postgwas Vignette

Milan Hiersche, Frank Riihle
April 26, 2013

Contents

1

2

8

9

Introduction

Manhattan plots

Regionalplots

SNP to Gene Mapping and Gene-Aggregate p-Values
GO enrichment analysis (via topGO)

Network analysis

GenABEL example

Working with non-human Organisms

Using Buffer Data / Running an Analysis Offline

10 Example Data

10

13

14

23

24

28

29

1 Introduction

This is a step-by step tutorial on how to use the primary functions in postgwas for visualization
and analysis of a GWAS dataset. Initially, the package has to be loaded:

> library(postgwas)

Beside this vignette, there is additional documentation for the package which can be accessed
by stating:

> help(package = "postgwas", help_type = "html")
Further, examples exist for most functions (here called for the regionalplot function in example):
> example(regionalplot)

Throughout this vignette, we will use the real-world GWAS datasets on human height, BMI
and waist-hip ratio (WHR) provided by the GIANT consortium [?, ?, ?]. For the purpose of
this tutorial, the datasests have been truncated, which is described in section 10. To show how
postgwas can be run on non-human data, we will further employ the example dataset delivered
with the GEMMA software package (mouse_lmm.assoc.txt, [?]).

All code examples given in this vignette can be re-executed by running

> require(tools)
> buildVignettes("postgwas")

which will effectively also re-generate this pdf document.

Finally, it should be mentioned that most functions in postgwas rely on annotation data that
is normally downloaded from the web (e.g. biomarts). There is an alternative option to use
local annotation data deposited in data frames. Setting the use.buffer argument in the call of
a postgwas function to TRUE tries to use such local buffer data (or stores downloaded data in
the appropriate data frames when not yet existing). The buffer variables are not accessed from
the user’s workspace but have to exist in the package’s environment. Thus, getter and setter
functions (getPostgwasBuffer(), setPostgwasBuffer()) have to be used to grant access to that
data.

To avoid unnecessary web access, all examples presented here rely on such preloaded buffer
data and have the corresponding use.buffer argument set. Here we load the annotation data
from a workspace image file (contains a list of buffer variables named bufferHS) and supply it
to postgwas :

> load("bufferHS.RData")
> setPostgwasBuffer (bufferHS)

More details on the buffer data concept are given in section 9.

2 Manhattan plots

The first thing to do with a GWAS dataset usually is creating a manhattan plot, getting an
overview of the data. Figure 1 show such a plot for the WHR dataset generated with the default
settings of the manhattanplot function:

> manhattanplot(

+ gwas.dataset = "whrTrunc.txt.remapped.xz",
+ highlight.text = NULL,

+ use.buffer = TRUE,

+ toFile = NULL

+)

Figure 1: A simple manhattan plot for the WHR dataset

As can be seen from the figure, by default all loci beyond a certain p-value threshold are
highlighted. There can be multiple such thresholds, and choice of colors can be controlled by
the highlight.color argument.

It is further possible to add the identifier of the lead SNPs (lowest p-value) for each highlighted
locus by setting the argument highlight.text = "SNP”. P-value thresholds may be changed by
the highlight.logp argument, and the highlight.cer argument acts as a multiplier for the font and
symbol size of the highlighted plot elements:

> manhattanplot(
+ "whrTrunc.txt.remapped.xz",

+ highlight.logp = 7.3,

+ highlight.text = "SNP",

+ highlight.cex = 0.8,

+ highlight.col = "cyan",

+ highlight.fontface = "plain",
+ use.buffer = TRUE,

+ toFile = NULL

+)

-log1t{p)

A s b

Chromosome

.4 ;:.‘:‘ i :,__-':;“ﬁ-‘-.p i
i dail L :
1 2 4

5 16 47 1B 1520 p 22

Figure 2: Annotated manhattan plot for the WHR dataset

The syntax of all arguments used is described in the help pages which can be browsed as shown
in the introduction. As we can see from figure 2, for some loci of chromosome 1, multiple lead

SNPs were identified per locus (e.g. 1s10923712 and rs667760 at the leftmost locus). This is
because highlighting and identification of the lead SNP occurs within a prespecified window
size. Increasing the corresponding highlight.win argument will join the two adjacent loci to
a single one. This is done in the following code fragment. Aditionally, we annotate names
of surrounding genes to peak SNPs instead of the SNP identifier itself. The example below
demonstrates the usage of all these arguments. It further uses different font sizes and styles for
each p-value threshold, with the resulting plot shown in figure 3:

> manhattanplot(

+ "whrTrunc.txt.remapped.xz",

+ highlight.logp = c(6, 8, 10),

+ highlight.fontface = c("italic", "italic", "bold"),
+ highlight.cex = c(0.6, 0.6, 1),

+ highlight.text = c("SNP", "genes", "genes"),

+ highlight.win = c(75000, 200000, 200000),

+ ticks.y = TRUE,

+ plot.title = "WHR dataset plus gene annotation",
+ use.buffer = TRUE,

+ reduce.dataset = 5,

+ toFile = NULL

+)

WHR dataset plus gene annotation

15 soverrTBiline: |

LVV;LAL: iZC3H]]B

log10(p)

w0 o~ ©
e s <ae

1 2 3 4 5 6 7 8 9 10 o 12 13 14 15 16 g7 18 19 20 2 22
Chromosome

Figure 3: Manhattan plot for the WHR dataset, including gene annotation and multiple p-value
thresholds

Finally, it might be of interest that changing the aspect ratio of the plot (and width, height, ...)
is possible by plotting to a diffferent device using the standard R functions (e.g. using the png
function, see the documentation there). Doing so, it is important to know that the text size
is independent of the width / height ratio, but other graphical elements are not. This means,
increasing the width / height of your device will scale up points, triangles etc. in the plot, but
not the text. The text size has to be adjusted by setting the pointsize argument to the device
functions (there is also a highlight.cex argument to the manhattanplot function, but this affects
text and point size of the highlighted regions only). This way, the relation between text and
other graphical elements can be preserved. Anyways, normally the default aspect ratio will be
well suited (except for a really large number of significant loci which might require a larger
width of the plot).

3 Regionalplots

The manhattan plots reveal rs2745353, rs10923712 and rs4846567 as significantly associated
SNPs (among others). We take these as exemplary selection to demonstrate how regional
association plots can be constructed for these loci. We include the p-value graphs of two datasets
in the regional plots, supplying the height and WHR GWAS result files in the gwas.datasets
argument. Generally, showing association graphs for multiple studies in a single plot can makes
sense for phenotypically related traits or replication studies, for example.

> snps <- data.frame(SNP = c("rs2745353", "rs10923712", '"rs4846567"))
> regionalplot (
+ snps = snps,

+ gwas.datasets = c("heightTrunc.txt.remapped.xz", "whrTrunc.txt.remapped.xz"),
+ max.logp = 15,
+ 1d.options = NULL,
+ out.format = NULL,
+ use.buffer = TRUE
+)
Regional association plot for multiple datasets
using biomart positions
heightTrunc.txt.remapped.xz
whrTrunc. txt.remapped.xz
1:119.01 M -120.01 M (rs10923712)
13 rs10923712.
-log10(p) il i A T
o s o IS A x‘ML N JML;M{,M ,\,‘:ﬁl\/,ﬂ[“r —
fecture tracks: AT e
genes s HsDae2

119.2 119.4 119.6 119.8 120

1:219.25M -220.25 M (rs4846567)

13 154846567

- TR

—>
feature tracks: (YPLACL SLC30A10 EPRS

genes.

