
Guidelines for S3 Regression Models

Stephen Milborrow

June 15, 2015

Abstract
This document presents some guidelines for S3 regression models. Models
that follow these guidelines will be compatible with tools that further process
the model, such as plotmo [3].

Contents

1 Introduction 1

2 Checklist for S3 regression models 2

3 Example S3 Model 4

4 Limitations of the example S3 model 6

1 Introduction

Once a regression model has been built we usually want to use it for further processing.
For example, we may want make predictions from the model. Or we may want to plot
the model’s response as the predictors are varied (which is what plotmo does), or plot
the model’s residuals (which is what plotres does1).

For an S3 model to be amenable to such further processing it should follow some
commonly accepted interface standards. These are obvious to experienced developers,
but there are many packages on CRAN that don’t follow them. This is possibly because
there seems to be no summary of the standards.

What are the standards? The current document attempts to give a convenient summary,
by way of a checklist and an example. More generally, the S programming book by
Venables and Ripley [5] still seems to be the best place for advice on writing S3 model
code, although a little dated. (For R programming in general there are of course more
modern books, but here we are talking specificially about S3 regression models.) The
ultimate reference is the R core code itself, and examples in Venables and Ripley should
be checked against that code for current practice.

1Both those function are in the plotmo package [3], but this document is not really about those
functions. They are just examples.

1

2 Checklist for S3 regression models

S3 regression models should adhere to the following guidelines. Some of these may be
disregarded in certain situations. This is not a comprehensive list, but enough for most
applications.

1. Give the model a unique class: class(model) shouldn’t return "list". So in the
model-building function, do something like class(model) <- "modelclass". In
general, the class name should be the same as the model-building function.

2. Save the call with the model. In the model-building function, do something like
model$call <- match.call().

3. Allow the user to abbreviate argument names and values. Use match.arg or
similar to match arguments that take strings.

4. Provide both formula and x,y model-building functions. Call the formula method
modelclass.formula and the x,y method modelclass.default.

5. For model functions with a formula interface, save the terms with the model. (A
terms object is a model formula with additional attributes, as described on the
help page for terms.object. Additional background is given in Chambers and
Hastie [1] and Venables and Ripley Section 4.2 [5].)

6. For model functions with an x,y interface:

i. Use x and y as the first two arguments to the model-building function. Don’t
call these arguments anything but x and y, unless that isn’t meaningful for
your model.

ii. The x,y interface should be as similar as possible to the formula interface.
Where possible, summary, predict, and friends should work in the same way
for models built with the x,y interface and the formula interface.

One acceptable difference between the formula and x,y functions is as follows:
The formula interface should convert factors in x to indicator columns before
doing the regression; the x,y interface should reject factors with an error
message.2

In the formula interface, conversion of factors comes with the standard use
of model.matrix (Section 3). In the x,y interface, using as.matrix as de-
scribed below will correctly reject factors and other unsuitable data.

iii. Be kind to the user and allow x and y to be data.frames or matrices (not
just matrices), even if the model takes only numeric input. Issue a clear
error message if x or y cannot be converted to numeric.

For the conversion to matrix you can use as.matrix. This will convert all
columns to strings if there are any factors or strings in the input. So to
check that the input was converted to all numeric as required, it suffices
to check just the first element, because either all or none of the converted

2The earth package [4] treats factors in the x,y interface in the same way as factors in the formula
interface (it expands them to indicator columns). For many models that is ideally the way to go, but
implementing it is quite lot of work.

2

matrix elements will be numeric. Note that as.matrix is efficient in that it
will simply return x if x is already numeric (it doesn’t make a copy of x).

Alternatively you can use data.matrix. This will convert factors to their
internal numeric representation. However, for most models geared towards
continuous data it’s better to issue an error message than to silently make
such conversions, i.e., use as.matrix rather than data.matrix unless you
have a reason not to.

iv. Consider saving x and y with the model. If you do, save them in fields named
x and y. Don’t use those names for anything else saved with the model. If
subset is supported and specified, save x and y before taking the subset,
and also save subset. Likewise for weights.

