
Wei-Chen Chen, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel, Hao Yu i

A Quick Guide for the pbdMPI Package

Wei-Chen Chen1, George Ostrouchov1, Drew Schmidt2,
Pragneshkumar Patel2, Hao Yu3

1Scientific Data Group, Computer Science and Mathematics Division,
Oak Ridge National Laboratory,

Oak Ridge, TN, USA

2University of Tennessee,
Knoxville, TN, USA

3University of Western Ontario,
London, Ontario, Canada

Contents

Acknowledgement ii

1. Introduction 1

1.1. System Requirements . 2

1.2. Installation and Quick Start . 2

1.3. Basic Steps . 3

1.4. More Examples . 4

2. Performance 4

3. FAQs 6

3.1. General . 6

3.2. Programming . 7

3.3. MPI Errors . 8

4. Windows Systems 10

4.1. Install from Binary . 11

4.2. Build from Source . 11

5. SPMD in Examples from package parallel 12

References 15

ii Quick Guide for pbdMPI

Acknowledgement

Chen and Ostrouchov were supported in part by the project “Visual Data Exploration and
Analysis of Ultra-large Climate Data” funded by U.S. DOE Office of Science under Con-
tract No. DE-AC05-00OR22725. Ostrouchov, Schmidt, and Patel were supported in part by
the project “NICS Remote Data Analysis and Visualization Center” funded by the Office of
Cyberinfrastructure of the U.S. National Science Foundation under Award No. ARRA-NSF-
OCI-0906324 for NICS-RDAV center.

This work used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725. This work also used resources of National
Institute for Computational Sciences at the University of Tennessee, Knoxville, which is sup-
ported by the Office of Cyberinfrastructure of the U.S. National Science Foundation under
Award No. ARRA-NSF-OCI-0906324 for NICS-RDAV center.

We thank our colleagues from the Scientific Data Group, Computer Science and Mathemat-
ics Division, Oak Ridge National Laboratory (ORNL), Hasan Abbasi, Jong Youl Choi, Scott
Klasky, and Nobert Podhorszki for discussing windows MPI systems, compiler issues, dynamic
libraries, and generally improving our knowledge of MPI performance issues.

We also thank Brian D. Ripley, Kurt Hornik, and Uwe Ligges from the R Core Team for dis-
cussing package release issues and helping us solve portability problems on different platforms.

Wei-Chen Chen, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel, Hao Yu 1

Warning: This document is written to explain the main functions of pbdMPI (Chen et al.
2012), version 0.1-0. Every effort will be made to ensure future versions are consistent with
these instructions, but features in later versions may not be explained in this document.

Information about the functionality of this package, and any changes in future versions can
be found on website: “High Performance Statistical Computing” at http://r-pbd.org/.

1. Introduction

Our intent is to bring the most common parallel programming model from supercomputing,
Single Program Multiple Data (SPMD), to R and enable distributed handling of truly large
data. Consequently, pbdMPI is intended for batch mode programming with big data (pbd).
Unlike Rmpi (Yu 2010), snow (Tierney et al. 2012), or parallel (R Core Team 2012), inter-
active mode is not supported. We think that interaction with a large distributed parallel
computing platform is better handled with a client/server relationship, and we are developing
other packages in this direction. pbdMPI simplifies MPI interaction, but leaves low and mid
level functions available for advanced programmers. For example, it is easy to hand commu-
nicators to pbdMPI from other applications through MPI array pointers. This is intended
for integration with other, possibly non-R, parallel software.

Under the SPMD parallel programming model, the identical program runs on every processor
but typically works on different parts of a large data set, while communicating with other
copies of itself as needed. Differences in execution stem from comm.rank, which is typically
different on every processor. While on the surface this sounds complicated, after some expe-
rience and a new mindset, programming is surprisingly simple. There is no master. There is
only cooperation among the workers. Although we target very large distributed computing
platforms, SPMD works well even on small multicore platforms.

