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1 Introduction

The analysis of animal movement data has become increasingly important in
terrestrial and marine ecology. Improvements in telemetry technology have
resulted in an explosion in the volume of high precision data being collected.
As a result, there are two challenges which researchers collecting these data
regularly face: (1) data volume and (2) employing statistical methods which
can accommodate some of the specific features of movement data (Patterson et
al., 2009).

A substantial part of the literature on statistical modelling of animal move-
ment data has focused on the intuitive approach of decomposing movement
time series into distinct behavioural modes (a.k.a. bouts, states), via the use
of so-called state-switching models. These approaches typically involve assum-
ing movements of animals to be driven by stochastically evolving states, such
as a slow moving state, which may be indicative of resting or foraging, versus
faster movement states which might indicate transits between foraging patches.
Associated with changes in movement speeds are changes to the distribution of
directional changes in the movement (known as the turning angle — see further
description below).

Bayesian methods which employ MCMC approaches have become very pop-
ular tools for the analysis of movement data using state-switching models (e.g.
Jonsen et al., 2005; Morales et al., 2004). Typically, these have been imple-
mented using WinBUGS (although see McClintock et al., 2012). While these
models are relatively straightforward to build and hence fit in WinBUGS, the
estimation can be painfully slow due to slow mixing of the MCMC samplers.

However, for an important subset of movement data, namely highly accu-
rate position data (e.g. from GPS) — and more generally all time series of
locations where the measurement error is negligible relative to the scale of the
movement — the task of statistical classification of behaviour can be done much
more efficiently using hidden Markov models (HMMs) and associated frequen-
tist inferential tools. HMMs are increasingly popular in this field, due to their
flexibility and to the associated very efficient recursive algorithms available for
conducting statistical inference (Patterson et al., 2009; Langrock et al., 2012).
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The crucial requirements on movement data in order for HMMs to be suitable
are that measurement error in positions is negligible and that there is a regular
sampling unit (e.g. one positional observation per hour, or per dive, or any other
meaningful unit).

moveHMM is an R package which implements HMMs and associated tools for
state decoding, model selection etc. specifically tailored to animal movement
modelling. Particular attention was paid to computational efficiency with the
fitting algorithm implemented in C++. The high computational speed makes
it feasible to analyze very large data sets — e.g. tens of thousands of positions
collected for each of a dozen individual animals — on standard desktop PCs.
The package also allows users to incorporate covariate data into their models,
which is particularly useful when inferring the drivers of changes in behaviour.

Our hope is that the moveHMM package will provide users who collect move-
ment data with an interface to sophisticated and adequate methods for a statis-
tical analysis of their data. The package is structured so as to allow the users to
prepare their data for analysis, fit a variety of HMMs to their data and perform
diagnostics on these fitted models.

In this vignette, we briefly introduce HMMs in the context of animal move-
ment. We then provide a detailed example of a typical use of the package
(preprocessing movement data, fitting an HMM to the data, and analyzing the
fitted model). Finally, we describe more technically the structure of the package
and its main functions.

2 A quick overview of the HMM approach to
modelling animal movement

For full details of the HMM approach in the context of animal movement mod-
elling, the user should refer to the relevant primary publications (see, e.g., Pat-
terson et al., 2009, Langrock et al., 2012, Zucchini and MacDonald, 2009). Here,
we briefly highlight the essential features of the HMM approach.

The standard HMM approach to model an individual animal’s movement
considers bivariate time series comprising the step length and the turning angle
at each time point (see illustration in Figure 1). The associated locations need to
be sampled at equally spaced points in time (though missing data on an otherwise
regular grid can easily be handled) and are assumed to be observed with no or
only negligible error. The moveHMM package is restricted to such discrete time
data and involves the assumption that the locations are observed with zero, or
at least negligible error.

