Package ‘reproducible’

May 14, 2020

Type Package
Title A Set of Tools that Enhance Reproducibility Beyond Package Management

Description Collection of high-level, robust, machine- and OS-independent tools
for making deeply reproducible and reusable content in R.
The three workhorse functions are Cache, prepInputs, and Require;
these allow for nested caching, robust to environments, and objects with
environments (like functions), and data retrieval and processing, and
package handling in continuous workflow environments. In all cases,
efforts are made to make the first and subsequent calls of functions have
the same result, but vastly faster at subsequent times by way of checksums
and digesting. Several features are still under active development, including
cloud storage of cached objects, allowing for sharing between users.

SystemRequirements 'unrar' (Linux/macOS) or '7-Zip' (Windows) to work with ".rar' files.

URL https://reproducible.predictiveecology.org,
https://github.com/PredictiveEcology/reproducible

Date 2020-05-13

Version 1.1.0

Depends R (>=3.5)

Imports backports,
crayon,
data.table (>=1.10.4),
DBI,
digest,
fastdigest,
fpCompare,
glue,
googledrive,
httr,
lifecycle,
magrittr,
memoise,
methods,

gs,

https://reproducible.predictiveecology.org
https://github.com/PredictiveEcology/reproducible

quickPlot,
R.utils,
raster,
RSQLite,
remotes,
rlang,

sf,

Sp,
testthat,
tools,
usethis,
utils,
versions

Suggests covr,
fasterize,
future,
gdalUtils,
git2r (>=0.18),
knitr,
parallel,

RCurl (>=1.95-4.8),
rgdal,

rgeos,

rmarkdown,
TimeWarp

Encoding UTF-8
Language en-CA
License GPL-3

VignetteBuilder knitr, rmarkdown

BugReports https://github.com/PredictiveEcology/reproducible/issues
ByteCompile yes
RoxygenNote 7.1.0

Collate 'DBI.R’
'cache-helpers.R’
'cache-internals.R’
'cache-tools.R'
'robustDigest.R’
'cache.R’
'checksums.R'
'cloud.R’
'cloudOId.R’
'consistentPaths.R'
'convertPaths.R'
'copy.R'
'download.R'

https://github.com/PredictiveEcology/reproducible/issues

R topics documented: 3

'gis.R’

'git.R’'

'helpers.R'

'objectSize.R’

'options.R’

'packages.R’

'pipe.R’

'‘postProcess.R’
"‘preProcess.R'
"‘preplnputs.R’
'reproducible-deprecated.R’
'reproducible-package.R'
'search.R’

'zzz.R’

RdMacros lifecycle

R topics documented:

reproducible-package L 5
.addChangedAttr L . 6
.addTagsToOutput L . 0o e 7
.cacheMessage e e e e e e 8
.checkCacheRepo e 9
debugCache L e e 9
dnstallPackages L L L e e 10
preDigestByClass oL e 11
PrefiX o oo e e e e 12
.prepareFileBackedRaster 13
PprepareOutput . . . L L L e e e e e 14
removeCacheAtts 15
TequireNameSPaACe v . e e e e e e e e e e e e e e e e e 16
setSubAttrInList . . oL L L 16
sortDotsUnderscoreFirst 17
tagsByClass o oL 18
assessDataType L 18
assessDataTypeGDAL 21
basename2 L. e e 23
Cache e 23
CacheDBFile e e 32
CacheDigest o e e 33
checkAndMakeCloudFolderID 34
checkGDALVersion e e e e e e 34
checkoutVersion e 35
checkPath e 36
Checksums e e e e e 38
clearCache e e e 40

clearStubArtifacts e 44

Index

R topics documented:

cloudCache e 45
cloudCheckOIld e e 45
cloudDownload 46
cloudSyncCacheOld 47
cloudUpload e 48
clondWriteOld 49
compareNA e e e 49
convertPaths e e 50
COPY .« o v e e e e 51
copySingleFile 53
createCache L e 55
croplnputs 56
determineFilename 58
downloadFile 60
extractFromArchive L. 62
fastMask e 63
Filenames 65
getGDALVersion e 66
getUserTags o o e e 66
installedVersions e 67
installVersions e e e e e e e e e e 67
HnKOrCopy o e e e 69
makeMemoisable L. e e 70
maskInputs e e e 71
mergeCache L 72
movedCache e e 73
newLibPaths 74
normPath e 75
objSize e 76
Path-class e 78
PIPE . o e 79
pKEDED . . . e e e 81
pkgSnapshot. oL 84
postProcess 85
prepInputs e e e e e e 89
PreProcess L e 93
projectlnputso e e 96
reproducibleOptions oL 98
Require e 99
TEITY o v v v e 101
searchFull e 102
studyAreaNamel e e 103
tempdir2 e e e 104
unrarPath oL 104
writeFuture L 105
WHteOUIPULS o e e e e 106

108

reproducible-package 5

reproducible-package The reproducible package

Description

Maturing

This package aims at making high-level, robust, machine and OS independent tools for making
deeply reproducible and reusable content in R. The Require function is a different take on pack-
age management, such as renv, packrat and checkpoint that attempts to be more seamless. The
package also includes tools for caching, preparing data files and accessing GitHub repositories.