219.4 219.6 219.8 220 220.2

6:126.95 M - 127.95 M (rs2745353)
TS27A535Y

13 T~ = ‘
| T P
S I L AT W e e | | \

N S W ———

—_—
feature tracks: RSPO3 KIAAO408 Coorfss
—>
RNFi4g SOGA3
ECHDCL SGGA3

genes.

127 1272 1274 1276 1278

Figure 4: Regional association plot for three SNPs of the WHR dataset in comparison with the
height dataset (color code of p-value graphs is shown in the legend above the plots). Genes are
shown as green arrows with their direction according to the strand, and exons shown as black
rectangles on the genes.

The regionalplot function needs a vector of SNPs (wrapped in a data frame), denoting the
regions to plot (one region for each SNP, centered around that SNP - the region width is
defined by a window.size argument which is 1 MB by default and omitted here). The second
argument is the file name of one or more GWAS result files. Several different file formats are
recognized (see help pages). By default, an LD triangle track is also added to the plot, which
is decativated here by setting the corresponding argument Id.options to NULL. The details of
all these arguments are described in the corresponding help pages.

Often, it makes sense to plot many more loci, like the top 50, at once (see section 8 for an
example). By default, a fully searchable pdf file is produced that makes it then easy to browse
and retrieve certain loci or genes in such a summary file.

It is further possible to create wider or higher plots as shown in the next example, figure 5.
This can be done using the out.format argument. In the next example we achieve this by just
reducing the number of panels (regions plotted) per page, which automatically upscales each
region plot to fit the page size. Finer control can be achieved by plotting to a custom device and
changing the page dimensions, which is further described in the help page of the regionalplot
function. In general, it is recommended to deviate not too much from the default aspect ratio
of 4:3, because not all plot elements scale entirely proportional. Additionally, we produce a jpeg
file instead of plotting to the screen (out.format = NULL in the previous example).

Lastly, it is sometimes desireable to define a maximum value for the y-axis of the p-value
graph, to prevent a single very low p-value making the difference between moderate p-values
undistinguishable. This is not the case here, but anyways, the max.logp argument is added in
the following example for demonstration purposes:

> regionalplot (

+ snps = data.frame(SNP = "rs4846567"),

+ gwas.datasets = "whrTrunc.txt.remapped.xz",

+ 1d.options = list(gts.source = 2),

+ out.format = list(file = "pdf", panels.per.page = 3),
+ max.logp = 15,

+ use.buffer = TRUE

+)

Regional association plot for multiple datasets
using biomart positions
LD options: genotypes = HapMap pop. 2 // maxsnps = 200 // rsquare > 0.2

whrTrunc.txt.remapped.xz

1:219.25M - 220.25 M _(rs4846567)

154846567

10

7
~log10(p)
s

1

feature tracks

LD (")

219.4 2196 2108 220 2202

Figure 5: Regional association plot with LD triangles between GWAS SNPs.

Further, in the resulting figure 5 an LD plot has been added using genotype information from
the HapMap CEU population (by specifying a population identifier via gts.source = 2). It is
alternatively possible (and recommended) to supply custom genotype data to the Ild.options
argument (which can be gwaa/phe or ped/map files, see the regionalplot help pages for details).
This will extract the required genotypes and usually result in a more accurate LD structure
with regard to the present GWAS cohort.

The next and last example dealing with the regionalplot function demonstrates the usage of a
resequencing datafile for creation of a rare variant data track. The supplied file has to be in

vef! format, and some additional prerequisites have to be met regarding the file format:

Sorted: The vcf file has to be sorted by chromosome and base position, which can be
done using vcftools? and the vef-sort script on the operating system command line.

Tabix index: Because vcf files can be very large, a tabix index has to exist for quick
data retrieval. If not yet existent, it can be build in R using the Rsamtools package:

> if (library("Rsamtools", logical = TRUE)) {
+ bgzip("reseq.vcf", overwrite = TRUE)
+ indexTabix("reseq.vcf.gz", format = "vcf4d")

+

Region coverage: The vcf file should contain data for all plotted loci (in fact, there can
be regions without data but the corresponding chromosome has to exist in the vcf file -
otherwise lookups in the tabix index file will return an error.).

INFO column: The vcf file (which is basically tab-delimited) should contain an INFO
column. According to the vcf format definitions, the INFO column can have subcolumns
(which are separated by a semicolon and preceded by an identifier, this could look like
MYSUBCOL=values;MYSUBCOL2=morevalues;). There has to be such a subcolumn
named AF listing the allele frequency of the SNP described in that row. Within the
regionalplot function, using regular expressions, data from the INFO column can be further
used to filter and display only certain variants. It is recommended to run snpEFF? on
the vcf file to add functional annotation on all SNPs in an EFF subcolumn of the INFO
column which can then be highlighted or filtered using the regular expression syntax. This
is also shown in the next example.

Base positions: Lastly, sometimes the base position and chromosome annotation be-
tween vcf files and the genes / SNPs of the p-value graph differ. Data from the p-value
graph uses base positions and chromosome names from the ENSEMBL biomart by default
(when plot.genes = TRUE and biomart.config unchanged). It is assumed that data from
the vcf file maps to these positions (which is normally the current genome assembly) as
well. If this is not the case, there are options to accordingly remap data from the vcf file to
biomart positions. For base positions it is sufficient to include an option remap.positions
which will try to convert base positions from the vcf file to biomart positions. This works
for variants with known SNP identifiers (rs IDs). For de novo variants, positions will be
imputed by applying the offset of the closest SNP that has been mapped to a biomart
position. This best guess will in the most cases be valid (unless there has been an insertion
or deletion between the unkown and next mapped variant).

The chromosome names used have to be handled separately, because extraction of variants
from the vcf file occurs before data remapping. When the chromsome names given in the
vcf file do not match those downloaded from biomart used, a two-column data frame can
be supplied as an argument that maps the biomart chromosome names to those used in
the vcf file. Such an example data frame is shown in the following code fragment:

Lvcf = variant call format
2vcftools.sourceforge.net
3snpeff.sourceforge.net

> chrmap <- data.frame(CHR = 1:23, CHR.VCF = paste("chr", 1:23, sep = ""))
> head (chrmap)

CHR CHR.VCF
1 1 chril
2 2 chr2
3 3 chr3
4 4 chr4d
5 5 chrb
6 6 chr6é

Anyways, generally it is recommended to use a vcf file that aligns to the default biomart
assembly, which makes these steps dispensable and does not cause data load during remap-

ping.

The following example illustrates the usage of a vcf file that needs chromosome name remapping
for variant display. Beside using the corresponding var.options argument, in comparison to the
previous plot we have further zoomed in by decreasing the window.size argument, and again
added an LD plot via the ld.options argument. Here we restricted the pairwise LD calulcation to
100 SNPs (maz.snps.per.window subargument), evenly selected over the region, which is usually
sufficient to get a proper representation of the LD block structure and saves some calculation
time.