At each time point, the parameters of the step length distribution (e.g.,
a gamma distribution) and the parameters of the turning angle distribution
(e.g., a von Mises distribution) are determined by an underlying unobserved
state. There are finitely many states which provide rough classifications of the
movement (e.g. more active vs. less active), often interpreted as proxies for
the animal’s behavioural states (e.g. transiting vs. foraging). The sequence of
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Figure 1: Illustration of step lengths and turning angles

states is assumed to be generated by a Markov chain, usually with a tendency of
remaining in a state for some time before switching to another state. The corre-
sponding state transition probabilities, as well as the parameters characterising
the state-dependent distributions, are model parameters to be estimated. The
number of states (movement modes) is unknown and has to be specified by the
user. Typically with movement data one assumes a low number of states (say
≤ 4). For example, an animal may be foraging (low speed, high rates of turn-
ing) and transiting (high speeds, low rates of turning). Biologically interesting
inference often involves modelling the state transition probabilities as functions
of environmental covariates.

For a given set of model parameters, the likelihood of the data can be cal-
culated using a recursive algorithm (the forward algorithm, cf. Patterson et
al., 2015), which in a very effective way considers all possible state sequences
that might have given rise to the observed time series. This makes numerical
maximization of the (log-)likelihood, and hence maximum likelihood estimation,
feasible in most cases. Having estimated the model parameters (and examined
useful diagnostics of model fit), the user can estimate the most likely sequence
of behavioural states and also examine various variables of interest such as the
average rate of movement in each state. We encourage the user to consult a good
primary text such as Zucchini and MacDonald (2009) to familiarize themselves
with the technical details of hidden Markov models.

3 Example application

Before we provide a detailed description of the various features of the moveHMM

package in the subsequent section, we illustrate a typical HMM-based analysis
of movement data using the main functions of the package, via an example. We
use the data from Morales et al. (2004), collected on four elk in Canada.

3.1 Movement data

The input data need to have the correct format for subsequent processing and
analysis. The data need to be provided as a data.frame, with two mandatory
columns:

• Easting or longitude (default name: x)
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• Northing or latitude (default name: y)

It is possible to have a column “ID”, which contains the identifiers of the ob-
served animals. If no column named “ID” is provided, all the observations will
be considered to belong to a single animal. Additional columns are considered
as covariates. Note that covariates need to have numerical values, rather than
character values.

3.1.1 Load and format the tracking data

The elk data considered in Morales et al. (2004) are available online at:

http://www.esapubs.org/archive/ecol/E085/072/elk data.txt

We load the relevant rows and columns into a data frame using the read.table

command.

trackData <- read.table(

"http://www.esapubs.org/archive/ecol/E085/072/elk_data.txt",

sep="\t",header=TRUE)[1:735 ,c(1,2,3,7)]

The dataframe trackData now has four columns: “Individual”, “Easting”,
“Northing”, and “dist water..meters.”. The last one is the distance of the animal
to water, which for illustration purposes we want to include in the model as a
covariate.

> head(trackData)

Individual Easting Northing dist_water.. meters.

1 elk -115 769928 4992847 200.00

2 elk -115 766875 4997444 600.52

3 elk -115 765949 4998516 561.81

4 elk -115 765938 4998276 550.00

5 elk -115 766275 4998005 302.08

6 elk -115 766368 4998051 213.60

The animals’ identifiers need to be stored in a column named “ID”, before
we can preprocess the data. Thus, we modify it accordingly. We also shorten
the name of the covariate.

colnames(trackData)[1] <- "ID"

colnames(trackData)[4] <- "dist_water"

Besides, we decide that we want to deal with distances in kilometers, instead
of meters, for the step lengths.

trackData$Easting <- trackData$Easting/1000

trackData$Northing <- trackData$Northing/1000

As a result, this is what the data looks like:

> head(trackData)

ID Easting Northing dist_water

1 elk -115 769.928 4992.847 200.00

2 elk -115 766.875 4997.444 600.52
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3 elk -115 765.949 4998.516 561.81

4 elk -115 765.938 4998.276 550.00

5 elk -115 766.275 4998.005 302.08

6 elk -115 766.368 4998.051 213.60

3.1.2 Use prepData

With the data in the proper format, it can be processed using prepData to
compute step lengths and angles. We choose the arguments carefully:

• type specifies whether the coordinates are easting/northing (type="UTM")
or longitude/latitude (type="LL") values. The latter is the default, so we
need to call the function with the argument type="UTM", to indicate that
UTM coordinates are provided.

• coordNames are the names of the coordinates in the input dataframe. The
default is “x” and “y”, so we need to call the function with the argument
coordNames=c("Easting","Northing").

