which are constrained to be non-negative, followed by the qi(qi − 1)/2
elements in the strict lower triangle of T̃i (in column-major ordering). These
last qi(qi − 1)/2 elements are unconstrained. The θi are combined as

θ =


θ1

θ2
...

θk

 .

Each of the q × q matrices S, T and Σ in the decomposition Σ = TSST T

is a function of θ.
As a unit triangular matrix T is non-singular. That is, T−1 exists and is

easily calculated from the T̃−1
i , i = 1, . . . , k. When θ is not on the bound-

ary defined by the constraints, S is a diagonal matrix with strictly positive
elements on the diagonal, which implies that S−1 exists and that Σ is non-
singular with Σ−1 = T−TS−1S−1T−1.

When θ is on the boundary the matrices S and Σ exist but are not
invertible. We say that Σ is a degenerate variance-covariance matrix in the
sense that one or more linear combinations of the vector b are defined to
have zero variance. That is, the distribution of these linear combinations is
a point mass at 0.
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The maximum likelihood estimates of θ (or the restricted maximum like-
lihood estimates, defined below) can be located on the boundary. That is,
they can correspond to a degenerate variance-covariance matrix and we must
be careful to allow for this case. However, to begin we consider the non-
degenerate case.

3 Methods for non-singular Σ

When θ is not on the boundary we can define a standardized random effects
vector

b∗ = S−1T−1b (10)

with the properties

E[b∗] = S−1T−1E[b] (11)

Var[b∗] = E[b∗b∗T]

= S−1T−1Var[b]T−TS−1

= σ2S−1T−1ΣT−TS−1

= σ2S−1T−1TSST TT−TS−1

= σ2I.

(12)

Thus, the unconditional distribution of the q elements of b∗ is b∗ ∼ N (0, σ2I),
like that of the n elements of ε.

Obviously the transformation from b∗ to b is

b = TSb∗ (13)

and the n× q model matrix for b∗ is

Z∗ = ZTS (14)

so that
Z∗b∗ = ZTSS−1T−1b = Zb. (15)

Notice that Z∗ can be evaluated even when θ is on the boundary. Also,
if we have a value of b∗ in such a case, we can evaluated b from b∗.
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Given the data y and values of θ and β, the mode of the conditional
distribution of b∗ is the solution to a penalized least squares problem

b̃∗(θ, β|y) = arg min
b∗

[
‖y −Xβ −Z∗b∗‖2 + b∗Tb∗

]
= arg min

b∗

∥∥∥∥[
y
0

]
−

[
Z∗ X
I 0

] [
b∗

β

]∥∥∥∥2

.
(16)

In fact, if we optimize the penalized least squares expression in (16) with

respect to both b and β we obtain the conditional estimates β̂(θ|y) and the

conditional modes b̃∗(θ, β̂(θ)|y)) which we write as b̂∗(θ). That is,[
b̂∗(θ)

β̂(θ)

]
= arg min

b∗,β

∥∥∥∥∥∥
[
Z∗ X −y
I 0 0

]b∗

β
1

∥∥∥∥∥∥
2

= arg min
b∗,β

b∗

β
1

T

A∗(θ)

b∗

β
1


(17)

where the matrix A∗(θ) is as shown in (3) and

A =

 ZTZ ZTX −ZTy
XTZ XTX −XTy
−yTZ −yTX yTy

 . (18)

Note that A does not depend upon θ. Furthermore, the nature of the model
matrices Z and X ensures that the pattern of nonzeros in A∗(θ) is the same
as that in A.

Let the q×q permutation matrix PZ represent a fill-reducing permutation
for ZTZ and PX , of size p×p, represent a fill-reducing permutation for XTX.
These could be determined, for example, using the approximate minimal
degree (AMD) algorithm described in Davis (2006) and Davis (1996) and
implemented in both the Csparse (Davis, 2005b) and the CHOLMOD (Davis,
2005a) libraries of C functions. (In many cases XTX is dense, but of small
dimension compared to ZTZ, and ZTX is nearly dense so PX can be Ip,
the p× p identity matrix.)

Let the permutation matrix P be

P =

PZ 0 0
0 PX 0
0 0 1

 (19)
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and L(θ) be the sparse Cholesky decomposition of A∗(θ) relative to this
permutation. That is, L(θ) is a sparse lower triangular matrix with the
property that

L(θ)L(θ)T = PA∗(θ)P T (20)

For L(θ) to exist we must ensure that A∗(θ) is positive definite. Exami-
nation of (17) shows that this will be true if X is of full column rank and y
does not lie in the column span of X (or, in statistical terms, if we can’t fit
y perfectly using only the fixed effects).

Let r > 0 be the last element on the diagonal of L. Then the minumum
penalized residual sum of squares in (17) is r2 and it occurs at b̂∗(θ) and
β̂(θ), the solutions to the sparse triangular system

L(θ)TP

b̂∗(θ)

β̂(θ)
1

 =

0
0
r

 (21)

(Technically we should not write the 1 in the solution; it should be an un-
known. However, for L lower triangular with r as the last element on the
diagonal and P a permutation that does not move the last row, the solution
for this “unknown” will always be 1.) Furthermore, log |Z∗TZ + I| can be
evaluated as the sum of the logarithms of the first q diagonal elements of
L(θ).

The profiled deviance function, D̃(θ), which is negative twice the log-

likelihood of model (2) evaluated at Σ(θ), β̂(θ) and σ̂2(θ), can be expressed
as

D̃(θ) = log
∣∣∣Z∗TZ∗ + I

∣∣∣ + n

(
1 + log

2πr2

n

)
. (22)

Notice that it is not necessary to solve for β̂(θ) or b̂∗(θ) or b̂(θ) to be
able to evaluate d(θ). All that is needed is to update A to form A∗ from
which the sparse Cholesky decomposition L(θ) can be calculated and D̃(θ)
evaluated.

Once θ̂ is determined we can solve for β̂(θ̂) and b̂∗(θ) using (21) and for

σ̂2(θ̂) =
r2(θ̂)

n
. (23)

Furthermore, b̂(θ̂) = ST b̂∗(θ̂).
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4 Methods for singular Σ

When θ is on the boundary, corresponding to a singular Σ, some of the
columns of Z∗ are zero. However, the matrix A∗ is non-singular and elements
of b∗ corresponding to the zeroed columns in Z∗ approach zero smoothly as
θ approaches the boundary. Thus r(θ) and

∣∣Z∗TZ + I
∣∣ are well-defined, as

are D̃(θ) and the conditional modes b̂(θ).
In other words, (3) and (20) can be used to define D̃(θ) whether or not

θ is on the boundary.

5 REML estimates

It is common to estimate the per-observation noise variance σ2 in a fixed-
effects linear model as σ̂2 = r2/(n− p) where r2 is the (unpenalized) residual
sum-of-squares, n is the number of observations and p is the number of fixed-
effects parameters. This is not the maximum likelihood estimate of σ2, which
is r2/n. It is the “restricted” or “residual” maximum likelihood (REML) esti-
mate, which takes into account that the residual vector y−ŷ is constrained to
a linear subspace of dimension n− p in the response space. Thus its squared
length, ‖y − ŷ‖2 = r2, has only n− p degrees of freedom associated with it.

The profiled REML deviance for a linear mixed model can be expressed
as

D̃R(θ) = log
∣∣∣Z∗TZ∗ + I

∣∣∣ + log |LX |2 + (n− p)

(
1 + log

2πr2

n− p

)
. (24)
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