Main Tools

There are many elements within the reproducible package. However, there are currently three main
ones that are critical for reproducible research. The key element for reproducible research is that
the code must always return the same content every time it is run, but it must be vastly faster the
2nd, 3rd, 4th etc, time it is run. That way, the entire code sequence for a project of arbitrary size
can be run from the start every time.

Cache: A robust wrapper for any function, including those with environments, disk-backed storage
(currently on Raster) class), operating-system independent, whose first time called will ex-
ecute the function, second time will compare the inputs to a database of entries, and recover
the first result if inputs are identical. If options("reproducible.useMemoise” = TRUE), the
third time will be very fast as it will recover the answer from RAM.

prepInputs: Download, or load objects, and possibly post-process them. The main advantage to
using this over more direct routes is that it will automatically build checksums tables, use
Cache internally where helpful, and possibly run a variety of post-processing actions. This
means this function can also itself be cached for even more speed. This allows all project data
to be stored in custom cloud locations or in their original online data repositories, without
altering code between the first, second, third, etc., times the code is run.

Require: A version of require thatincorporates elements of install.packages, devtools: :install_github,
packrat. It allows for users code to work for a new user on a new machine that may or may
not have all packages installed.

Package options

See reproducibleOptions for a complete description of package options to configure behaviour.

Author(s)

Maintainer: Eliot] B Mclntire <eliot.mcintire@canada.ca> (ORCID)
Authors:

* Alex M Chubaty <alex.chubaty@gmail.com> (ORCID)

Other contributors:

https://orcid.org/0000-0002-6914-8316
https://orcid.org/0000-0001-7146-8135

6 .addChangedAttr

Tati Micheletti <tati.micheletti@gmail.com> (ORCID) [contributor]
¢ Ceres Barros <cbarros@mail.ubc.ca> (ORCID) [contributor]
* Jan Eddy <ian.eddy@canada.com> (ORCID) [contributor]

* Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Re-
sources Canada [copyright holder]

See Also
Useful links:
* https://reproducible.predictiveecology.org

e https://github.com/PredictiveEcology/reproducible
* Report bugs at https://github.com/PredictiveEcology/reproducible/issues

.addChangedAttr Add an attribute to an object indicating which named elements change

Description

This is a generic definition that can be extended according to class.

Usage

.addChangedAttr(object, preDigest, origArguments, ...)

S4 method for signature 'ANY'

.addChangedAttr(object, preDigest, origArguments, ...)
Arguments
object Any R object returned from a function
preDigest The full, element by element hash of the input arguments to that same function,

e.g., from .robustDigest

origArguments These are the actual arguments (i.e., the values, not the names) that were the
source for preDigest

Anything passed to methods.

Value

The object, modified

Author(s)

Eliot Mclntire

https://orcid.org/0000-0003-4838-8342
https://orcid.org/0000-0003-4036-977X
https://orcid.org/0000-0001-7397-2116
https://reproducible.predictiveecology.org
https://github.com/PredictiveEcology/reproducible
https://github.com/PredictiveEcology/reproducible/issues

.addTagsToOutput 7

Examples

a<-1
.addChangedAttr(a) # does nothing because default method is just a pass through

.addTagsToOutput Add tags to object

Description

This is a generic definition that can be extended according to class. This function and methods
should do "deep" copy for archiving purposes.

Usage

.addTagsToOutput(object, outputObjects, FUN, preDigestByClass)

S4 method for signature 'ANY'
.addTagsToOutput(object, outputObjects, FUN, preDigestByClass)

Arguments

object Any R object.

outputObjects Optional character vector indicating which objects to return. This is only rele-
vant for list, environment (or similar) objects

FUN A function

preDigestByClass
A list, usually from .preDigestByClass

Value

New object with tags attached.

Author(s)

Eliot MclIntire

8 .cacheMessage

.cacheMessage Create a custom cache message by class

Description

This is a generic definition that can be extended according to class.

Usage
.cacheMessage(
object,
functionName,
fromMemoise = getOption("reproducible.useMemoise”, TRUE)
)
S4 method for signature 'ANY'
.cacheMessage(
object,
functionName,
fromMemoise = getOption("reproducible.useMemoise”, TRUE)
)
Arguments
object Any R object.
functionName A character string indicating the function name
fromMemoise Logical. If TRUE, the message will be about recovery from memoised copy
Value

Nothing; called for its messaging side effect.