In the following, we list the main features of pbdMPI.

1. Under the SPMD batch programming model, a single program is written, which is
spawned by mpirun. No spawning and broadcasting from within R are required.

2. S4 methods are used for most collective functions so it is easy to extend them for general
R objects.

3. Default methods (like Robj functions in Rmpi) have homogeneous checking for data
type so they are safe for general users.

4. The API in all functions is simplified, with all default arguments in control objects.

5. Methods for array or matrix types are implemented without serialization and un-serialization,
resulting in faster communication than Rmpi.

6. Basic data types of integer, double and raw in pbdMPI are communicated without
further checking. This is risky but fast for advanced programmers.

7. Character data type is serialized and communicated by raw type.

System requirements and installation of pbdMPI are described next. Section 2 gives a short
example for comparing performance of pbdMPI and Rmpi (Yu 2010). In Section 3, a few

http://r-pbd.org/

2 Quick Guide for pbdMPI

quick answers for questions are given. Section 4 provides settings for Windows environments.
Finally, in Section 5, two examples from parallel are shown as SPMD pbdMPI programs.

1.1. System Requirements

pbdMPI requires MPI (http://en.wikipedia.org/wiki/Message_Passing_Interface). The
package is mainly developed and tested under OpenMPI (http://www.open-mpi.org/) in
xubuntu 11.04 (http://xubuntu.org/) and should also work with LAM/MPI (http://www.
lam-mpi.org/) and MPICH2 (http://www.mcs.anl.gov/research/projects/mpich2/). In
addition to unix, pbdMPI should also run under other operating systems such as Mac OS
X with OpenMPI or Windows 7 with MPICH2 if MPI is installed and launched properly,
although we have not tested on multiple machines yet. Please let us know about your expe-
rience.

For normal installation, see Sec. 1.2. To build as a static library, which may be required on
some large systems, use

Shell Command� �
./configure --enable -static --prefix=${MPI_ROOT}

make

make install� �
where --enable-static can build a static library (optional), and ${MPI_ROOT} is the path to
MPI root. Note that the static library is not necessary for pbdMPI but may avoid dynamic
loading problems.

To make sure your MPI system is working, test with

Shell Command� �
mpiexec -np 2 hostname� �
This should list two host names where MPI jobs are running. Note to use hostname.exe with
the extension on a Windows system.

1.2. Installation and Quick Start

One can download pbdMPI from CRAN at http://cran.r-project.org, and the intallation
can be done with the following commands (using OpenMPI library)

Shell Command� �
tar zxvf pbdMPI_0.1-0.tar.gz

R CMD INSTALL pbdMPI� �
Further configure arguments include

Argument Default

--with-Rmpi-type OPENMPI

--with-Rmpi-include ${MPI_ROOT}/include

--with-Rmpi-libpath ${MPI_ROOT}/lib

--with-mpi ${MPI_ROOT}

http://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.open-mpi.org/
http://xubuntu.org/
http://www.lam-mpi.org/
http://www.lam-mpi.org/
http://www.mcs.anl.gov/research/projects/mpich2/
http://cran.r-project.org

Wei-Chen Chen, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel, Hao Yu 3

where ${MPI_ROOT} is the path to the MPI root. For non-default and unusual installations
of MPI systems, the commands may be

Shell Command� �
Under command mode

R CMD INSTALL pbdMPI \

--configure -args="--with -Rmpi -type=OPENMPI \

--with -mpi=/usr/local"

R CMD INSTALL pbdMPI \

--configure -args="--with -Rmpi -type=OPENMPI \

--with -Rmpi -include=/usr/local/ompi/include \

--with -Rmpi -libpath=/usr/local/ompi/lib"� �
See the package source file pbdMPI/configure for details.

One can get started quickly with pbdMPI by learning from the following six examples.