The call to the function for these data is,

data <- prepData(trackData ,type="UTM",coordNames=c("Easting","

Northing"))

The step lengths and turning angles are computed, and the returned object
is a data frame.

> head(data)

ID step angle x y dist_water

1 elk -115 5.5184434 NA 769.928 4992.847 200.00

2 elk -115 1.4165663 0.1262112 766.875 4997.444 600.52

3 elk -115 0.2397525 2.3832412 765.949 4998.516 561.81

4 elk -115 0.4327600 0.9385238 765.938 4998.276 550.00

5 elk -115 0.1037545 1.1375066 766.275 4998.005 302.08

6 elk -115 12.4164659 -0.9687435 766.368 4998.051 213.60

Note that the coordinates have been renamed “x” and “y”. This makes the
processing of the data simpler.

If the data set contains covariates which have missing values, then those are
imputed using the closest non-missing value, by default the previous one if it is
available. This is arbitrary and might not be appropriate in all situations.

It is also possible to print summary information about the data, using the
function summary, e.g.

> summary(data)

Movement data for 4 animals:

elk -115 -- 194 observations

elk -163 -- 159 observations

elk -287 -- 164 observations

elk -363 -- 218 observations
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Covariate(s):

dist_water

Min. 25% Median Mean 75% Max.

0.0000 213.6000 477.6200 773.6457 1169.4950 3781.0400

3.1.3 Use plot.moveData

Once the data have been preprocessed, they can be plotted using the generic
function plot. This displays maps of the animals’ tracks, times series of the
steps and angles, and histograms of the steps and angles. A few plotting options
are available. These are described in the documentation. To plot all animals’
tracks on a single map, we call:

plot(data ,compact=T)

The resulting map, and the steps and angles graphs for the first animal, are
displayed in Figure 2 (we omit the graphs for the three other animals, which
are also displayed when using the above command).
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Figure 2: Map of the animals’ tracks (left) – each color represents an animal. Graphs
of the step lengths and turning angles for one individual, “elk-115” (right).

The time series of step lengths is one way to check the data for outliers.

3.2 Fitting the model

3.2.1 fitHMM

The function fitHMM is used to fit an HMM to the data. Its arguments are
described in the documentation. Here are a few choices we make:

• nbStates=2, i.e. we fit a 2-state HMM to the data;
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• beta0=NULL and delta0=NULL, i.e. we use the default values for the initial
values beta0 and delta0;

• formula=∼dist water, i.e. the transition probabilities are functions of
the covariate “dist water”;

• stepDist="gamma", to model the step lengths with the gamma distribu-
tion (note that it is the default, so we do not need to explicitely specify
it);

• angleDist="vm", to model the turning angles with the von Mises distri-
bution (default);

• angleMean=NULL, because we want to estimate the mean of the angle
distribution (default);

• stationary=FALSE, as due to the covariates the process is not stationary
(default).

We also need to specify initial values for the parameters of the state-dependent
distributions, to be used by the optimization function. Note that this choice
is crucial, and that the algorithm might not find the global optimum
of the likelihood function if the initial parameters are poorly chosen.
The initial parameters should be specified in two vectors, stepPar0 (for the
step distribution) and anglePar0 (for the angle distribution). The necessary
parameters of each distribution are detailed in Section 4.1.1.

Zero-inflation must be included in the step length distribution if some steps
are of length exactly zero (which is the case for the elk data). To do so, another
parameter is added to the step distribution: its mass on zero.

# initial parameters for gamma and von Mises distributions

mu0 <- c(0.1 ,1) # step mean (two parameters : one for each state)

sigma0 <- c(0.1 ,1) # step SD

zeromass0 <- c(0.05 ,0) # step zero -mass

stepPar0 <- c(mu0 ,sigma0 ,zeromass0)

angleMean0 <- c(pi ,0) # angle mean

kappa0 <- c(1,1) # angle concentration

anglePar0 <- c(angleMean0 ,kappa0)

# call to fitting function

m <- fitHMM(data=data ,nbStates=2,stepPar0=stepPar0 ,

anglePar0=anglePar0 ,formula=∼dist_water)

The returned object, m, is of the class moveHMM. It can be printed in order to
obtain the maximum likelihood estimates of all model parameters.