Author(s)

Eliot MclIntire

Examples

a<-1
.cacheMessage(a, "mean")

.checkCacheRepo 9

.checkCacheRepo Check for cache repository info in ...

Description
This is a generic definition that can be extended according to class. Normally, checkPath can be
called directly, but does not have class-specific methods.

Usage

.checkCacheRepo(object, create = FALSE)

S4 method for signature 'ANY'
.checkCacheRepo(object, create = FALSE)

Arguments

object An R object

create Logical. If TRUE, then it will create the path for cache.
Value

A character string with a path to a cache repository.

Author(s)

Eliot MclIntire

Examples

a <- "test”
.checkCacheRepo(a) # no cache repository supplied

.debugCache Attach debug info to return for Cache

Description

Internal use only. Attaches an attribute to the output, usable for debugging the Cache.

Usage
.debugCache(obj, preDigest, ...)

10 .installPackages

Arguments
obj An arbitrary R object.
preDigest A list of hashes.
Dots passed from Cache
Value

The same object as obj, but with 2 attributes set.

Author(s)

Eliot MclIntire

.installPackages Internal function to install packages

Description

Internal function to install packages

Usage

.installPackages(
packages,
repos = getOption("repos”),
githubPkgs = character(9),
githubPkgNames,
nonLibPathPkgs = character (@),
install_githubArgs,
install.packagesArgs = list(),
libPath = .libPaths()[11],
standAlone = standAlone,
forget = FALSE

)

trimVersionNumber (packages)

Arguments
packages Character vector of packages to install via install.packages, then load (i.e.,
with library). If it is one package, it can be unquoted (as in require)
repos The remote repository (e.g., a CRAN mirror), passed to install.packages,
githubPkgs Character vector of github repositories and packages, in the form username/package@branch,

with branch being optional.

githubPkgNames Character vector of the package names, i.e., just the R package name.

.preDigestByClass

nonLibPathPkgs

11

Character vector of all installed packages that are in .1libPaths, but not in
libPath. This would normally include a listing of base packages, but may also
include other library paths if standAlone if FALSE

install_githubArgs

List of optional named arguments, passed to install_github.

install.packagesArgs

libPath

standAlone

forget

Examples

Not run:
.installPackage

End(Not run)

List of optional named arguments, passed to install.packages.

The library path where all packages should be installed, and looked for to load
(i.e., call library)

Logical. If TRUE, all packages will be installed and loaded strictly from the
libPaths only. If FALSE, all . 1ibPaths will be used to find the correct versions.
This can be create dramatically faster installs if the user has a substantial number
of the packages already in their personal library. In the case of TRUE, there
will be a hidden file place in the 1ibPath directory that lists all the packages
that were needed during the Require call. Default FALSE to minimize package
installing.

Internally, this function identifies package dependencies using a memoised func-
tion for speed on reuse. But, it may be inaccurate in some cases, if packages
were installed manually by a user. Set this to TRUE to refresh that dependency
calculation.

s("crayon™)

.preDigestByClass

Any miscellaneous things to do before .robustDigest and after FUN
call

Description

The default method for preDigestByClass and simply returns NULL. There may be methods in

other packages.

Usage

.preDigestByClass(object)

S4 method for signature 'ANY'
.preDigestByClass(object)

Arguments

object

Any R object.

12 .prefix

Value

A list with elements that will likely be used in . postProcessing

Author(s)

Eliot MclIntire

Examples

a<-1
.preDigestByClass(a) # returns NULL in the simple case here.

.prefix Add a prefix or suffix to the basename part of a file path

Description

Prepend (or postpend) a filename with a prefix (or suffix). If the directory name of the file cannot
be ascertained from its path, it is assumed to be in the current working directory.

Usage
.prefix(f, prefix ="")

.suffix(f, suffix = "")

Arguments
f A character string giving the name/path of a file.
prefix A character string to prepend to the filename.
suffix A character string to postpend to the filename.
Author(s)

Jean Marchal and Alex Chubaty

Examples

file's full path is specified (i.e., dirname is known)

myFile <- file.path("~/data”, "file.tif")

.prefix(myFile, "small_") ## "/home/username/data/small_file.tif"
.suffix(myFile, "_cropped”) ## "/home/username/data/myFile_cropped.shp”

file's full path is not specified
.prefix("myFile.shp"”, "small") ## "./small_myFile.shp”
.suffix("myFile.shp”, "_cropped”) ## "./myFile_cropped.shp”

.prepareFileBackedRaster 13

.prepareFileBackedRaster
Copy the file-backing of a file-backed Raster* object

Description

Rasters are sometimes file-based, so the normal save and copy and assign mechanisms in R don’t
work for saving, copying and assigning. This function creates an explicit file copy of the file that
is backing the raster, and changes the pointer (i.e., filename(object)) so that it is pointing to the
new file.