Shell Command� �
At the shell prompt , run the demo with 2 processors by

(Use Rscript.exe for windows system)

mpiexec -np 2 Rscript -e "demo(allgather ,’pbdMPI ’,ask=F,echo=F)"

mpiexec -np 2 Rscript -e "demo(allreduce ,’pbdMPI ’,ask=F,echo=F)"

mpiexec -np 2 Rscript -e "demo(bcast ,’pbdMPI ’,ask=F,echo=F)"

mpiexec -np 2 Rscript -e "demo(gather ,’pbdMPI ’,ask=F,echo=F)"

mpiexec -np 2 Rscript -e "demo(reduce ,’pbdMPI ’,ask = F,echo=F)"

mpiexec -np 2 Rscript -e "demo(scatter ,’pbdMPI ’,ask=F,echo=F)"� �
1.3. Basic Steps

In the SPMD world, every processor is a worker, every worker knows about all the others,
and each worker does its own job, possibly communicating with the others. Unlike the man-
ager/workers style, SPMD is more likely to fully use the computer resources. The following
shows typical basic steps of using pbdMPI.

1. Initialize. (init)

2. Read your portion of the data.

3. Compute. (send, recv, barrier, ...)

4. Communicate results among workers. (gather, allgather, reduce, allreduce, ...)

5. Finalize. (finalize)

In a given application, the Compute and Communicate steps may be repeated several times
for intermediate results. The Compute and Communicate steps are more general than the
“map” and “reduce” steps of the map-reduce paradigm but similar in spirit. One big difference
is that the Communicate step may place the“reductions”on all processors rather than just one
(the manager for map-reduce) for roughly the same time cost. With some experience, one can
easily convert existing R scripts, and quickly parallelize serial code. pbdMPI tends to reduce
programming effort, avoid complicated MPI techniques, and gain computing performance.

4 Quick Guide for pbdMPI

The major communication functions of pbdMPI and corresponding similar functions of Rmpi
are listed in the following.

pbdMPI (S4) Rmpi

allgather mpi.allgather, mpi.allgatherv, mpi.allgather.Robj
allreduce mpi.allreduce

bcast mpi.bcast, mpi.bcast.Robj
gather mpi.gather, mpi.gatherv, mpi.gather.Robj
recv mpi.recv, mpi.recv.Robj
reduce mpi.reduce

scatter mpi.scatter, mpi.scatterv, mpi.scatter.Robj
send mpi.send, mpi.send.Robj

1.4. More Examples

The package source files provide several examples based on pbdMPI, such as

Directory Examples

pbdMPI/inst/examples/test_spmd/ main SPMD functions
pbdMPI/inst/examples/test_rmpi/ comparison to Rmpi
pbdMPI/inst/examples/test_parallel/ comparison to parallel
pbdMPI/inst/examples/test_performance/ performance testing
pbdMPI/inst/examples/test_s4/ S4 extension

2. Performance

There are more examples for testing performance in pbdMPI/inst/examples/test_rmpi.
Here, we only show a simple comparison of pbdMPI to Rmpi. The two scripts are equivalent
for pbdMPI and Rmpi. We run them with two processors and obtain computing times listed
below.

Save the following script in demo_spmd.r and run it with two processors by

Shell Command� �
mpiexec -np 2 Rscript demo_spmd.r� �
to see the computing time on your platform.

pbdMPI R Script� �
Save this script in "demo_spmd.r".

library(pbdMPI , quiet = TRUE)

init()

time.proc <- list()

Wei-Chen Chen, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel, Hao Yu 5

time.proc$default <- system.time({

for(i in 1:1000) y <- allgather(list(x = 1:10000))

barrier ()

})

time.proc$matrix <- system.time({

for(i in 1:1000) y <- allgather(matrix (1:10000 , nrow = 100))

barrier ()

})

comm.print(time.proc , quiet = TRUE)

finalize ()� �
Save the following script in demo_rmpi.r and run with two processors by

Shell Command� �
mpiexec -np 2 Rscript demo_rmpi.r� �
to see the computing time on your platform.