> m

Value of the maximum log -likelihood: -1893.092

Step length parameters:

----------------------

mean

[1] 0.3580483 3.3556845
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sd

[1] 0.3813433 4.3565876

zero -mass

[1] 1.943569e-03 9.999988e-09

Turning angle parameters:

------------------------

mean

[1] -2.9940947 0.1461898

concentration

[1] 0.6011242 0.2284411

Regression coeffs for the transition probabilities:

--------------------------------------------------

1 -> 2 2 -> 1

intercept -1.7869761202 -1.883796894

dist_water -0.0004087263 0.001450852

Initial distribution:

--------------------

[1] 0.4256565 0.5743435

3.2.2 Dealing with numerical instability

As mentioned above, the numerical maximization routine might not identify
the global maximum of the likelihood function, or even fail to converge alto-
gether, for poorly chosen initial values of the parameters. In such a case, the
optimization routine nlm might produce an error such as:

Error in nlm(nLogLike , wpar , nbStates , bounds , parSize , data ,

stepDist , :

non -finite value supplied by ’nlm’

The best way to deal with such numerical problems is to test different sets of
initial values, possibly chosen randomly. By comparing the resulting estimates
for the different initial values used, one usually obtains a good feeling for any
potential sensitivity of the numerical search to its chosen starting point. Note,
however, that in any case there will usually be no certainty that the global
maximum of the likelihood, i.e. the maximum likelihood estimate, has been
identified.

During preliminary tests on the elk data, we noticed that, in this example,
the numerical search is highly sensitive to the choice of the initial parameters
beta0. This is due to the high values of the covariate: a small change in
the associated regression coefficients can make a big difference in the likelihood
function. In such cases, it is advisable to standardize the covariate values before
fitting the model, for example by calling:

data$dist_water <-

(data$dist_water -mean(data$dist_water))/sd(data$dist_water)

This allows for greater numerical stability, with the convergence of the fit-
ting function depending less on the choice of initial values. The value of the
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maximum log-likelihood is not affected by the standardization of the covariate
values, only the maximum likelihood estimate of beta is.

3.2.3 Confidence intervals

Confidence intervals for the model parameters can be computed with the func-
tion CI, passing as an argument the object created by fitHMM. It is possible
to give the significance level of the desired confidence interval as an argument,
e.g. 0.99 for 99% confidence intervals. By default, 95% confidence intervals are
returned.

Below we show the 95% confidence intervals for the parameters of the 2-
state model fitted to the elk data. CI(m)$stepPar corresponds to the bounds
of the confidence intervals for the step parameters (CI(m)$stepPar$lower and
CI(m)$stepPar$upper). CI(m)$anglePar and CI(m)$beta are respectively the
bounds of the confidence intervals for the angle parameters and the regression
coefficients of the transition probabilities.

> CI(m)

$stepPar

$stepPar$lower

[,1] [,2]

[1,] 0.3008217103 2.635316e+00

[2,] 0.3101405634 3.478951e+00

[3,] 0.0002682572 9.994941e-09

$stepPar$upper

[,1] [,2]

[1,] 0.42616138 4.272967e+00

[2,] 0.46889284 5.455626e+00

[3,] 0.01393564 1.000504e-08

$anglePar

$anglePar$lower

[,1] [,2]

[1,] -3.232034 -1.21994842

[2,] 0.455092 0.05797161

$anglePar$upper

[,1] [,2]

[1,] -2.7556474 1.7238709

[2,] 0.7558124 0.5103924

$beta

$beta$lower

[,1] [,2]

[1,] -2.606487342 -3.0489598624

[2,] -0.000968507 0.0002106212

$beta$upper

[,1] [,2]

[1,] -0.9674648979 -0.718633927

[2,] 0.0001510544 0.002691082
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Note that a warning message is also output:

Warning message:

In CI(m) :

Some of the parameter estimates seem to lie close to the boundaries

of their parameter space. The associated CIs are probably

unreliable (or might not be computable).

It here refers to the zero-inflation parameter in the second state. Its esti-
mate is very close to zero, the inferior boundary of its range (this parameter is
in the interval [0,1]), and this causes the corresponding confidence interval to
be unreliable. The function can sometimes fail to compute such a confidence
interval, and would return NA instead.