Usage

.prepareFileBackedRaster(
obj,
repoDir = NULL,
overwrite = FALSE,
drv = getOption("reproducible.drv”, RSQLite::SQLite()),
conn = getOption("reproducible.conn”, NULL),

)
Arguments
obj The raster object to save to the repository.
repoDir Character denoting an existing directory in which an artifact will be saved.
overwrite Logical. Should the raster be saved to disk, overwriting existing file.
drv an object that inherits from DBIDriver, or an existing DBIConnection object (in
order to clone an existing connection).
conn A DBIConnection object, as returned by dbConnect ().
Not used
Value

A raster object and its newly located file backing. Note that if this is a legitimate Cache repository,
the new location will be a subdirectory called ‘rasters/’ of ‘repoDir/’. If this is not a repository,
the new location will be within repoDir.

Author(s)

Eliot Mclntire

14 .prepareQutput

Examples

library(raster)
make a cache repository
a <- Cache(rnorm, 1)

r <- raster(extent(0,10,0,10), vals = 1:100)

write to disk manually -- will be in tempdir()
r <- writeRaster(r, file = tempfile())

copy it to the cache repository
r <- .prepareFileBackedRaster(r, tempdir())

r # now in "rasters” subfolder of tempdir()

.prepareQutput Make any modifications to object recovered from cacheRepo

Description

This is a generic definition that can be extended according to class.

Usage

.prepareOQutput(object, cacheRepo, ...)

S4 method for signature 'Raster’
.prepareQutput(
object,
cacheRepo,
drv = getOption("reproducible.drv”, RSQLite::SQLite()),
conn = getOption("reproducible.conn”, NULL),

)
S4 method for signature 'ANY'
.prepareOQutput(object, cacheRepo, ...)
Arguments
object Any R object
cacheRepo A repository used for storing cached objects. This is optional if Cache is used

inside a SpaDES module.
Arguments passed to FUN

drv an object that inherits from DBIDriver, or an existing DBIConnection object (in
order to clone an existing connection).

conn A DBIConnection object, as returned by dbConnect ().

.removeCacheAtts 15

Value

The object, modified

Author(s)

Eliot MclIntire

Examples

a<-1
.prepareQutput(a) # does nothing

b <- "Null”
.prepareQutput(b) # converts to NULL

library(raster)
r <- raster(extent(0,10,0,10), vals = 1:100)

write to disk manually -- will be in tempdir()
r <- writeRaster(r, file = tempfile())

copy it to the cache repository
r <- .prepareQutput(r, tempdir())

.removeCacheAtts Remove attributes that are highly varying

Description

Remove attributes that are highly varying

Usage

.removeCacheAtts(x, passByReference = TRUE)

Arguments

X Any arbitrary R object that could have attributes

passByReference
Logical. If TRUE, the default, this uses data. table: : setattr to remove several
attributes that are unnecessary for digesting, specifically tags, .Cache and call

16 .setSubAttrInList

.requireNamespace Provide standard messaging for missing package dependencies

Description

This provides a standard message format for missing packages, e.g., detected via requireNamespace.

Usage

.requireNamespace(
pkg = "methods”,
minVersion = NULL,
messageStart = paste@(pkg, if (!is.null(minVersion)) paste@(”(>=", minVersion, ")"),
" is required. Try: ")

)
Arguments
pkg Character string indicating name of package required
minVersion Character string indicating minimum version of package that is needed

messageStart A character string with a prefix of message to provide

.setSubAttrInList Set subattributes within a list by reference

Description
This uses data.table: :setattr, but in the case where there is only a single element within a list
attribute.

Usage

.setSubAttrInList(object, attr, subAttr, value)

Arguments
object An arbitrary object
attr The attribute name (that is a list object) to change
subAttr The list element name to change

value The new value

.sortDotsUnderscoreFirst 17

.sortDotsUnderscoreFirst
Sort or order any named object with dotted names and underscores

first

Description

Internal use only. This exists so Windows, Linux, and Mac machines can have the same order after
a sort. It will put dots and underscores first (with the sort key based on their second character, see
examples. It also sorts lower case before upper case.

Usage

.sortDotsUnderscoreFirst(obj)

.orderDotsUnderscoreFirst(obj)

Arguments

obj An arbitrary R object for which a names function returns a character vector.

Value

The same object as obj, but sorted with .objects first.