Rmpi R Script� �
Save this script in "demo_rmpi.r".

library(Rmpi)

invisible(mpi.comm.dup(0, 1))

time.proc <- list()

time.proc$Robj <- system.time({

for(i in 1:1000) y <- mpi.allgather.Robj(list(x = 1:10000))

mpi.barrier ()

})

time.proc$matrix <- system.time({

for(i in 1:1000) y <- mpi.allgather.Robj(matrix (1:10000 , nrow =

100))

mpi.barrier ()

})

if(mpi.comm.rank (1) == 0) print(time.proc)

mpi.quit()� �
The following shows the computing time of the above two scripts on a single machine with
two processors Intel(R) Core(TM) i5-2410M CPU @ 2.30 GHz, xubuntu 11.04 system, and
OpenMPI 1.6. The pbdMPI is more efficient than Rmpi with list and matrix/array data
structures.

R Output� �
>> Output from demo_spmd.r

$default

user system elapsed

1.680 0.030 1.706

6 Quick Guide for pbdMPI

$matrix

user system elapsed

0.950 0.000 0.953

>> Output from demo_rmpi.r

$Robj

user system elapsed

2.960 0.090 3.041

$matrix

user system elapsed

3.120 0.030 3.147� �
3. FAQs

3.1. General

1. Q: Do I need MPI knowledge to run pbdMPI?
A: Yes, but only the big picture, not the details. We provide several examples in
pbdMPI/inst/examples/test_spmd/ to introduce essential methods for learning MPI
communication.

2. Q: Can I run pbdMPI on my laptop locally?
A: Sure, as long as you have an MPI system. You even can run it on 1 CPU.

3. Q: Does pbdMPI support Windows clusters?
A: Yes, the released binary currently supports OpenMPI and MPICH2. For other MPI
systems, users have to compile from source.

4. Q: Can I run pbdMPI in OpenMPI and MPICH2 together?
A: No, you can have both OpenMPI and MPICH2 installed in your OS, but you are
only allowed to run pbdMPI with one MPI system. Just pick one.

5. Q: Does pbdMPI support any interactive mode?
A: No, but yes. pbdMPI only considers batch execution and aims for programming with
big data that do not fit on desktop platforms. We think that interaction with big data
on a big machine is better handled with a client/server interface, where the server runs
SPMD codes on big data and the client operates with reduced data representations.

If you really need an interactive mode, such as for debugging, you can utilize pbdMPI
scripts inside Rmpi. Rmpi mainly focuses on Manager/Workers computing environ-
ments, but can run SPMD codes on workers only with a few adjustments. See the
HPSC website for details at http://r-pbd.org/.

Note that pbdMPI uses communicators different from Rmpi. Be sure to free the memory
correctly for both packages before quitting. finalize(mpi.finalize = FALSE) can
free the memory allocated by pbdMPI, but does not terminate MPI before calling
mpi.quit of Rmpi.

http://r-pbd.org/

Wei-Chen Chen, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel, Hao Yu 7

6. Q: Can I write my own collective functions for my own data type?
A: Yes, S4 methods allow users to add their own data type, and functions. Quick
examples can be found in pbdMPI/inst/examples/test_s4/.

3.2. Programming

1. Q: Can I run task jobs by using pbdMPI?
A: Yes, it is relatively straightforward for parallel tasks. Neither extra automatic func-
tions nor further command/data communication is required. In other words, SPMD is
easier for Monte Carlo, bootstrap, MCMC simulation and statistical analysis for ultra-
large datasets.

Example 1:

SPMD R Script� �
library(pbdMPI , quiet = TRUE)

init()

id <- get.jid(total.tasks)

Using a loop

for(i in id){

put independent task i script here

}

or using apply -like functions.

lapply(id, function(i){

put independent task i script here.

})

finalize ()� �
Note that id gets different values on different processors, accomplishing total.tasks

across all processors. Also note that any data and partial results are not shared across
the processors unless communicated.