3.3 Further inference tools and visualization of the model

Various options are available for the class moveHMM, and here we explain how to
use them in the elk example.

3.3.1 Plot the model

The fitted model can be plotted, using the generic function plot. A few graph-
ical options are available and listed in the documentation. Here, we call:

plot(m)

This outputs:

• an histogram of step lengths of all animals, with the fitted state-dependent
densities,

• an histogram of turning angles of all animals, with the fitted state-dependent
densities,

• plots of the transition probabilities as functions of the covariate considered,

• a map of each animal’s track, colored by states.

Figure 3 displays those plots, but showing only one of the plotted maps,
namely the one corresponding to the first animal, “elk-115”. The state-dependent
densities are weighted by the relative frequency of each state in the most prob-
able state sequence (decoded with the Viterbi algorithm, see Section 3.3.2). For
example, if according to the most probable state sequence one third of the ob-
servations is allocated to the first state, and two thirds to the second state, the
plots of the densities in the first state are weighted with a factor 1/3, and in the
second state with a factor 2/3.

The first state (in red on the plots) corresponds to short steps, and angles
centered around π, and the second state (in green on the plots) corresponds to
longer steps, and angles centered around 0.

The plots of the transition probabilities as function of the covariate indicate
that animals tend to switch from the second state to the first state when they
are far from water, whereas they stay in the second state when closer to water.
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Figure 3: Output of plot.moveHMM. Histogram of step lengths with fitted distribu-
tions (top-left), histogram of turning angles with fitted distributions (top-right), map
of decoded track for the first animal (bottom-left), and transition probabilities as
functions of “dist water” (bottom-right).

3.3.2 State decoding

Two functions can be used to decode the state process.

Viterbi algorithm To globally decode the state process, the Viterbi algo-
rithm (Zucchini and MacDonald, 2009) is implemented in the function viterbi.
This function outputs the most likely sequence of states to have generated the
observation, under the fitted model. Below are the most probable states for the
first 25 observations of the first individual:

> states <- viterbi(m)

> states [1:25]

[1] 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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State probabilities To get more accurate information on the state process,
it is possible to compute the state probabilities for each observation, using
stateProbs. This returns a matrix with as many columns as there are states
in the model, and as many rows as there are observations (stacking all animals’
observations). The elements of the matrix are defined as

stateProbs(m)[t,j] = Pr(St = j)

where {St} is the state process.

For example:

> sp <- stateProbs(m)

> head(sp)

[,1] [,2]

[1,] 1.632239e-05 0.9999837

[2,] 9.911030e-02 0.9008897

[3,] 6.024606e-01 0.3975394

[4,] 5.647906e-01 0.4352094

[5,] 4.224738e-01 0.5775262

[6,] 4.447990e-11 1.0000000

The function plotStates can be used to visualize the results of viterbi

and stateProbs. Figure 4 shows the plots of the most likely state sequence
decoded by the Viterbi algorithm, as well as both columns of the matrix of state
probabilities, for one individual, “elk-115”. It was obtained with the following
command:

plotStates(m,animals="elk -115")

3.3.3 Model selection with AIC

The generic method AIC is available to compare moveHMM models. For example,
we now fit a 3-state HMM to the data, and want to compare the AICs of the
2-state and 3-state models.

# initial parameters

mu0 <- c(0.1 ,0.5 ,3)

sigma0 <- c(0.05 ,0.5 ,1)

zeromass0 <- c(0.05 ,0 ,0)

stepPar0 <- c(mu0 ,sigma0 ,zeromass0)

angleMean0 <- c(pi,pi ,0)

kappa0 <- c(1,1,1)

anglePar0 <- c(angleMean0 ,kappa0)

# fit the 3-state model

m3 <- fitHMM(data=data ,nbStates=3,stepPar0=stepPar0 ,

anglePar0=anglePar0 ,formula=∼dist_water)

# compare the AIC of the models

print(AIC(m,m3))
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Figure 4: Decoded states sequence (top row), and state probabilities of observations
(middle and bottom rows) for elk-115

This will output:

Model AIC

1 m3 3673.066

2 m 3816.185

3.3.4 Model checking

The pseudo-residuals (a.k.a. quantile residuals) of the model can be computed
with pseudoRes. These follow a standard normal distribution if the fitted model
is the true data-generating process. In other words, a deviation from normality
indicates a lack of fit. For more theoretical background on pseudo-residuals,
see Zucchini and MacDonald (2009). The pseudo-residuals of the 2-state model
fitted to the elk data are displayed in Figure 5. They can be computed and
plotted with the following commands.