The var.options argument of the regionalplot function takes a list of argument values, of which
one specifies the vcf file to use, which is again a list containing the filename, the chromosome
name map and a binary switch whether to remap the base positions to biomart positions
(which is not necessary here because the vcf file uses the currenty assembly). Beside the vcf
subargument, several options are available to filter and highlight specific types of variants. These
options are described in detail in the help pages. Here we use the wvcf.info.colorize argument
to extract only variants with SYNONYMOUS and NON_SYNONYMOUS tags in the INFO
column. Note that the order in the vcf.info.color argument matters: expressions listed first will
be preceded by latter ones, so it is possible to include more specific regular expressions after
generic expressions (here, first all variants containing SYNONYMOUS will be colorized, then
those matching NON_SYNONYMOUS).

> regionalplot (

+ snps = data.frame(SNP = "rs10923712"),

+ gwas.datasets = "whrTrunc.txt.remapped.xz",

+ window.size = 600000,

+ 1d.options = list(gts.source = 2, max.snps.per.window = 100),
+ out.format = list(file = "pdf", panels.per.page = 3),

+ max.logp = 15,

+ var.options = list(

+ vef = list(

+ file = "reseq.vcf.gz",

+ remap.positions = FALSE,

+ chrom.map = chrmap

+),

+ vcf.info.colorize = c(EFF = "SYNONYMOUS", EFF = "NON_SYNONYMOUS")
+),

+ use.buffer = TRUE

+)

Regional association plot for multiple datasets
using biomart positions
LD options: genotypes = HapMap pop. 2 // maxsnps = 100 // rsquare > 0.2
variant options: vcf = reseq.vcf.gz

whrTrunc.txt.remapped.xz
variant: SYNONYMOUS
variant: NON_SYNONYMOUS

1:119.21M-119.81 M (rs10923712)

1
10
-log10(p) 7
4

1

feature wracks:

genes

Lo ("2)
variants (0-50% AF)

1193 119.4 1195 1196 119.7 119.8

Figure 6: Regional association plot for rs10923712, including hypothetical rare variants (dummy
data).

The variant track by default has two components, separated by a light dashed line. The lower
part contains a histogram of the allele frequencies of all variants from the vcf file, and the upper
part lists the position of all highlighted variants as text. An extended colorized calibration line is
drawn through the plot to be able to compare the variant position with genes, LD and associated
SNPs. The color code is listed in the legend at the top of all plots showing appropriately colored
triangles with the corresponding filter key.

4 SNP to Gene Mapping and Gene-Aggregate p-Values

For associated SNP variants in GWAS, it is not obvious how these map to putatively causal
genes. It has been demonstrated that many associated SNPs likely affect the closest gene (e.g.
approximately at least 62% = 13 out of 21 loci as roughly estimated in [?]), but still, for certain
constellations sophisticated methods for SNP to gene mapping might be desirable. Secondly, in
gene-based association analysis like gene set enrichment analysis (GSEA) or similar approches,
a correction for the number of SNPs tested per gene should be employed to derive gene-based
p-values (depending on the LD structure, there can be many independently tested SNPs per
gene). Both steps can be performed within postgwas and are described in the following two
paragraphs.

SNP to gene mapping The snp2¢gene function provided with this package allows SNP to
be mapped to genes based on proximity (e.g. assign the closest, or n-th closest gene up- or
downstream etc) or by linkage disequilibrium of the SNPs in question with SNPs that reside
within candidate genes in proximity. We will use the SNPs from the last two regionalplots for
our example mapping. This makes it possible to compare the results of the automatic mapping
with the gene structure in the regionalplots.

> snps <- data.frame(SNP = c("rs10923712", "rs4846567"))
> snp2gene.prox(snps, use.buffer = TRUE)

geneid genename start end CHR SNP BP direction

15 6913 TBX15 119425669 119532179 1 rs10923712 119505434 cover
5 PSMC1P12 119156955 119158269 1 rs10923712 119505434 up

4 127018 LYPLAL1 219347186 219386207 1 rs4846567 219750717 up

10 RIMKLBP2 219373258 219373909 1 rs4846567 219750717 up

13 10352 WARS2 119573839 119683294 1 rs10923712 119505434 down
7 ZC3H11B 219782859 219786462 1 rs4846567 219750717 down
17 WARS2-IT1 119590028 119607408 1 rs10923712 119505434 down
12 RBMX2P3 119627531 119628577 1 rs10923712 119505434 down
1 RPS3AP12 119669162 119669914 1 rs10923712 119505434 down

Table 1: SNP to gene annotation by proximity. The closest gene in each direction (covering,
up- and downstream genes, including overlapping genes) is given for each query SNP.

In comparison to annotation by proximity, the annotation by LD requires much more main
memory and computational power. It is highly recommended to use genotype files (preferably
gwaa/phe or alternatively ped/map which can also be compressed) to reduce data load. Par-
allelization can be activated using the cores argument, but consumes n-fold memory according
to the number of cores used.

> snp2gene.LD(snps, use.buffer = TRUE, gts.source = "s2g.ped.xz")

In the previous regionalplots, we can see that the genes WARS2 and TBX15 are in the same
LD block as rs10923712. Correspondingly, they have high 1d.max and ld.mean scores in the
snp2gene table, whereas rsd846567 does not have genes in LD, except for LYPLAL1 with very
weak LD which is correctly reflected in the snp2gene table. Also note that only established genes
with a symbol and entrez ID are contained in the regionalplot, where the snp2gene annotation
contains additionally genes without ID by default.

10

SNP CHR BP geneid genename start end Id.max Id.mean Id.sdev
2 rs10923712 1 119505434 6913 TBX15 119425669 119532179 0.5715 0.0702 0.1111
3 rs10923712 1 119505434 10352 WARS2 119573839 119683294 0.6832 0.0915 0.1109
7 rs10923712 1 119505434 51179 HAO2 119911402 119936753 0.0175 0.0019 0.0038
9 rs10923712 1 119505434 3284 HSD3B2 119957554 119965658 0.0029 0.0007 0.0009
12 rs4846567 1 219750717 127018 LYPLAL1 219347186 219386207 0.1169 0.0291 0.0346
15 rs4846567 1 219750717 55532 SLC30A10 219858769 220131989 0.0297 0.0058 0.0075
17 rs4846567 1 219750717 2058 EPRS 220141943 220220000 0.0056 0.0013 0.0014
18 rs4846567 1 219750717 10380 BPNT1 220230824 220263804 0.0035 0.0005 0.0010

Table 2: SNP to gene annotation by LD (showing only genes with entrez ID). The column
ld.max lists the highest 72 value between the query SNP and all SNPs within the gene in
question, ld.mean the mean of all 2 values of the query SNP with SNPs in that gene and
ld.sdev its standard deviation, respectively.