Example 2:

SPMD R Script� �
library(pbdMPI , quiet = TRUE)

init()

Directly using a loop

for(i in 1:total.tasks){

if(i %% comm.size() == comm.rank()){

put independent task i script here

}

}

or using apply -like function.

8 Quick Guide for pbdMPI

lapply (1: total.tasks , function(i){

if(i %% comm.size() == comm.rank()){

put independent task i script here.

}

})

finalize ()� �
2. Q: What if I want to run task push or pull by using pbdMPI?

A: No problem. As in the two preceeding examples, task push or pull can be done in
the same way by using rank 0 as the manager and the other ranks as workers. However,
we do not recommend it except perhaps for inhomogeneous computing environments.

3. Q: Are S4 methods more efficient?
A: Yes and No. S4 methods are a little less efficient than using switch ... case

... in C, but most default methods use raw with un- and serialize which may cost
3-10 times more than using integer or double. Instead of writing C code, it is easier
to take advantage of S4 methods to extend to general R objects (matrix, array, list,
data.frame, and class ...) by communicating with basic data types (integer and
double) and avoiding serialization.

4. Q: Can I disable the MPI initialization of pbdMPI when I call library(pbdMPI)?
A: Yes, you can set a hidden variable .__DISABLE_MPI_INIT__ in the .GlobalEnv

before calling library(pbdMPI). For example,

SPMD R Script� �
assign(".__DISABLE_MPI_INIT__", TRUE , envir = .GlobalEnv)

library(pbdMPI)

ls(all.names = TRUE)

init()

ls(all.names = TRUE)

finalize ()� �
To avoid some initialization issues of MPI, pbdMPI uses a different way than Rmpi.
pbdMPI allows you to disable initializing communicators when loading the library, and
later on you can call init to initialize or obtain communicators through .__MPI_APTS__

as in the next question.

5. Q: Can pbdMPI take or export communicators?
A: Yes, the physical memory address is set to the variable .__MPI_APTS__ in the
.GlobalEnv through a call to init(). The variable points to a structure containing MPI
structure arrays preallocated while pbdMPI is loaded. pbdMPI/src/pkg_* provides a
mechanism to take or export external/global variables at the C language level.

3.3. MPI Errors

1. Q: If installation fails with

Wei-Chen Chen, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel, Hao Yu 9

Error Message� �
Error in dyn.load(file , DLLpath = DLLpath , ...) :

unable to load shared object ’/.../pbdMPI/libs/pbdMPI.so’:

libmpi.so: cannot open shared object file: No such file or

directory� �
A: OpenMPI may not be installed in the usual location, so the environment variable
LD_LIBRARY_PATH should be set to the libmpi.so path, such as

Shell Command� �
export LD_LIBRARY_PATH=/usr/local/openmpi/lib:$LD_LIBRARY_PATH� �
where /usr/local/openmpi/lib should be replaced by the path to libmpi.so. Or, use
LD_PRELOAD to preload the MPI library if the library name is not conventional, such as

Shell Command� �
export LD_PRELOAD=/usr/local/openmpi/lib/libmpi.so:$LD_PRELOAD� �
Another solution may be to use the unix command ldconfig to setup the correct path.

2. Q: pbdMPI installs successfuly, but fails at initialization when calling the function
init() with error message

Error Message� �
/usr/lib/R/bin/exec/R: symbol lookup error:

/usr/lib/openmpi/lib/openmpi/mca_paffinity_linux.so: undefined

symbol:

mca_base_param_reg_int� �
A: The linked library at installation may be different from the runtime library, especially
when your system has more than one MPI systems. Since the library at installation
is detected by autoconf (configure) and automake (Makevars), it can be linked with
OpenMPI library, but MPICH2 or LAM/MPI is searched before OpenMPI according
to $PATH.