# compute the pseudo - residuals

pr <- pseudoRes(m)

# time series , qq -plots , and ACF of the pseudo -residuals
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plotPR(m)
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Figure 5: Time series, qq-plots, and autocorrelation functions of the pseudo-residuals
of the 2-state model.

The following message is also output when calling one of the above com-
mands on the elk model:

Note: Some angles are equal to pi, and the corresponding pseudo -

residuals are not included.

The reason why those pseudo-residuals are not included is that they are
equal to +∞. Indeed, π is the upper bound of the definition set of the circular
distributions that are included in the package. Thus, the pseudo-residual asso-
ciated with an angle of π is the upper bound of the definition set of the normal
distribution, i.e. +∞.
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4 Package features

In this section, we describe the global structure of the package, and then describe
in more detail the main functions required to fit an HMM to movement data.

The package is articulated in terms of two S3 classes: moveData and moveHMM.
The first extends the native R data frame, essentially gathering time series of
the movement metrics of interest, namely the step lengths and turning angles,
as well as the covariate values. A moveHMM object is a fitted model, which stores
in particular the values of the MLE of the parameters.

To create a moveData object, the function prepData is called on the tracking
data (track points coordinates). Then, the function fitHMM is called on the
moveData, and returns a moveHMM.

Both classes can be used through their methods (e.g. plot.moveData,
AIC.moveHMM), and a variety of other functions can be called on moveHMM ob-
jects. All functions are described in more detail in Section 4.2 and their use is
explained on an example in Section 3. Figure 6 illustrates the links between the
main components of the package.

Figure 6: Structure of the main components of the package. The blue boxes are S3
classes, and the green boxes are functions. The arrows indicate input and output of
data.

Note we will occasionally omit the class to which a method belongs, if the
context makes it clear. Besides, as illustrated in the example in Section 3, it is
not necessary to specify the class when calling the R function (e.g. calling plot

on a moveHMM object automatically refers to plot.moveHMM).
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4.1 Model options

4.1.1 Distributions

Here is the list of distributions included, with the names they have in the pack-
age.

• Step length: gamma (“gamma”), Weibull (“weibull”), exponential (“exp”)
and log-normal (“lnorm”).

• Turning angle: von Mises (“vm”) and wrapped-Cauchy (“wrpcauchy”).
It is also possible to specify angleDist="none", if the angles are not
modelled.

The parameters depend on the distribution used. The gamma distribution
expects the mean and standard deviation, and all other distributions expect the
same parameters as the corresponding R density function, i.e.

Distribution Parameters
gamma mean > 0 standard deviation > 0
Weibull shape > 0 scale > 0
log-normal location ∈ R scale > 0
exponential rate > 0
von Mises mean ∈ (−π, π] concentration > 0
wrapped Cauchy mean ∈ (−π, π] concentration ∈ (0, 1)

For the gamma distribution, the link between the mean/standard deviation
(expected by fitHMM) and shape/scale (expected by dgamma) is given by:

shape =
mean2

sd2

scale =
sd2

mean

4.1.2 Zero-inflation

If some steps are exactly equal to zero, then strictly positive distributions such
as the gamma are inadequate. In such cases, zero-inflated distributions can be
considered. A zero-inflated step length distribution simply assumes that there
is a probability z of observing a 0 and a probability of 1 − z of observing a
positive value distributed according to a standard positive distribution (e.g.
a gamma). Within the package moveHMM, zero-inflation will automatically be
included if there are zero steps. In that case the (state-dependent) values z
will be estimated, with the remaining positive distribution, weighted by 1 − z,
specified as one of the available standard step length distributions, listed in
Section 4.1.1.