Author(s)
Eliot Mclntire
Examples
items <- c(A = "a”, Z = "z, *.0° = ".d", *.C* = "_C")

.sortDotsUnderscoreFirst(items)

dots & underscore (using 2nd character), then all lower then all upper
items <- c(B = "Upper”, b = "lower”, A = "a", *.D* = ".d", *_C* ="_C")
.sortDotsUnderscoreFirst(items)

with a vector
.sortDotsUnderscoreFirst(c(”.C", "_B", "A")) # _B is first

18

assessDataType

.tagsByClass Add extra tags to an archive based on class

Description

This is a generic definition that can be extended according to class.

Usage

.tagsByClass(object)

S4 method for signature 'ANY'

.tagsByClass(object)
Arguments

object Any R object.
Value

A character vector of new tags.

Author(s)

Eliot MclIntire

Examples

.tagsByClass(character()) # Nothing interesting. Other packages will make methods

assessDataType Assess the appropriate raster layer data type

Description

Can be used to write prepared inputs on disk.

assessDataType 19
Usage
assessDataType(ras, type = "writeRaster")

S3 method for class 'Raster’
assessDataType(ras, type = "writeRaster")

S3 method for class 'RasterStack'
assessDataType(ras, type = "writeRaster")

Default S3 method:

assessDataType(ras, type = "writeRaster")
Arguments
ras The RasterLayer or RasterStack for which data type will be assessed.
type Character. "writeRaster” (default) or "GDAL" to return the recommended

data type for writing from the raster and gdalUtils packages, respectively, or
"projectRaster” to return recommended resampling type.

Value

The appropriate data type for the range of values in ras. See dataType for details.

Author(s)

Eliot MclIntire
Ceres Barros
Jan Eddy

Examples

LOGTS

library(raster)

ras <- raster(ncol = 10, nrow = 10)
ras[] <- rep(c(@,1),50)
assessDataType(ras)

ras[] <- rep(c(TRUE,FALSE),50)
assessDataType(ras)

ras[] <- c(NA, NA, rep(c(0,1),49))
assessDataType(ras)

ras <- raster(ncol = 10, nrow = 10)

ras[] <- c(@, NaN, rep(c(0,1),49))
assessDataType(ras)

INT1S

20

ras[] <- -1:98
assessDataType(ras)

ras[] <- c(NA, -1:97)
assessDataType(ras)

INT1U

ras <- raster(ncol = 10, nrow
ras[] <- 1:100
assessDataType(ras)

ras[] <- c(NA, 2:100)
assessDataType(ras)

INT2U

ras <- raster(ncol = 10, nrow
ras[] <- round(runif(100, min
assessDataType(ras)

INT2S

ras <- raster(ncol = 10, nrow
ras[] <- round(runif (100, min
assessDataType(ras)

ras[54] <- NA
assessDataType(ras)

INT4U

ras <- raster(ncol = 10, nrow
ras[] <- round(runif(100, min
assessDataType(ras)

ras[14] <- NA
assessDataType(ras)

INT4S

ras <- raster(ncol = 10, nrow
ras[] <- round(runif(100, min
assessDataType(ras)

ras[14] <- NA
assessDataType(ras)

FLT4S

ras <- raster(ncol = 10, nrow
ras[] <- runif (100, min = -10,
assessDataType(ras)

ras <- raster(ncol = 10, nrow
ras[] <- round(runif(100, min

assessDataType(ras)

ras <- raster(ncol = 10, nrow

10)

10)
64000, max = 65000))

10)
-32767, max = 32767))

10)
0, max = 500000000))

10)
-200000000, max = 200000000))

10)

max = 87)

10)
-3.4e+26, max = 3.4e+28))

10)

assessDataType

assessDataTypeGDAL

ras[] <- round(runif (100, min = 3.4e+26, max = 3.4e+28))
assessDataType(ras)

ras <- raster(ncol = 10, nrow = 10)
ras[] <- round(runif(10Q, min = -3.4e+26, max = -1))
assessDataType(ras)

FLT8S

ras <- raster(ncol = 10, nrow = 10)
ras[] <- c(-Inf, 1, rep(c(0,1),49))
assessDataType(ras)

ras <- raster(ncol = 10, nrow = 10)
ras[] <- c(Inf, 1, rep(c(0,1),49))
assessDataType(ras)

ras <- raster(ncol = 10, nrow = 10)
ras[] <- round(runif(100, min = -1.7e+30, max = 1.7e+308))
assessDataType(ras)

ras <- raster(ncol = 10, nrow = 10)
ras[] <- round(runif (100, min = 1.7e+30, max = 1.7e+308))
assessDataType(ras)

ras <- raster(ncol = 10, nrow = 10)
ras[] <- round(runif (100, min = -1.7e+308, max = -1))
assessDataType(ras)

stack

ras <- raster(ncol = 10, nrow = 10)
ras[] <- rep(c(9,1),50)

rasl <- raster(ncol = 10, nrow
ras1[] <- round(runif(100, min
sta <- stack(ras, rasl)
assessDataType(sta)

10)
-1.7e+308, max = -1))

assessDataTypeGDAL Assess the appropriate raster layer data type for GDAL

Description

Can be used to write prepared inputs on disk.