Solutions:

• Check which MPI system is your favorite to call. If you use OpenMPI, then you
have to link with OpenMPI. Similarly, for MPICH2.

• Or, only kepp the MPI system you do like and drop others.

• Use --with-Rmpi-type to specify the MPI type.

• Use --with-Rmpi-include and --with-Rmpi-libpath to specify the right version.

3. Q: (Linux) If OpenMPI mpiexec fails with

Error Message� �
mca: base: component_find: unable to open

/.../openmpi/lib/openmpi/mca_paffinity_hwloc:

/.../openmpi/lib/openmpi/mca_paffinity_hwloc.so:

10 Quick Guide for pbdMPI

undefined symbol: opal_hwloc_topology (ignored)

...

mca: base: component_find: unable to open

/.../openmpi/lib/openmpi/mca_carto_auto_detect:

/.../openmpi/lib/openmpi/mca_carto_auto_detect.so:

undefined symbol: opal_carto_base_graph_get_host_graph_fn

(ignored)

...� �
A: The linked MPI library libmpi.so may be missing or have a different name. Open-
MPI builds shared/dynamic libraries by default and the target file libmpi.so is used
by pbdMPI/src/spmd.c through #include <dlfcn.h> and dlopen(...) in the file
pbdMPI/src/pkg_dl.c.

Solutions:

• Check if the path and version of libmpi.so are correct. In particular, one may
have different MPI systems installed.

• When linking with libmpi.so in OpenMPI, one must run/load pbdMPI with
OpenMPI’s libmpi.so. The same for LAM/MPI and MPICH2.

• Use export LD_PRELOAD=$PATH_TO_libmpi.so.* in command mode.

• Use the file /etc/ld.so.conf and the command ldconfig to manage personal
MPI installation.

• Or, recompile OpenMPI with a static library, and use libmpi.a instead.

4. Q: (Windows) If OpenMPI mpiexec fails with

Error Message� �
ORTE_ERROR_LOG: Error in file ..\..\..\ openmpi -1

.6\ orte\mca\ess\hnp\ess_hnp_module.c at line 194

...

ORTE_ERROR_LOG: Error in file ..\..\..\ openmpi -1

.6\ orte\runtime\orte_init.c at line 128

...� �
A: Check if the network is unplugged, the network should be “ON” even on a single
machine. At least, the status of network interface should be correct.

4. Windows Systems

Currently, pbdMPI supports Windows with MPICH2 (http://www.mcs.anl.gov/research/
projects/mpich2/). The binary installations of both MPI systems are available from the web-
site. mpich2-1.4.1p1-win-ia32.msi is for 32-bits and mpich2-1.4.1p1-win-x86-64.msi is
for 64-bits. The installation is easily done with a few clicks. The default environment and
path are recommended.

For running MPI and R, users need to set PATH to the mpiexec.exe and Rscript.exe. By
default,

http://www.mcs.anl.gov/research/projects/mpich2/
http://www.mcs.anl.gov/research/projects/mpich2/

Wei-Chen Chen, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel, Hao Yu 11

Shell Command� �
Under command mode , or save in a batch file.

SET R_HOME=C:\ Program Files\R\R -2.15.1

SET MPI_ROOT=C:\ Program Files\MPICH2

SET PATH=%MPI_ROOT%\bin\;%R_HOME%\bin\;% PATH%� �
is for the 64-bit MPICH2, but replace

Shell Command� �
SET MPI_ROOT=C:\ Program Files (x86)\MPICH2� �
for the 32-bit MPICH2.

4.1. Install from Binary

The binary packages of pbdMPI are available on the website: “High Performance Statisti-
cal Computing” at http://r-pbd.org/. Note that different MPI systems require different
binaries. The binary can be installed by

Shell Command� �
R CMD INSTALL pbdMPI_0.1-0.zip� �
As on Unix systems, one can start quickly with pbdMPI by learning from the following demos.
There are six basic examples.