16



4.1.3 Covariates

In practice it is often of interest to model the state transition probabilities as
functions of time-varying covariates. This can be done by assuming the Markov

chain to be time-varying, with transition probability matrix Γ(t) =
(
γ
(t)
ij

)
,

linking the transition probabilities to the covariate(s) via the multinomial logit
link. In the general case of N states,

γ
(t)
ij = Pr

(
St = j|St−1 = i

)
=

exp(ηij)∑N
k=1 exp(ηik)

,

where

ηij =

{
β
(ij)
0 +

∑p
l=1 β

(ij)
l wlt if i 6= j,

0 otherwise,

for i, j = 1, . . . , N . Here {St} is the state process, wlt is the l-th covariate at
time t and p is the number of covariates considered. The β parameters directly
affect the off-diagonal elements in Γ(t) — with an increase in the linear predictor

ηij resulting in an increase in γ
(t)
ij — and hence also the diagonal entries due

to the row constraints (with the entries in each row summing to one). Note in
particular that we have to fix ηii = 0 for all i since otherwise the model would
be overparameterized (not identifiable).

Within moveHMM, the β coefficients for the off-diagonal transition probabili-
ties are stored in an (p + 1) × (n · (n − 1)) matrix. For example, for a 3-state
HMM with two covariates, the matrix beta isβ

(12)
0 β

(13)
0 β

(21)
0 β

(23)
0 β

(31)
0 β

(32)
0

β
(12)
1 β

(13)
1 β

(21)
1 β

(23)
1 β

(31)
1 β

(32)
1

β
(12)
2 β

(13)
2 β

(21)
2 β

(23)
2 β

(31)
2 β

(32)
2


Here the first row corresponds to the intercept terms and the other two rows
to the slope coefficients associated with the two covariates. There are as many
columns as there are off-diagonal entries in the 3× 3 transition probability ma-

trix, and that matrix is filled row-wise (i.e. column 1 in beta is linked to γ
(t)
12 ,

column 2 is linked to γ
(t)
13 , column 3 is linked to γ

(t)
21 , etc.).

In practice, many movement models involve only two states, in which case
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the above equations boil down to

Γ(t) =



1

1 + exp
(
β
(12)
0 +

∑p
l=1 β

(12)
l wlt

) exp
(
β
(12)
0 +

∑p
l=1 β

(12)
l wlt

)
1 + exp

(
β
(12)
0 +

∑p
l=1 β

(12)
l wlt

)
exp

(
β
(21)
0 +

∑p
l=1 β

(21)
l wlt

)
1 + exp

(
β
(21)
0 +

∑p
l=1 β

(21)
l wlt

) 1

1 + exp
(
β
(21)
0 +

∑p
l=1 β

(21)
l wlt

)



=

1− logit−1
(
β
(12)
0 +

∑p
l=1 β

(12)
l wlt

)
logit−1

(
β
(12)
0 +

∑p
l=1 β

(12)
l wlt

)
logit−1

(
β
(21)
0 +

∑p
l=1 β

(21)
l wlt

)
1− logit−1

(
β
(21)
0 +

∑p
l=1 β

(21)
l wlt

)


The inverse logit link function is applied in order to map the real-valued predic-
tor onto the interval [0, 1] (with the above multinomial logit link representing a
generalization of this approach to the case of N > 2 states). In the case of two
states, the matrix β in moveHMM is structured as follows:

β
(12)
0 β

(21)
0

β
(12)
1 β

(21)
1

...
...

β
(12)
p β

(21)
p

 .

4.1.4 Stationarity

The function fitHMM includes the option of fitting a stationary model (us-
ing the option stationary=TRUE, with the default being stationary=FALSE).
This is only possible if no covariates are incorporated into the model. (Other-
wise the transition probabilities will be time-dependent, such that the Markov
chain is non-homogeneous and in particular cannot be stationary.) When no
covariates are considered and the option stationary=TRUE is selected, then
the initial state distribution of the Markov chain will automatically be chosen
as the stationary distribution (a.k.a. steady-state distribution) implied by the
estimated transition probability matrix (as opposed to being estimated when
stationary=FALSE). This stationary distribution is the vector δ that solves the

equation δ = δΓ subject to
∑N

i=1 δi = 1. In practice, this solution almost always
exists.