Usage

assessDataTypeGDAL (ras)

Arguments

ras The RasterLayer or RasterStack for which data type will be assessed.

22

Value

assessDataTypeGDAL

The appropriate data type for the range of values in ras for using GDAL. See dataType for details.

Author(s)

Eliot Mclntire, Ceres Barros, Ian Eddy, and Tati Micheletti

Examples

library(raster)

Byte
ras <- raster(ncol = 10, nrow

ras[] <- 1:100
assessDataTypeGDAL (ras)

ras[] <- c(NA, 2:100)
assessDataTypeGDAL (ras)

##Int16
ras <- raster(ncol = 10, nrow

ras <- setValues(ras, -1:98)
assessDataTypeGDAL (ras)

ras[] <- c(NA, -1:97)
assessDataTypeGDAL (ras)

ras[] <- round(runif(100, min
assessDataTypeGDAL (ras)

UInt16
ras <- raster(ncol = 10, nrow

ras[] <- round(runif(100, min =

assessDataTypeGDAL (ras)

UInt32

ras <- raster(ncol = 10, nrow
ras[] <- round(runif (100, min
assessDataTypeGDAL (ras)

ras[14] <- NA
assessDataTypeGDAL (ras)

Int32
ras <- raster(ncol = 10, nrow

ras[] <- round(runif(100, min =

assessDataTypeGDAL (ras)

ras[14] <- NA

10)

10)

-32767, max = 32767))

10)
64000, max = 65000))

10)
0, max = 500000000))

10)
-200000000, max = 200000000))

basename2 23

assessDataTypeGDAL (ras)

Float32

ras <- raster(ncol = 10, nrow = 10)
ras[] <- runif (100, min = -10, max = 87)
assessDataTypeGDAL (ras)

ras <- raster(ncol = 10, nrow = 10)
ras[] <- round(runif(100, min = -3.4e+26, max = 3.4e+28))
assessDataTypeGDAL (ras)

ras <- raster(ncol = 10, nrow = 10)
ras[] <- round(runif (100, min = 3.4e+26, max = 3.4e+28))
assessDataTypeGDAL (ras)

ras <- raster(ncol = 10, nrow = 10)
ras[] <- round(runif(100, min = -3.4e+26, max = -1))
assessDataTypeGDAL (ras)

basename?2 A version of base: :basename that is NULL resistant

Description

Returns NULL if x is NULL, otherwise, as basename.

Usage

basename2(x)

Arguments

X A character vector of paths

Value

Same as basename

Cache Cache method that accommodates environments, S4 methods, Rasters,
& nested caching

Description

Maturing

Still experimental and may change. This form cannot pass any arguments to JcodeCache, such as
cacheRepo, thus it is of limited utility. However, it is a clean alternative for simple cases.

24 Cache

Usage

Cache(
FUN,

notOlderThan = NULL,

.objects = NULL,

outputObjects = NULL,

algo = "xxhash64"”,

cacheRepo = NULL,

length = getOption("reproducible.length”, Inf),
compareRasterFilelLength,

userTags = c(),

digestPathContent,

omitArgs = NULL,

classOptions = list(),

debugCache = character(),

sideEffect = FALSE,

makeCopy = FALSE,

quick = getOption("reproducible.quick"”, FALSE),

verbose = getOption("reproducible.verbose”, 0),

cacheld = NULL,

useCache = getOption("reproducible.useCache”, TRUE),
useCloud = FALSE,

cloudFolderID = getOption("reproducible.cloudFolderID"”, NULL),
showSimilar = getOption("reproducible.showSimilar"”, FALSE),
drv = getOption("reproducible.drv”, RSQLite::SQLite()),
conn = getOption("reproducible.conn”, NULL)

)

S4 method for signature 'ANY'
Cache(
FUN,

notOlderThan = NULL,

.objects = NULL,

outputObjects = NULL,

algo = "xxhash64",

cacheRepo = NULL,

length = getOption("reproducible.length”, Inf),
compareRasterFilelLength,

userTags = c(),

digestPathContent,

omitArgs = NULL,

classOptions = list(),

debugCache = character(),

sideEffect = FALSE,

makeCopy = FALSE,

quick = getOption("reproducible.quick"”, FALSE),

Cache 25

verbose = getOption("reproducible.verbose”, 0),

cacheld = NULL,

useCache = getOption("reproducible.useCache”, TRUE),

useCloud = FALSE,

cloudFolderID = getOption("reproducible.cloudFolderID”, NULL),
showSimilar = getOption("reproducible.showSimilar"”, FALSE),
drv = getOption("reproducible.drv”, RSQLite::SQLite()),

conn = getOption("reproducible.conn”, NULL)

)

lhs %<% rhs

Arguments

FUN Either a function or an unevaluated function call (e.g., using quote.
Arguments passed to FUN
notOlderThan A time. Load an object from the Cache if it was created after this.