Shell Command� �
Run the demo with 2 processors by

mpiexec -np 2 Rscript.exe -e "demo(allgather ,’pbdMPI ’,ask=F,echo=F)"

mpiexec -np 2 Rscript.exe -e "demo(allreduce ,’pbdMPI ’,ask=F,echo=F)"

mpiexec -np 2 Rscript.exe -e "demo(bcast ,’pbdMPI ’,ask=F,echo=F)"

mpiexec -np 2 Rscript.exe -e "demo(gather ,’pbdMPI ’,ask=F,echo=F)"

mpiexec -np 2 Rscript.exe -e "demo(reduce ,’pbdMPI ’,ask=F,echo=F)"

mpiexec -np 2 Rscript.exe -e "demo(scatter ,’pbdMPI ’,ask=F,echo=F)"� �
Warning: Note that spacing inside demo is not working for Windows systems and Rscript.exe

should be evoked rather than Rscript.

4.2. Build from Source

Warning: This section is only for building binary in 32- and 64-bit Windows system. A
more general way can be found in the file pbdMPI/INSTALL.win.

Make sure that R, Rtools, and MINGW are in the PATH. See details on the website ”Building
R for Windows” at http://cran.r-project.org/bin/windows/Rtools/. But, if both 32-
and 64-bits MPICH2 are installed, two different environment variables MPI_ROOT_32 and
MPI_ROOT_64 need to be set for building binaries.

For example, the minimum requirement may be

Shell Command� �

http://r-pbd.org/
http://cran.r-project.org/bin/windows/Rtools/

12 Quick Guide for pbdMPI

Under command mode , or save in a batch file.

SET R_HOME=C:\ Program Files\R\R -2.15.1

SET RTOOLS=C:\ Rtools\bin\

SET MINGW=C:\ Rtools\gcc -4.6.3\ bin

SET PATH=%R_HOME %;%R_HOME%\BIN\;% RTOOLS %;% MINGW %;% PATH%

SET MPI_ROOT_64=C:\ Program Files\MPICH2

SET MPI_ROOT_32=C:\ Program Files (x86)\MPICH2� �
With a correct PATH, one can use the R commands to install/build the pbdMPI:

Shell Command� �
Under command mode , build and install the binary.

tar zxvf pbdMPI_0.1-0.tar.gz

R CMD INSTALL --build pbdMPI

R CMD INSTALL pbdMPI_0.1-0.zip� �
5. SPMD in Examples from package parallel

We demonstrate how a simple script from parallel can be written in batch by using pbdMPI.
Each time, we first give the version using parallel followed by the version using pbdMPI. All
codes are available in pbdMPI/inst/examples/test_parallel/.

Example 1: (mclapply() originates in multicore (Urbanek 2011))
Save the following script in a file and run with

Shell Command� �
Rscript 01_mclapply_par.r� �
to see the computing time on your platform.

multicore R Script� �
File Name: 01_mclapply_par.r

library(parallel)

system.time(

unlist(mclapply (1:32, function(x) sum(rnorm(1e7))))

)� �
Now save this script in a file and run with

Shell Command� �
mpirun -np 2 Rscript 01_mclapply_spmd.r� �
to see the computing time on your platform.

SPMD R Script� �
File Name: 01_mclapply_spmd.r

library(pbdMPI , quiet = TRUE)

Wei-Chen Chen, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel, Hao Yu 13

init()

time.proc <- system.time({

id <- get.jid (32)

ret <- unlist(lapply(id, function(i) sum(rnorm(1e7))))

ret <- allgather(ret , unlist = TRUE)

})

comm.print(time.proc)

finalize ()� �
The following shows the computing time of the above codes on a single local machine with two
cores Intel(R) Core(TM) i5-2410M CPU @ 2.30 GHz, xubuntu 11.04 system, and OpenMPI
1.6. There is not much communication latency in this example since all computings are on
one “node” which is also a limitation of parallel.