Gene-based association p-values Genes with varying sizes will often have different number
of SNPs assigned. This leads to different number of tests performed for each gene with varying
rates of false positive findings with regard to a global significance threshold, thus either the
threshold has to be adjusted for each gene/locus, or a method is needed to adjust the p-values.
Two such methods, GATES and SpD proposed by Li et. al and D. Nyholt, respectively [?, ?] that
estimate the number of independent tests per gene have been made available within postgwas.
After determining the number of independent tests, GATES applies the Simes multiple testing
correction on the derived number of independent SNPs to obtain a gene-representative p-value,
and for SpD, the Sidak correction is employed. Both algorithms are wrapped in the gene2p
function and add a column of gene-wise p-values to our data frame of snp to gene annotations.
Note: Because computations are exhaustive, it is recommended to not use all SNPs from a large
chip (say one million SNPs) to compute gene-wise p-values (although it is possible, but will take
maybe one or two days and much memory). In section 6 an example is shown that suggests a
pre-filtering procedure cutting down the number of SNPs. Otherwise, calculations can be split
up per chromosome. Here we set up a small example demonstrating the functionality for all
genes on chromsome 22 of the whr dataset:

> whr <- read.table("whrTrunc.txt.remapped.xz", header = T)
> whr22 <- whr[whr$CHR == "22",]

Here, we also restrict to intragenic SNPs for aggregate p-value calculation. To do that, we apply
snp2gene with the option level = 0 to annotate just the closest gene, and then select intragenic
SNPs by extracting only SNPs with the value ’cover’ in the direction column:

> whr22 <- snp2gene.prox(whr22, level = 0, use.buffer = TRUE)
> whr22 <- whr22[whr22$direction == "cover",]

Now we can use the geneZp function to obtain gene-wise p-values. We supply genotype data
as custom files as usual, although it is again possible to use HapMap downloads (in this case,
downloaded genotype data will be dumped to files for occasional re-use):

> whr22.gp <- gene2p(

+ whr22,

+ method = GATES,

+ gts.source = "whr22.ped.xz"
+)

Gene-wise p-value calculation works the same way when using the SpD method. Comparing the
available GATES and SpD methods, we see that the mean difference between the gene based

11

geneid genename start end CHR SNP P BP direction gene.p
1 162 AP1B1 29723669 29819168 22 rs2267134 0.062 29766966 cover 0.07160
2 162 AP1B1 29723669 29819168 22 rs2283858 0.080 29807855 cover 0.07160
3 6527 SLC5A4 32614465 32651328 22 rs2068209 0.180 32626908 cover 0.18000
4 7494 XBP1 29190543 29196585 22 rs2239815 0.021 29192670 cover 0.02100
5 8224 SYN3 32908539 33454358 22 rs16990642 0.059 32925526 cover 0.00835
6 8224 SYN3 329008539 33454358 22 rs4274683 0.061 32958464 cover 0.00835

Table 3: SNP to gene annotation including a column gene.p for gene-wise aggregated p-values.
Only the first six lines of the original result table are shown.
intragenic SNPs on chromosome 22 of the WHR dataset.

Calculations were based on

p-values of both methods is quite low in our test dataset, where SpD seems to yield overall
slightly less conservative p-values than GATES:

whr22,
method = SpD,

)

VV 4+ + + +V

v

[1] -0.1748606

whr22.gp.SpD <- gene2p(

gts.source = "whr22.ped.xz"

whr22.gp.SpD <- whr22.gp.SpD[order (whr22.gp.SpD$SNP),]
whr22.gp <- whr22.gplorder (whr22.gp.SpD$SNP),]

mean (1log10(whr22.gp$gene.p) - loglO(whr22.gp.SpD$gene.p), na.rm =

TRUE)

The major difference between GATES and SpD is that GATES accounts for correlation between
p-values of SNPs of a gene, while SpD relies exclusively on LD information to determine the
number of independent tests. The p-value correlation has been determined in GATES by fitting
a polynomial function to the eigenvalues of the LD matrix that accounts for varying sample sizes
of case-control studies. So for GWAS data derived from a case-control study, GATES seems to
be well suited, while for other study designs, SpD might be a good alternative.

12

5 GO enrichment analysis (via topGO)

Having obtained gene-wise p-values, it is possible to calculate a GO term enrichment within
the GWAS dataset. For that purpose, the topGO package, which is originally designed for gene
expression data, can be used. To ease the data handling, postgwas contains a small wrapper
function named gwasGOenrich. It will run the GSEA (Gene-Set Enrichment Analysis) - like
Kolmogorov-Smirnov statistic of topGO:

> enrich.res <- gwasGOenrich(gwas = whr22.gp, ontology = "CC", pruneTermsBySize

go_id P Term
7 GO:0043231 0.11 intracellular membrane-bounded organelle
9 GO:0044464 0.51 cell part
8 GO:0044424 0.90 intracellular part
1 GO:0005575 1.00 cellular_component
2 GO:0005622 1.00 intracellular
3 GO:0005623 1.00 cell
4 GO:0043226 1.00 organelle
5 GO:0043227 1.00 membrane-bounded organelle
6 GO:0043229 1.00 intracellular organelle

Table 4: Result of applying the gene set enrichment analysis functions of the topGO package
to the WHR chromosome 22 dataset , using the gwasGOenrich function.

The function prints some stats on the source data as calculated by topGO (not shown) and
returns the enrichment statistics for all GO terms, which are listed in table 4. Further, topGO
features a plot of the GO subgraph for the most significant terms, which is stored in a pdf file
by gwasGOenrich (not shown here but looks like in figure 11).

The function arguments are self-explaining except for pruneTermsBySize, which will ignore all
terms with equal or less genes annotated. A value between 5 and 10 is recommendable (also
suggested by the original authors of the topGO package in their vignette). Further arguments
can be looked up in the help pages.

All p-values are given without correction for multiple testing.

13

8)

6 Network analysis

Basic principles Postgwas contains a gwas2network function that helps interpreting GWAS
result data under consideration of the functional relationships between associated genes. It
needs two basic inputs: First, a network of binary relationships between genes defined as two-
column data frame. This could be protein interaction data, co-occurence of genes in a pathway
or other user defined gene-gene relationships, with one of two related genes in each column.
Appopriate functions for retrieval of such data from public databases are contained (e.g. get-
Interactions.path()). Secondly, a data frame of SNP to gene mappings including a column of
p-values is needed, e.g. obtained as outlined in the previous section 4.

Running the gwas2network function on these data will produce a graphical view of the data as a
network. The edges of the network are weighted by the mutual p-value of the connected vertices
(alternative weighting schemes are possible). Graphically, the edge weight and vertex p-value is
represented by transparency effects and a corresponding vertex size. Colorization of the vertices
can be set to annotated GO terms, either customly selected or by overrepresentation analysis
in the network.

For a large network (e.g. including genes beyond genomwide significant hits), it is useful to
decompose the network into modules respectively ’gene communities’. This can be done using
the maz.communities argument, which runs the spinglass graph partitioning algorithm [?] of
the igraph package on the network. Each vertex will then be assigned to one community,
based on the number of edges shared with the community and the edge weights. This will put
densely connected genes with preferably low p-values into the same module. It is assumed that
modules with a larger number of well associated genes are more important, thus a 'module
score’ is calculated that measures the deviation of the p-values of the modules vertices from the
distribution of p-values in the entire network (wilcoxon rank sum test).