.objects Character vector of objects to be digested. This is only applicable if there is a
list, environment (or similar) named objects within it. Only this/these objects
will be considered for caching, i.e., only use a subset of the list, environment or
similar objects.

outputObjects Optional character vector indicating which objects to return. This is only rele-
vant for list, environment (or similar) objects

algo The algorithms to be used; currently available choices are md5, which is also
the default, shal, crc32, sha256, sha512, xxhash32, xxhash64, murmur32 and
spookyhash.

cacheRepo A repository used for storing cached objects. This is optional if Cache is used

inside a SpaDES module.

length Numeric. If the element passed to Cache is a Path class object (from e.g.,
asPath(filename)) or it is a Raster with file-backing, then this will be passed
todigest: :digest, essentially limiting the number of bytes to digest (for speed).
This will only be used if quick = FALSE. Defaultis getOption("reproducible.length”),
which is set to Inf.

compareRasterFilelLength
Being deprecated; use length.

userTags A character vector with descriptions of the Cache function call. These will be
added to the Cache so that this entry in the Cache can be found using userTags
e.g., via showCache.

digestPathContent
Being deprecated. Use quick.

omitArgs Optional character string of arguments in the FUN to omit from the digest.

classOptions Optional list. This will pass into . robustDigest for specific classes. Should be
options that the . robustDigest knows what to do with.
debugCache Character or Logical. Either "complete” or "quick” (uses partial matching, so

n.n n_n

c" or "q" work). TRUE is equivalent to "complete”. If "complete”, then the

Cache

returned object from the Cache function will have two attributes, debugCache1

and debugCache2, which are the entire 1ist(...) and that same object, but

after all .robustDigest calls, at the moment that it is digested using digest,
respectively. This attr(mySimOut, "debugCache2") can then be compared to a
subsequent call and individual items within the object attr (mySimOut, "debugCache1")
can be compared. If "quick”, then it will return the same two objects directly,
without evalutating the FUN(. . .).

sideEffect Logical or path. Determines where the function will look for new files following
function completion. See Details. NOTE: this argument is experimental and
may change in future releases.

makeCopy Logical. If sideEffect = TRUE, and makeCopy = TRUE, a copy of the down-
loaded files will be made and stored in the cacheRepo to speed up subsequent
file recovery in the case where the original copy of the downloaded files are cor-
rupted or missing. Currently only works when set to TRUE during the first run of
Cache. Default is FALSE. NOTE: this argument is experimental and may change
in future releases.

quick Logical. If TRUE, little or no disk-based information will be assessed, i.e., mostly
its memory content. This is relevant for objects of class character, Path and
Raster currently. For class character, it is ambiguous whether this represents
a character string or a vector of file paths. The function will assess if it is a path
to a file or directory first. If not, it will treat the object as a character string. If it
is known that character strings should not be treated as paths, then quick = TRUE
will be much faster, with no loss of information. If it is file or directory, then
it will digest the file content, or basename(object). For class Path objects,
the file’s metadata (i.e., filename and file size) will be hashed instead of the file
contents if quick = TRUE. If set to FALSE (default), the contents of the file(s)
are hashed. If quick = TRUE, length is ignored. Raster objects are treated as
paths, if they are file-backed.

verbose Numeric, with 0 being off, 1 being a little, 2 being more verbose etc. Above 1
will output much more information about the internals of Caching, which may
help diagnose Caching challenges.

cacheld Character string. If passed, this will override the calculated hash of the inputs,
and return the result from this cacheld in the cacheRepo. Setting this is equiv-
alent to manually saving the output of this function, i.e., the object will be on
disk, and will be recovered in subsequent This may help in some particularly
finicky situations where Cache is not correctly detecting unchanged inputs. This
will guarantee the object will be identical each time; this may be useful in oper-
ational code.

useCache Logical, numeric or "overwrite” or "devMode”. See details.
useCloud Logical. See Details.

cloudFolderID A googledrive dribble of a folder, e.g., using drive_mkdir (). If left as NULL, the
function will create a cloud folder with name from last two folder levels of the
cacheRepo path, : pasted(basename(dirname(cacheRepo)),"_",basename(cacheRepo)).
This cloudFolderID will be added to options("reproducible.cloudFolderID"),
but this will not persist across sessions. If this is a character string, it will treat

this as a folder name to create or use on GoogleDrive.