4.2 Main functions

4.2.1 prepData

Tracking data usually consists of time series of either easting-northing coor-
dinates or longitude-latitude values. However, with the HMM approach the
derived quantities step lengths and turning angles are modelled.
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The function prepData computes the steps and angles from the coordinates.
As input, this function takes an R data frame with columns “x” (either easting
or longitude) and “y” (either northing or latitude). If the names of the coor-
dinates columns are not “x” and “y”, then the argument coordNames should
specify them. If several animals were observed, there should also be a column
“ID” which identifies the animal being observed. If there is no “ID” column,
all observations will be considered to be associated with a single animal. All
additional columns are considered as covariates. In addition to the data frame,
prepData takes an argument type, which can either be “LL” (longitude-latitude,
the default) or “UTM”. The former indicates that the coordinates are longitude-
latitude values, and the latter that they are easting-northing values.

To compute the step lengths, prepData calls the function spDistN1 from
the package sp. The step lengths are in the unit of the input if easting/northing
are provided, and in kilometres if longitude/latitude are provided.

prepData outputs a data frame, with the same columns as the input, plus
columns “step” and “angle”. This object is of the class moveData, and can be
plotted using the generic function plot.

4.2.2 fitHMM

Using the function fitHMM, an HMM can be fitted to an object of class moveData,
via numerical maximum likelihood. The list of the arguments of fitHMM is
detailed in the documentation. The maximum likelihood estimation is carried
out using the R function nlm.

This function outputs a list of information about the model. Most elements
of that list are only meant to be used by the moveHMM functions (see Sections
4.2.3 and 4.2.4), but a few can be informative per se:

• mle contains the estimates of the parameters of the model;

• mod contains the output of the optimization function nlm, including mod$minimum

(minimum of the negative log-likelihood) and mod$hessian, the Hessian
of the negative log-likelihood function at its minimum.

4.2.3 Generic methods

Methods (i.e. class functions) are available for both moveData and moveHMM

objects, to operate on them. For details on the options see the documentation,
and for an example of their use, see Section 3.

• plot.moveData plots a few graphs to illustrate the data: a map of each
animal’s track, time series of the steps and angles, histograms of the steps
and angles.

• summary.moveData outputs some summary information about a moveData

object: the number of animals, the number of observations for each animal,
and quantiles of the covariate values.
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• plot.moveHMM plots a few graphs to illustrate the fitted model: a map of
each animal’s track, colored by states, plots of the estimated density func-
tions, plots of the transition probabilities as functions of the covariates.

• print.moveHMM prints the value of the maximum log-likelihood, and the
maximum likelihood estimates of the parameters of the model.

• AIC.moveHMM returns the AIC of one or several fitted models.

4.2.4 Other operations on moveHMM

Other functions can be called on a moveHMM object, for further analysis.

• CI computes confidence intervals for the step length distribution parame-
ters, for the turning angle distribution parameters, and for the regression
coefficients of the transition probabilities.

• pseudoRes computes the pseudo-residuals of the model. These can be
used to assess the goodness of fit. If the model is the true data-generating
process, then the pseudo-residuals follow a standard normal distribution
(Zucchini and MacDonald, 2009).

• stateProbs computes the probabilities of the underlying Markov chain
being in the different states, at each observation, under the fitted model.

• viterbi computes the sequence of most probable states, under the fitted
model, using the Viterbi algorithm (Zucchini and MacDonald, 2009).

• plotStates plots the most probable state sequence (as decoded with
viterbi), and the state probabilities (as computed with stateProbs).

• plotPR plots time series, qq-plots, and the sample autocorrelation (ACF)
functions of the pseudo-residuals of the fitted model (Zucchini and Mac-
Donald, 2009). The qq-plots can be used to visually assess whether or
not the pseudo-residuals are standard normally distributed: the points in
the qq-plots will be close to the straight line if the model fits the data
well, and any notable deviation from the straight line is an indication of
a lack of fit. If the sample ACFs display a residual autocorrelation, then
this is an indication that the model might not have captured all relevant
correlation structure in the data.

4.2.5 simData

The function simData simulates movement data from an HMM, given its pa-
rameters. The returned object is of the class moveData, and can be visualized
using plot, or fitted using fitHMM. The arguments of simData are detailed in
the documentation.
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