A word of explanation. If the data or environment isn’t saved with the model,
functions like plotmo can’t unambiguously access the data used to build the
model. Although it works in common scenarios, saving just the call isn’t
sufficient, because one x may not be the same as another x. (Note that
we are talking here about models with an x,y interface. For formula-based
models, the call and terms fields suffice.)

If you are concerned about memory use, give the user an option such as
keep=TRUE to save x and y. (There isn’t a standard name for this argument
— different functions uses different names. In my opinion, please don’t follow
the precedent set by lm and name the argument x or y; that is inviting
confusion.3)

Note that saving x and y doesn’t use as much memory as one might expect,
because R will merely create references to x and y, not make copies of them.
On the other hand, R’s automatic garbage collection won’t be able to release
the memory used by x and y until the model is deleted.

7. Provide a predict method for the model. The first two arguments for the predict
method should be object and newdata.

The default newdata should be NULL and this should be treated as if the user
specified the data used to build the model. If that isn’t possible unless keep (or
similar) was set when building the model, issue an error message to that effect.

The third argument for the predict method should be type, unless that isn’t mean-
ingful for your model. Make "response" one of the options for type, possibly
the default, unless that isn’t meaningful for the model.

Provide defaults for the other arguments where possible so the user can call
predict with minimum bother. Be kind to the user and allow newdata to be
a matrix or a data.frame. (From plotmo’s perspective this is more than just
being kind, it’s necessary for plotmo’s default predict method.) You can use
as.matrix for the conversion to matrix, as described above.

8. If the model supports prediction or confidence levels, allow the user to access
those in the same way as predict.lm, i.e., when the appropriate arguments are
specified, predict should return a matrix with column names fit, lwr, and upr.

3This is an exception to the rule that models should conform to the lm way of doing things. Note
also that lm.fit shouldn’t be used as an example of an x,y interface — because, for example, predict
can’t be used to make predictions on lm.fit models. Instead use a “.default” function as illustrated
in Section 3.

3

9. It is good practice to provide the standard model functions. A basic list is
case.names, coef, coefficients, fitted, fitted.values, model.matrix, na.action,
plot, print, print.summary, resid, residuals, summary, update, variable.names,
and weights. Not all of those may apply to your model. Many of them come for
free if the model is built in the standard way (the default methods in the stats

package will automatically work for the model).

3 Example S3 Model

Friedrich Leisch’s tutorial [2] is an excellent introduction to building R packages. How-
ever the minimal linmod code in the tutorial, although ideal for the purposes of the
tutorial, has limitations that can create issues with functions that further process the
model. For example

fit1 <- linmod(Volume~., data = trees)

predict(fit1, newdata = data.frame(Girth = 10, Height = 80))

gives

Error in eval(expr, envir, enclos) : object 'Volume' not found

and

fit2 <- linmod(cbind(Intercept = 1, trees[,1:2]), trees[,3])

predict(fit2, newdata = trees[,1:2])

gives

Error in x %*% coef(object) : requires numeric/complex matrix/vector arguments

Plotmo methods can be written to work around these issues, but a more general solution
is to modify linmod as follows.

new version of linmod

linmod <- function(...) UseMethod("linmod")

linmod.fit <- function(x, y) # internal function, not for the casual user

{ # first column of x is the intercept (all 1s)

qx <- qr(x) # QR-decomposition of x

coef <- solve.qr(qx, y) # compute (x'x)^(-1) x'y

df.residual <- nrow(x) - ncol(x) # degrees of freedom

sigma2 <- sum((y - x %*% coef)^2) / df.residual # variance of residuals

vcov <- sigma2 * chol2inv(qx$qr) # covar mat is sigma^2 * (x'x)^(-1)

colnames(vcov) <- rownames(vcov) <- colnames(x)

fitted.values <- qr.fitted(qx, y)

fit <- list(coefficients = coef,

residuals = y - fitted.values,

fitted.values = fitted.values,

vcov = vcov,

4

sigma = sqrt(sigma2),

df.residual = df.residual)

class(fit) <- "linmod"

fit

}

linmod.default <- function(x, y, ...)