Visualizing functional relationships This paragraph deals with the visualization of genomewide
significant loci in a network, given that it is small enough so that a decomposition into gene
communities is not necessary.

Again, we use the WHR dataset as an example. We obtain the lead SNPs (using the re-
moveNeighborSNPs function) of all loci beyond o = 10~% and annotate the closest gene (using
snp2gene). Next, we then compute the similarity of the GO term architecture for all associated
genes (using the getInteractions. GO function which relies on the GOSim package) as a measure
for functional relationship, and visualize our data using the gwas2network function:

> snpsW <- removeNeighborSnps (whr [whr$P < 10°-6,])
> genesW.closest <- snp2gene.prox(snpsW, level = 0, use.buffer = TRUE)
> network.data <- getInteractions.GO(genesW.closest$geneid, similarity = "hausdorff")
> network.igraph <- gwasZnetwork(
+ gwas.mapped.genes = geneslW.closest,

network = network.data,

max.communities = 0,

vertexcolor.GO0.regex = list(red = "metaboli"),

min.transparency = 0.4,

max.transparency = 1,

use.buffer = TRUE
)

+ + + + + + +

We have used the option (vertexzcolor.GO.regex) to colorize all genes with specific annotated

14

GO terms. By using this argument, it is possible to define a regex* in combination with a
color, which will paint a gene in that color when a GO term description matches the regex.
As can be seen in the next example, it is also possible to do an automatic colorization by GO
term overrepresentation analysis using the argument vertezcolor.GO.overrep (or completely
deactivate the colorization by setting that argument to NULL), which is recommended when a
hypothesis-free representation of the network is desired.

The processed network will be deposited in pdf files in the current directory (as long as the
argument file.verbosity is greater 0, which has a default of 2). In addition, the function returns
the resulting network as an igraph object. This can either be subject to further custom analysis
and / or be plotted with the built-in gwas2network.plot function, which is shown in the next
code fragment. The dedicated plotting allows control over some more parameters like the file
format (device used), resolution or point / fontsize if desired. Also, the layout (vertex positions)
can be customized in the plotting function (remark: there is also an argument custom.layout
available in the gwas2network function that allows dragging the vertices to a custom position).
In the following code fragment, we save the graph as a jpeg image with increased pointsize of
the font (which results in larger labels). Finally, it is also possible to store the graph and GO
term overrepresentation data (if applied) in text files by setting file.verbosity >= 4, so that any
kind of downstream analysis or interpretation should be possible.

> gwas2network.plot(

+ network.igraph,

+ filename = "examplelNet. jpeg",

+ device = jpeg, res = 100, pointsize = 16
+)

.nspm .

Figure 7: Network of GO term architecture similarity between genes of the WHR dataset.
Colorization corresponds to GO term annotation and vertex size / transparency corresponds to
the assigned p-values (see legend boxes).

The resulting network is shown in figure 7. Genes have by default a size and transparency level
(which can be controlled by the min.transparency and maz.transparency arguments) according
to their assigned p-value. The source GWAS data genesW does not contain a gene.p annotation

4regex = regular expression, see for example help("regex”) in R

15

colum, thus the SNP-wise p-values (column P) are used to determine these attributes. By
default, when multiple p-values are available for one gene, the smallest will be selected as
representative.

For interpretation, we see that six genes are (weakly) related by a common GO term architecture.
Among them are NISCH and ITPR2, which in addition have a GO term with the keyword
'metaboli’ assigned (a manual lookup confirms that NISCH is associated to the GO term ’glucose
metabolic process’ and ITPR2 to ’energy reserve metabolic process’). Therefore, this module
could be of increased interest for further research, especially with regard to a shared functionality
or common action on a specific molecular trait.

Nevertheless, it should be kept in mind that such observations just represent a small fragment
of information that can be drawn from a GWAs dataset, and are also prone to be biased by the
investigator’s view on the data. Thus, application of additional tools that perform enrichment
and network based analyses® are recommended to get a comprehensive view on the data.

So far, we have only considered the gene in closest proximity of each associated SNP as the
most likely causal gene for that locus. The next example generates a network considering the
closest gene as well as those that are in LD with the peak associated SNP, providing probably
a more accurate gene annotation:

> genesW.LD <- snp2gene.LD(snpsW, use.buffer = TRUE, gts.source = "whr.ped.xz")

> genesW <- rbind(

+ genesW.closest[, c("SNP", "P", "geneid")],

+ genesW.LD[genesW.LD$1ld.max > 0.6 | genesW.LD$ld.mean > 0.1, c("SNP", "P", "geneid")]
+)

> network.data <- getInteractions.GO(genesW$geneid, similarity = "hausdorff")

> network.igraph <- gwas2Znetwork(

+ gwas.mapped.genes = genesW,

+ network = network.data,

+ max.communities = 0,

+ vertexcolor.GO.regex = list(

+
+
+
+
+
+
+
+

red = "metaboli",

yellow = "(LDL|HDL|lipoprotein)",

blue = "(insulin|/diabet/glucose)"
s

min.transparency = 0.4,
max.transparency =
use.buffer = TRUE

|
—~
.

)
5for example MAGENTA, PANTHER, DAPPLE, GRAIL, etc.

16

Figure 8: Gene network based on GO term architecture similarity between genes of the WHR
dataset. SNPs have been assigned to genes by LD. Vertices with crossmarks denote ambiguous
annotations (several genes annotated to a single SNP). Colorization corresponds to annotated
GO terms (see legend boxes).

Using extended gene annotations, we have to deal with the fact that multiple genes can inherit
their p-value from the same SNP. Such cases are denoted with crossmarks in figure 8. For
example there could be LD blocks containing many genes participating in the same biological
process. A single SNP association that spans the whole block would result in a large number of
these genes considered to be associated, although it is more likely that only one or few of them
are causal (here, for example, the strongly associated genes TBX15 and WARS2 stem from the
same associated locus, as can be seen in the regionalplots). Despite this drawback, we are now
able to identify PIGC as another gene that relates to a 'metabolic’ GO term (cellular protein
metabolic process), which might be quite interesting. Also note that NISCH and ITPR2 are
now colorized brown, because they match multiple categories in the vertezcolor.GO.regex list.

Finally, it should also be mentioned that it is not mandatory to do an automatic gene mapping:
For a small set of loci (e.g. genomewide significant hits), it is as well possible to create region-
alplots for all loci of interest and assign genes to the peak SNPs manually under consideration
of distance and underlying LD pattern. Also, gene-wise p-values can be calculated and used as
explained in section 4.

Decomposing networks into gene communities The next example demonstrates decom-
position of a larger graph into gene communities.This is useful when many associated loci beyond
genomewide significance are considered like e.g. in the analysis of polygenic traits. The example
will be calculated on data with (almost) genomewide coverage of 100°000 SNPs. After mapping
of these SNPs to genes and calculation of gene-wise p-values, all genes having gene.p <= 10~*
will be considered in the network analysis. Instead of using custom GO term selections for the
vertex colorization as in the previous example, we will further run a GO term overrepresentation
analysis to automatically determine GO terms for vertex colorization.