R Output� �
>> Test ./01_mclapply_par.r

user system elapsed

16.800 0.570 17.419

>> Test ./01_mclapply_spmd.r

COMM.RANK = 0

user system elapsed

17.130 0.460 17.583� �
Example 2: (parMM() originates in snow (Tierney et al. 2012))
Save the following code in a file and run with two processors

Shell Command� �
Rscript 02_parMM_par.r� �
to see the computing time on your platform.

snow R Script� �
File Name: 02_parMM_par.r

library(parallel)

cl <- makeCluster (2)

splitRows <- function (x, ncl){

lapply(splitIndices(nrow(x), ncl), function(i) x[i, , drop = FALSE])

}

parMM <- function (cl, A, B){

do.call(rbind , clusterApply(cl, splitRows(A, length(cl)),

get("%*%"), B))

}

set.seed (123)

A <- matrix(rnorm (1000000) , 1000)

system.time(replicate (10, A %*% A))

system.time(replicate (10, parMM(cl, A, A)))

14 Quick Guide for pbdMPI

stopCluster(cl)� �
Now save this script in a file and run with

Shell Command� �
mpirun -np 2 Rscript 02_parMM_spmd.r� �
to see the computing time on your platform.

SPMD R Script� �
File Name: 02_parMM_spmd.r

library(pbdMPI , quiet = TRUE)

init()

set.seed (123)

x <- matrix(rnorm (1000000) , 1000)

parMM.spmd <- function(x, y){

id <- get.jid(nrow(x))

do.call(rbind , allgather(x[id ,] %*% y))

}

time.proc <- system.time(replicate (10, parMM.spmd(x, x)))

comm.print(time.proc)

finalize ()� �
The following shows the computing time of the above code on a single machine with two pro-
cessors Intel(R) Core(TM) i5-2410M CPU @ 2.30 GHz, xubuntu 11.04 system, and OpenMPI
1.6. pbdMPI performs better than snow in this example even without communication over
network.

R Output� �
>> Test ./02_parMM_par.r

user system elapsed

12.460 0.170 12.625

user system elapsed

1.780 0.820 10.095

>> Test ./02_parMM_spmd.r

COMM.RANK = 0

user system elapsed

8.84 0.42 9.26� �

Wei-Chen Chen, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel, Hao Yu 15

References

Chen WC, Ostrouchov G, Schmidt D, Patel P, Yu H (2012). “pbdMPI: Programming with
Big Data – Interface to MPI.” V:0.1-0, URL http://r-pbd.org/.

R Core Team (2012). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

Tierney L, Rossini AJ, Li N, Sevcikova H (2012). snow: Simple Network of Workstations.
R package version 0.3-9, URL http://cran.r-project.org/web/packages/snow/index.

html.

Urbanek S (2011). multicore: Parallel processing of R code on machines with multiple cores
or CPUs. R package version 0.1-7, URL http://cran.r-project.org/web/packages/

multicore/index.html.

Yu H (2010). “Rmpi: Interface (Wrapper) to MPI (Message-Passing Interface)).” V:0.5-9,
URL http://cran.r-project.org/web/packages/Rmpi/index.html.

http://r-pbd.org/
http://www.R-project.org/
http://www.R-project.org/
http://cran.r-project.org/web/packages/snow/index.html
http://cran.r-project.org/web/packages/snow/index.html
http://cran.r-project.org/web/packages/multicore/index.html
http://cran.r-project.org/web/packages/multicore/index.html
http://cran.r-project.org/web/packages/Rmpi/index.html

	Acknowledgement -0.3cm
	1. Introduction
	1.1. System Requirements
	1.2. Installation and Quick Start
	1.3. Basic Steps
	1.4. More Examples

	2. Performance
	3. FAQs
	3.1. General
	3.2. Programming
	3.3. MPI Errors

	4. Windows Systems
	4.1. Install from Binary
	4.2. Build from Source

	5. SPMD in Examples from package parallel
	References