{

x <- cbind("(Intercept)"=1, as.matrix(x))

fit <- linmod.fit(x, as.matrix(y))

fit$call <- match.call()

fit

}

linmod.formula <- function(formula, data=parent.frame(), ...)

{

mf <- model.frame(formula=formula, data=data)

terms <- attr(mf, "terms")

x <- model.matrix(terms, mf)

y <- model.response(mf)

fit <- linmod.fit(x, y)

fit$terms <- terms

fit$call <- match.call()

fit

}

predict.linmod <- function(object, newdata=NULL, ...)

{

if(is.null(newdata))

y <- fitted(object)

else {

if(is.null(object$terms)) # x,y interface

x <- cbind(1, as.matrix(newdata)) # columns must be in same order as orig x

else { # formula interface

terms <- delete.response(object$terms)

x <- model.matrix(terms, model.frame(terms, as.data.frame(newdata)))

}

y <- as.vector(x %*% coef(object))

}

y

}

We can try the new code with a few examples:

library(plotmo)

data(trees)

fit1 <- linmod(Volume~., data=trees) # formula interface

plotres(fit1)

fit2 <- linmod(trees[,1:2], trees[,3]) # x,y interface

plotres(fit2)

Functions like print.linmod in the Leisch tutorial don’t need to be modified for plotmo,
and don’t appear in the above code listing.

5

The new linmod.formula function saves the model terms, not just the formula. At-
taching the terms to the model is standard practice for formula models.

The predict.linmod function now accepts a data.frame or a matrix. This is what
users would expect, and is necessary for plotmo’s default predict method.

Note also that linmod.default doesn’t require the user to manually add an intercept
column. There are also a few minor changes to the model fields for closer compatibility
with lm.

4 Limitations of the example S3 model

Production code should include sanity tests that aren’t included in our simple example.
For example, to prevent confusing downstream error messages, linmod.fit should be
extended to check that x and y are numeric, and contain no NAs. From the user’s
perspective an error message like

Error in linmod.fit(x, y) : NA in x

is better than the error message issued by the current code

Error in qr.default(x) : NA/NaN/Inf in foreign function call (arg 1)

And a message like

Error in linmod.default(x, y) : non-numeric column in x

is better than

Error in qr.default(x) : NAs introduced by coercion

Similar tests should be made in predict.linmod, which should also check that the new
data has the correct number of columns.

Production code would also handle collinearity properly, ensure x and y have con-
formable dimensions, and take care of details like propagating rownames in the input
data to the residuals and other returned fields. All this can be done in linmod.fit.

References

[1] J. M. Chambers and T. J. Hastie. Statistical Models in S. Chapman and Hall/CRC,
1991. Cited on page 2.

[2] Friedrich Leisch. Creating R Packages: A Tutorial. Compstat 2008-Proceedings
in Computational Statistics, 2008. http://cran.r-project.org/doc/contrib/

Leisch-CreatingPackages.pdf. Cited on page 4.

[3] Stephen Milborrow. plotmo: Plot a Model’s Response and Residuals, 2015. R
package. Cited on page 1.

6

http://cran.r-project.org/doc/contrib/Leisch-CreatingPackages.pdf
http://cran.r-project.org/doc/contrib/Leisch-CreatingPackages.pdf

[4] S. Milborrow. Derived from mda:mars by T. Hastie and R. Tibshirani. earth: Mul-
tivariate Adaptive Regression Splines, 2011. R package. Cited on page 2.

[5] W. N. Venables and B. D. Ripley. S Programming. Springer, 2004. Cited on pages
1 and 2.

7

