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This is a short demo of mmod library for differentiation statistics in R. As an ex-
ample, we are going to examine the nancycats data that comes with adegenet.
This dataset contains microsattelite genotypes taken from feral cats in Nancy,
France. So let’s start.

> library(mmod)

> data(nancycats)

> nancycats

#####################

### Genind object ###

#####################

- genotypes of individuals -

S4 class: genind

@call: genind(tab = truenames(nancycats)$tab, pop = truenames(nancycats)$pop)

@tab: 237 x 108 matrix of genotypes

@ind.names: vector of 237 individual names

@loc.names: vector of 9 locus names

@loc.nall: number of alleles per locus

@loc.fac: locus factor for the 108 columns of @tab

@all.names: list of 9 components yielding allele names for each locus

@ploidy: 2

@type: codom

Optionnal contents:

@pop: factor giving the population of each individual

@pop.names: factor giving the population of each individual

@other: a list containing: xy
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The nancycats data comes in adegenet’s default class for genotypic data, the
genind class. The functions in mmod work on genind objects, so you would
usually start by reading in your data using read.genepop

Now that we have our data on hand, our goal is to see

� Whether this population is substantially differentiated into smaller sub-
populations

� Whether such differentiation can be explain by the geographical distance
between sub-populations.

We can look at several statistics to ask answer the first question by using the
diff_stats() function:

> diff_stats(nancycats)

$per.locus

Hs Ht Gst Gprime_st D

fca8 0.7708277 0.8614311 0.10517782 0.4810570 0.42006021

fca23 0.7415102 0.7992621 0.07225650 0.2924881 0.23738411

fca43 0.7416796 0.7935120 0.06532017 0.2645865 0.21319208

fca45 0.7273320 0.7641204 0.04814486 0.1845960 0.14335289

fca77 0.7766369 0.8655618 0.10273670 0.4822798 0.42300076

fca78 0.6316202 0.6772045 0.06731245 0.1899390 0.13147655

fca90 0.7369587 0.8141591 0.09482221 0.3770880 0.31183460

fca96 0.6699736 0.7654561 0.12473941 0.3937947 0.30740024

fca37 0.5623259 0.6024354 0.06657894 0.1574662 0.09737005

$global

Hs Ht Gst_est Gprime_st D_het D_mean

0.70654052 0.77146027 0.08415178 0.29942062 0.23504860 0.20017978

OK, so what’s all that then? The first table has statistics calculated individually
for each locus in the dataset. Hs and Ht are estimates of the heterozygosity
expected for this population with and without the sub-populations defined in
the nancycats data respectively. We need to use those to calculate the measures
of population divergence so we might as well display them at the same time.
Gst is the standard (Nei) GST, Gprime_st is Hedrick’s G′′

ST and D is Jost’s Dest.
Because all of these statistics are estimated from estimators of HS and HT,
it’s possible to get negative values for each of these differentiation measures.
Populations can’t be negatively differentiated, so you should think of these as
estimates of a number close to zero (it’s up to you and your reviewers to decide
if you report the negative numbers of just zeros).

Dest is the easiest statistic to interpret, as you expect to find D = 0 for popu-
lations with no differentiation and D = 1 for completely differentiated popula-
tions. As you can see, different loci give quite different estimates of divergence
but they range from ∼0.1–0.4.
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Figure 1: Nei’s GST against Jost’s D

You might also want to see how regular old GST compares with with Dest (Figure
1):

> nc.diff_stats <- diff_stats(nancycats)

> with(nc.diff_stats, plot(per.locus[, "Gst"], per.locus[, "D"],

+ xlab = "Gst", ylab = "D"))

> fit <- with(nc.diff_stats, (lm(per.locus[, "D"] ~ per.locus[,

+ "Gst"])))

> abline(fit)

The second part of the list returned by diff_stat contains global estimates of
each of these statistics. For GST and G′′

ST these are based on the average of Hs
and Ht across loci. For Dest you get two, the harmonic mean of the Dest for
each locus and, because that method won’t work if you end up with negative
estimates of Dest, one calculated as per GST and G′′

ST.
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You probably want to have some idea of how robust this result is. mmod has a few
functions for performing bootstrap samples of genind objects and calculating
statistics from those samples. Because some of these functions can take a long
time to run, let’s create a whopping great 10 repetition bootstrap sample of the
nancycats data, then calculate Dest from that sample:

> bs <- chao_bootstrap(nancycats, nreps = 10)

> bs.D <- summarise_bootsrap(bs, D_Jost)

> bs.D

Estimates for each locus

Locus Mean 95% CI

fca8 0.4406 (0.3916-0.505)

fca23 0.273 (0.2348-0.3257)

fca43 0.2758 (0.2442-0.3117)

fca45 0.2065 (0.1658-0.2508)

fca77 0.4352 (0.3725-0.5018)

fca78 0.1657 (0.1127-0.2142)

fca90 0.3113 (0.2576-0.3781)

fca96 0.3004 (0.2413-0.3621)

fca37 0.1244 (0.092-0.16)

Global Estimate based on average heterozygosity

0.2634 (0.2494-0.2849)

Global Estimate based on harmonic mean of statistic

0.2364 (0.222-0.2687)

As you can see, printing a summarised bootstrap sample gives us shows a basic
overview of that data, but there is also quite a lot more there — use str(bs.D)

or the classic bs.D$[tab tab] to check it out. I don’t think there is much point
trying to interpret confidence intervals estimated from 10 samples, but the point
estimates seem to show a population with some substantial differentiation.
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Next, we want to know if geography can explain that differentiation. The nan-
cycats data comes with coordinates for each populations. We can use these to
get Euclidean distances:

> head(nancycats@other$xy, 4)

x y

P01 263.3498 171.10939

P02 183.5028 122.40790

P03 391.1050 254.70148

P04 458.6121 41.72336

> nc.pop_dists <- dist(nancycats@other$xy, method = "euclidean")

mmod provides functions to calculate pairwise versions of each of the differen-
tiation statistics. Because we want to perform a Mantel test, we’ll use the
“linearized” version of Dest, which is just x/(1 − x) (each of the pairwise stats
has and argument to return this version).

> nc.pw_D <- pairwise_D(nancycats, linearized = TRUE)

The library ade4, which is loaded with mmod, provides functions to perform
Mantel tests on distance matrices.

> mantel.rtest(nc.pw_D, log(nc.pop_dists), 999)

Monte-Carlo test

Observation: 0.03194095

Call: mantelnoneuclid(m1 = m1, m2 = m2, nrepet = nrepet)

Based on 999 replicates

Simulated p-value: 0.361

So, the geographic distance between these populations can’t explain the genetic
divergences we see: the correlation is small and non-significant. If you like, we
can also visualize this relationship (Figure ??).

> fit <- lm(as.vector(nc.pw_D) ~ as.vector(nc.pop_dists))

> plot(as.vector(nc.pop_dists), as.vector(nc.pw_D), ylab = "pairwise D",

+ xlab = "physical distance")

> abline(fit)

There are a couple of other functions that are not used here, and a few of use
the functions we have used have help messages that guide interpretation of their
ressults - use help(package="mmod") to see the full documentation.
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Figure 2: Geographic distance does not explain genetic differentiation
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