Lastly, the following example will also show the feasibility to exert a joint network analysis
of two datasets. Genes are then distinguishable by different vertex shapes for each dataset.

17

We will carry out such a joint analysis using the BMI and height datasets - for these traits,
it is hypothesized that some overlap in the genetic component should exist [?, ?]. For the
interpretation of such an analysis, it has to be considered that p-values can not be compared
between studies unless both studies exhibit the same study design (i.e. in particular both studies
are equally powered). Generally, p-values can be taken as a measure for the probability of a false
positive finding, which means the probability of observing the measured genotype data under
the null hypothesis. In more powerful studies (e.g. larger sample size), p-values will generally
be stronger when a true association is present, but that does not imply that such genes are more
‘significant’ than genes from less-powered studies. For studies that are incomparable in that
sense, either an appropriate correction method has to be used, or p-values could be replaced
by an alternative measure like estimation of effect sizes. To do so, it is necessary to modify the
edge.weight.fun argument of the gwas2network function. The following example shows how to
integrate two studies technically in a single network, assuming that the studies have an identical
underlying design.

#
#
>
>
>

VvV #

* V + o+ + + VR

vV V.V .V % %#%

+ + + Vv

cut down height dataset to 100000 SNPs, evenly distributed

(first sort by CHR / BP, then apply pruneVec)

height <- read.table("heightRemapped.txt", header = TRUE)

height <- height [order (height$CHR, height$BP),]

height.100k <- height[height$SNP 7inj, postgwas: ::pruneVec (height$SNP, 100000),]

annotate closest gene to SNPs
height.100k.genes <- snp2gene.prox(height.100k, level = 0, use.buffer = TRUE)

calculate gene-wise p-value and keep only genes with p <= 107-4 for analysis
height.100k.genes.p <- gene2p(
height.100k.genes,
method = GATES,
gts.source = "height100k.ped"
)
height.100k.genes.p <- height.100k.genes.p[height.100k.genes.p$gene.p < 10°-4,]

same procedure is applied to BMI dataset (not shown)

merge datasets, cap smallest p-values at 10°-16

(otherwise vertex size for moderate association at e.g. 10°-7 is too small)
height.100k.genes.p$pheno <- "height"

bmi.100k.genes.p$pheno <- "BMI"

overlap <- rbind(bmi.100k.genes.p, height.100k.genes.p)
overlap$gene.pl[overlap$gene.p < 10°-16] <- 10°-16

net <- gwas2network(
gwas .mapped.genes = overlap,
network = getlnteractions.path(overlap$geneid),

)

The resulting figures 9, 10 and 11 of this code fragment have been precalculated (are not re-
build when executing the vignette), which took about three hours for the whole pipeline using a
standard PC. Figure 9 shows the complete network, and two of the extracted communities (six in
total) are exemplary shown in figure 10. Further, figure 11 shows the three best overrepresented
GO terms in the first community as a GO subgraph, in detail with its parent terms and stats
(e.g. number of genes in the community that are assigned to the term). The figure is produced

18

by (and explained in) the topGO package®, which is used by postgwas.

Interpretation of entire network in figure 9 is difficult because of the large number of genes
contained, but still possible by zooming into the graphic. The first community listed in figure
10 is easier to interpret. It contains primarily cell division and mitosis-related genes. This might
be be very well related to one of the underlying genetic mechanisms of growth-related traits like
human height and BMI. It has a low module score assigned, hinting towards an enrichment of
well associated genes in that community. The last community obviously contains many genes
with weaker association (which is the reason why it is listed last with the highest module score
of all six communities). Nevertheless, the subjectively large number of genes associated to the
’small molecule metabolite process’ GO term colored in blue seems to be interesting and could
also be further investigated. Lastly, the ADCY3 gene in this community is associated with
a moderate p-value in both the height and BMI dataset, which could hint on a pleiotropic
function of the gene for these traits.

So far, all networks have been generated by including only genes from the GWAS dataset in the
network. As a last note, it is also possible to use networks that exceed the scope of associated
genes from the GWAS. The argument prune can then be used to define inclusion criteria for
the non-GWAS genes in the network (if such genes are included, they get a p-value assigned
as defined by the default.p argument). This way, it is possible to work on a ’shared interactor
network’ of protein interactions, for example. The help pages of gwas2network contain further
information on the prune argument.

Shttp://www.bioconductor.org/packages/2.11/bioc/html/topGO.html

19

)
H © .
(4
)
.
°
o B
3 ° ° °
.
.
.
L]
]
° LN . ©
.
| ‘e H
i o L4
° A
.
)
% S
P Yt N
£
o ¥ ¢
.
il °
N 5
|
.
X
.
14 °
.
g 1
° .
.
°
0
e

Figure 9: The complete network for both height and BMI datasets. Vertices are connected by
shared pathway membership. Two exemplary subnetworks are singled out in figure 10 for a
more detailed view.

20

.<2e715
.19—13

o

.<2e—16
.15—13

1e-10
@

.HMGAI

HISTIHIE
o

@BCKDHE

PRKG2
L) e

ADCY3

ATP2A1
| |

SLC35D2
()

EPBA1L
()

Module score: 0.0355928

G0:0000086
p (fisher): 6.6278e-06

G2/M transition of mitotic cell cycle

G0:005130
p (fisher): 2.586
Il division

GO:0006334
p (fisher): 9.2415e-05
nucleosome assembly

brown: multiple overrepresented terms

Module score: 0.92828

GO0:0044281
p (fisher): 0.00011764
small molecule metabolic process

GO0

p (fish:

muscle contractior

G0:0055085
p (fisher): 0.00012826
transmembrane transport

brown: multiple overrepresented terms

Figure 10: Communities 1 and 6 (of 6) in the network of combined height and BMI datasets.
Vertices are connected by shared pathway membership. Circles denote associated genes from

the height dataset, and squares for the BMI dataset.

highlighted with boldface and italic labels.

21

Genes occuring in both datasets are

Figure 11: Details for the GO term overrepresentation analysis for the first gene community in
figure 10 (produced by the topGO package)

22

7 GenABEL example

All examples were based on PLINK-like GWAS result files so far. However, all postgwas func-
tions work on GenABEL objects / files as well (and GEMMA and FAsT-LMM formats). We
now use the srdta dataset that is provided with GenABEL to create a regionalplot. Let us
assume that a GWAS analysis has been done in GenABEL:

> data(srdta)
> gwas <- ccfast("bt", srdta)

The resulting gwas object (of class scan-gwaa) can be directly passed to regionalplot and other
functions that require a gwas.dataset argument, e.g. manhattanplot. Further, genotype data
is available via the gtdata slot of the srdta object, but could also be provided in GenABEL
gwaa/phe files. We use the srdta@gtdata object for calculation of an LD track (can similarily
be provided to all other postgwas functions that require a gts.source argument):

> regionalplot (

+ snps = data.frame(SNP = "rs1020"),

+ gwas.datasets = gwas,

+ 1d.options = list(gts.source = srdta@gtdata),
+ plot.genes = FALSE

+)

Regional association plot for multiple datasets
LD options: genotypes = custom // maxsnps = 200 // rsquare > 0.2
datasetl

1:-0.24M-0.76 M_(rs1020)

“loglo(e) 1 } u c‘ ' " »‘
\ 151020 A b ok I A /IN
ALV ;’/\3\,, AN Mo/ J‘:\j VWAV \‘y /W J N

feature racks: e

L ("2)

-0.2 0 02 04 06

Figure 12: Regionalplot built on the srdta dataset of GenABEL

In this example, the gene track has been disabled because the srdta dataset is synthetic, mean-
ing that most SNP IDs do not exists in the biomart databases (and those that exist map to
completely different positions). By disabling the gene track, SNP positions are taken from the
source data as is, without synchronizing them to gene positions.

Lastly, it is of note that the gwas object generated by GenABEL contains several slot for p-
values. Postgwas functions will always extract the P1df slot, and there is no way to directly
specify a different one (e.g. Pcldf for genomic inflation corrected p-values). However, a data
frame (or PLINK-like file) can be constructed and supplied to the gwas.datasets argument
instead:

> gwas.custom <- data.frame(
+ SNP = snpnames(gwas),

+ P = gwas[, "Pc1df"],

+ BP = gwas[, "Position"],
+ CHR = chromosome (gwas)
+

)

23

8 Working with non-human Organisms

The postgwas tools can be principally applied to any kind of species. Depending on the organ-
ism, it may nevertheless require some additional effort to get it running. First option (which
always works) is to supply buffer data, i.e. manually download all required annotation data
and load them into the R workspace as appropriately formatted data frames. These are further
described in the help pages, e.g. help(postgwasBuffer) and section 9.

A more convenient way is to change the biomart configuration of postgwas, given that your
species is annotated via a biomart. Try help(biomartConfigs) to get further explanation. Also,
the example section of most functions contains an example on non-human data.

Here, the following examples demonstrate how to run the primary postgwas functions with
an example dataset for mus musculus. It works by supplying the predefined biomartCon-
figs$mmusculus configuration list to the biomart.configs argument of each postgwas function,
here shown for the manhattanplot:

> manhattanplot(

+ "mouse_lmm.assoc.txt.xz",

+ biomart.config = biomartConfigs$mmusculus,
+ reduce.dataset = FALSE,

+ use.buffer = TRUE,

+ toFile = FALSE
+)

mCV22965443

15

13

11

o
T 5
Myogil BP?

Cehert y Trim10

—log10(p)

Chromosome

Figure 13: A simple manhattan plot of the mus musculus example GWAS dataset from the
GEMMA package.

Figure 13 obviously contains many (independently?) associated loci within a larger chromosomal
region. Here it is more recommendable to generate a manhattanplot without text annotation
and instead investigate the loci separately in regionalplots that offer a higher resolution.

Therefore, we extract all loci of interest from the GWAS dataset, defining a = 5 * 1078 as
threshold for significance. This is done in the following code fragment:

24

> mm <- postgwas:::readGWASdatasets ("mouse_lmm.assoc.txt.xz")
> snps.mm <- removeNeighborSnps (mm[mm$P < 5%10°-8,], maxdist = 100000)

The first line reads the complete GWAS dataset into a data frame (this could be done using the
read.table function, but here we use the internal postgwas function readGWASdatasets, which
auto-detects some formats), and on the second line, we extract SNPs meeting our « threshold
and prune them down to lead SNPs only (within 500kb windows).

For these loci, we annotate genes as usual, shown in the following code fragment and table 5,

genes.mm <- snp2gene.prox(
snps.mm,
level = 0,
use.buffer = TRUE,
biomart.config = biomartConfigs$mmusculus

geneid genename start end CHR BP SNP P direction
2 170716 Cyp4f13 32924688 32947402 17 32941145 rs13459151 3.835716e-14 cover
21 240063 Zfp811 32797406 32800938 17 32800415 rs13482952 7.735179e-14 cover

6 14977 Slc39a7 34028267 34031690 17 34030404 rs13482957 1.043051e-10 cover
8 240084 Ccherl 35517100 35531015 17 35530170 rs13482963 5.340434e-11 cover
NA 19824 Trim10 36869574 36877825 17 36878449 rs13482967 2.262217e-14 up
NA1 258051 OIfr93 37151007 37152051 17 37131683 rs13482968 8.144100e-15 down
7 21354 Tapl 34187553 34197225 17 34196995 rs3023442 9.278717e-14 cover
9 22154 Tubbb 35833926 35838306 17 35834133 rs3682923 3.209200e-10 cover
3 17916 Myolf 33555719 33607764 17 33563059 rs6249614 1.813323e-14 cover

Table 5: SNP to gene annotation by proximity for mouse data

and generate regionalplots (figure 14):

> regionalplot (

+ snps = snps.mm,

+ gwas.datasets = c("mouse_lmm.assoc.txt.xz"),
+ window.size = 350000,

+ biomart.config = biomartConfigs$mmusculus,

+ 1d.options = NULL,

+ use.buffer = TRUE

+)

25

Regional association plot for multiple datasets
using biomart positions
mouse_lmm.assoc.txtxz ©

17:-0.18 M -0.17 M (mCV22965443)
]7 mCV22965443_
13
-iog10() 9
5
1
feature tracks:
genes
-01 o 01
17:32.63 M -32.98 M _(rs13482952)
ot 1513482952 1513459151,
13
-iog10() 9
5
1
e S < s
feature tacks: | ™07 Cyparts zipb11 et patt
> - P P —>
genes Cyparad Zipa71 Zipree Sparta Zdrz
327 328 329
17 .32.77M - 33.12 M_(rs13459151)
v 1513482952 1513450151,
13 ~.
~iog10() &
1
feature tracks 28 Zp799 Cypaita zipa7 Zip763 7563
< -~ e e <
genes Zpa1 Ziparo Cypaits T 4921501E09RK
328 329 33 331
17:3339M-3374M (rs6249614)
I 156249614,
13
~iog10() &
5
1
«— S > e
feature tracks: damist o oo
> e — -
genes o Wyor Fram Warchz
334 s 336 37
17:33.86 M -34.21 M (rs13482957)
i 153023442
13 1513482957,
\
-i0g10() © e (\
5 —_— |
N —_—
Pa— - >
Kic1 H20a HZ-DibL
feature tracks: — <«
Braz [
genes WKL Tapt
>
Coltiaz =
339 34 341 342
17:34.02M -3437M (rs3023442)
17 153023442 153665150
13 482957, I8 R
—iog106) —_ (
5 — |
: |
> P
i Conia [Psmbe W3 a
feature tacks: 2 s S
genes 5 S fr=
o > — —>
Ran H2 D ot o=
341 342 3

Figure 14: Regional plot of the mmusculus dataset shown for the first 6 significantly associated
loci - the example data is very sparse, so the p-value graph only contains few SNPs and appears
truncated.

Finally, it is also possible to visualize the GWAS data in a network. We need the org. Mm.eg.db
package (which can be installed from bioconductor) to be able to deal with Gene Ontol-
ogy data, and again have to supply the biomartConfigs$mmusculus configuration list in the
biomart.configs argument to obtain the netwrok in figure 15:

> if(library(org.Mm.eg.db, logical.return = TRUE)) {
+ network.data <- getInteractions.GO(

+ genes.mm$geneid,

+ GOpackagename = "org.Mm.eg.db",

26

+ + + + + + + 4+ + + + 4+

similarity = "hausdorff'

)

network.igraph <- gwas2network(
genes.mm,
network.data,
max.communities = 0,
vertexcolor.GO0.overrep = "org.Mm.eg.db",
biomart.config = biomartConfigs$mmusculus,
use.buffer = TRUE

)

gwas2network.plot (network.igraph, file = "exampleNetMouse.pdf")
}

Figure 15: Network of shared GO term architecture between loci of the mmusculus dataset

27

9 Using Buffer Data / Running an Analysis Offline

Most functions in postgwas require specific annotation data: These are by default downloaded
from biomarts (which can be configured, see help(biomartConfigs)). Alternatively, all anno-
tation data can also be supplied in a data frame format, with one data frame for each type
of annotation (e.g. genes, SNPs, exons, ...). Most functions in postgwas include a use.buffer
argument which instructs to use annotation from such buffer data frames, if they exist. If all or
some of them do not exist and the use.buffer argument is set, data for the according buffer type
is first downloaded and then stored in the appropriate variables for later (re-)use. However,
the data frames are not accessible from the user’s workspace, but hidden in the environment of
the postgwas package. Access is possible via the getPostqwasBuffer() and setPostgwasBuffer()
functions:

> buffers <- getPostgwasBuffer ()
A list containing all buffer data frames has been returned:
> names (buffers)

[1] "snps" "genes" "genes.regionalplot"
[4] "exons.regionalplot" "1ld.regionalplot" "goterms"

Take a look at the data frame for SNP annotation:

> snpbuffer <- buffers[["snps"]]
> head(snpbuffer)

refsnp_id chr_name chrom_start

1 rs13459151 17 32941145
2 rs13482952 17 32800415
3 rs13482957 17 34030404
4 rs13482963 17 35530170
5 rs13482967 17 36878449
6 rs13482968 17 37131683

It is possible to modify the annotation data frame and resubmit it to the package:

> snpbuffer[1, "refsnp_id"] <- "alternativeID"
> setPostgwasBuffer (snps = snpbuffer)

Also, the complete list of buffer data frames can be submitted, allowing to restore the state for
a certain analysis at once:

> setPostgwasBuffer(uselist = buffers)

Buffer variables that have the value NULL are considered as not set and will be filled with
downloaded annotation data when use.buffer = TRUE. The function clearPostqwasBuffer can
be used to reset all variables to NULL.

Further information can be found in the package documentation by running:

> help("postgwasBuffer")
> example (postgwasBuffer)

28

10 Example Data

A vignette comes as a single pdf document, but in fact it is compiled during the package
installation process on your local machine by running all examples. The postgwas package
includes some source data files so that the code in this vignette can be run. The folder on your
local machine where the data files are located can be identified by executing:

system.file("doc", package = "postgwas")

The GWAS data files found there are truncated versions of the original GIANT consortium
GWAS data files”. The original datafiles contain about 2.5 million SNPs, which is far too much
for our examples. The datasets have been preprocessed as follows:

> gwas.whr <- read.table(

+ "GIANT_WHRadjBMI_Heid2010_publicrelease_HapMapCeuFreq.txt",
+ header = T

+)

> gwas.whr <- gwas.whr[, c("MarkerName", "p")]
> colnames(gwas.whr) <- c("SNP", "P")
> gwas.whr.trunc <- gwas.whr[

+ gwas.whr$P < (runif(nrow(gwas.whr))*0.7)°4 |
+ gwas.whr$P < quantile(gwas.whr$P, 0.001),

+]

>

write.table(gwas.whr.trunc, "whrTrunc.txt", row.names = F, sep = "\t")

This prunes SNPs randomly, with increased probability to retain low p-value SNPs. The top
1% of SNPs (lowest p-values) are always kept. The resulting file whrTrunc.tat contains 127750
SNPs after this truncation step.

Because most postgwas functions require a CHR and BP column to run, these had also to be
added to the file. This can be done using biomart queries with a builtin function

> bm.remapSnps ("whrTrunc.txt")

which would produce a whrTrunc.txt.remapped file containing CHR and BP columns. But, as
the dataset is quite large, using biomart should be avoided. It is comparably simple to download
and appropriate SNP annotation file from a web resource, and merge it with the GWAS result
file using the merge function of R.Both approaces yield the final example data file with the
following heading lines:

> head(read.table("whrTrunc.txt.remapped.xz", header = TRUE))

SNP P CHR BP
1 rs10000036 0.066 4 139219262
2 rs1000005 0.030 21 34433051
3 rs10000101 0.063 4 171716087
4 1rs1000014 0.094 16 24417536
5 rs10000140 0.050 4 89948054
6 1rs1000016 0.038 2 235690982

Preprocessing of the BMI and height datasets, which are used only in the network analysis is
described in the according section 6.

7downloadable from http://www.broadinstitute.org/collaboration /giant/index.php/GIANT _consortium_data._files

29

References

1]

Iris M Heid, Anne U Jackson, Joshua C Randall, Thomas W Winkler, Lu Qi, Valgerdur
Steinthorsdottir, Gudmar Thorleifsson, M Carola Zillikens, Elizabeth K Speliotes, Reedik
Mégi, and et.al. Meta-analysis identifies 13 new loci associated with waist-hip ratio and re-
veals sexual dimorphism in the genetic basis of fat distribution. Nature genetics, 42(11):949—
60, November 2010.

Hana Lango Allen, Karol Estrada, Guillaume Lettre, Sonja I Berndt, Michael N Weedon,
Fernando Rivadeneira, Cristen J Willer, Anne U Jackson, Sailaja Vedantam, Soumya Ray-
chaudhuri, and et.al. Hundreds of variants clustered in genomic loci and biological pathways
affect human height. Nature, 467(7317):832-8, October 2010.

Miao-Xin Li, Hong-Sheng Gui, Johnny S H Kwan, and Pak C Sham. GATES: a rapid and
powerful gene-based association test using extended Simes procedure. American journal of
human genetics, 88(3):283-93, March 2011.

Dale R Nyholt. A simple correction for multiple testing for single-nucleotide polymorphisms
in linkage disequilibrium with each other. American journal of human genetics, 74(4):765-9,
May 2004.

Jorg Reichardt and Stefan Bornholdt. Statistical mechanics of community detection. Phys-
ical Review E, 74(1), July 2006.

Elizabeth K Speliotes, Cristen J Willer, Sonja I Berndt, Keri L. Monda, Gudmar Thorleifs-
son, Anne U Jackson, Hana Lango Allen, Cecilia M Lindgren, Jian’an Luan, Reedik Mégi,
and et.al. Association analyses of 249,796 individuals reveal 18 new loci associated with
body mass index. Nature genetics, 42(11):937-48, November 2010.

Xiang Zhou and Matthew Stephens. Genome-wide efficient mixed-model analysis for asso-
ciation studies. Nature genetics, 44(7):821-4, July 2012.

30