Cache

27

showSimilar A logical or numeric. Useful for debugging. If TRUE or 1, then if the Cache does

drv

conn
lhs

rhs

Details

not find an identical archive in the cacheRepo, it will report (via message) the
next most similar archive, and indicate which argument(s) is/are different. If a
number larger than 1, then it will report the N most similar archived objects.

an object that inherits from DBIDriver, or an existing DBIConnection object (in
order to clone an existing connection).

A DBIConnection object, as returned by dbConnect ().
A name to assign to.

A function call

A function that can be used to wrap around other functions to cache function calls for later use.
This is normally most effective when the function to cache is slow to run, yet the inputs and outputs
are small. The benefit of caching, therefore, will decline when the computational time of the "first"
function call is fast and/or the argument values and return objects are large. The default setting (and
first call to Cache) will always save to disk. The 2nd call to the same function will return from disk.
If the options("reproducible.useMemoise” = TRUE), then the 3rd time will recover the object
from RAM and is normally much faster.

There are other similar functions in the R universe. This version of Cache has been used as part of
a robust continuous workflow approach. As a result, we have tested it with many "non-standard" R
objects (e.g., RasterLayer objects) and environments, which tend to be challenging for caching as
they are always unique.

This version of the Cache function accommodates those four special, though quite common, cases

by:

1. converting any environments into list equivalents;

identifying the dispatched S4 method (including those made through inheritance) before hash-
ing so the correct method is being cached;

. by hashing the linked file, rather than the Raster object. Currently, only file-backed Rasterx

objects are digested (e.g., not ff objects, or any other R object where the data are on disk
instead of in RAM);

. Uses digest (formerly fastdigest, which does not translate between operating systems). This

is used for file-backed objects as well.

. Cache will save arguments passed by user in a hidden environment. Any nested Cache func-

tions will use arguments in this order 1) actual arguments passed at each Cache call, 2) any
inherited arguments from an outer Cache call, 3) the default values of the Cache function. See
section on Nested Caching.

Caching R objects using archivist: : cache has five important limitations:

. the archivist package detects different environments as different;

it also does not detect S4 methods correctly due to method inheritance;

3. itdoes not detect objects that have file-based storage of information (specifically RasterLayer-class

objects);

the default hashing algorithm is relatively slow.

28 Cache

5. heavily nested function calls may want Cache arguments to propagate through

As part of the SpaDES ecosystem of R packages, Cache can be used within SpaDES modules.
If it is, then the cached entry will automatically get 3 extra userTags: eventTime, eventType,
and moduleName. These can then be used in clearCache to selectively remove cached objects by
eventTime, eventType or moduleName.

Cache will add a tag to the artifact in the database called accessed, which will assign the time that it
was accessed, either read or write. That way, artifacts can be shown (using showCache) or removed
(using clearCache) selectively, based on their access dates, rather than only by their creation dates.
See example in clearCache. Cache (uppercase C) is used here so that it is not confused with, and
does not mask, the archivist: : cache function.

Value

As with archivist: :cache, returns the value of the function call or the cached version (i.e., the
result from a previous call to this same cached function with identical arguments).

Nested Caching

Commonly, Caching is nested, i.e., an outer function is wrapped in a Cache function call, and one
or more inner functions are also wrapped in a Cache function call. A user can always specify
arguments in every Cache function call, but this can get tedious and can be prone to errors. The
normal way that R handles arguments is it takes the user passed arguments if any, and default
arguments for all those that have no user passed arguments. We have inserted a middle step. The
order or precedence for any given Cache function call is 1. user arguments, 2. inherited arguments,
3. default arguments. At this time, the top level Cache arguments will propagate to all inner
functions unless each individual Cache call has other arguments specified, i.e., "middle" nested
Cache function calls don’t propagate their arguments to further "inner" Cache function calls. See
example.

userTags is unique of all arguments: its values will be appended to the inherited userTags.

Caching Speed

Caching speed may become a critical aspect of a final product. For example, if the final product is a
shiny app, rerunning the entire project may need to take less then a few seconds at most. There are 3
arguments that affect Cache speed: quick, length, and algo. quick is passed to .robustDigest,
which currently only affects Path and Raster=* class objects. In both cases, quick means that little
or no disk-based information will be assessed.

Filepaths

If a function has a path argument, there is some ambiguity about what should be done. Possibilities
include:

1. hash the string as is (this will be very system specific, meaning a Cache call will not work if
copied between systems or directories);

2. hash the basename (path);

3. hash the contents of the file.

Cache 29

If paths are passed in as is (i.e,. character string), the result will not be predictable. Instead, one
should use the wrapper function asPath(path), which sets the class of the string to a Path, and
one should decide whether one wants to digest the content of the file (using quick = FALSE), or just
the filename ((quick = TRUE)). See examples.

Stochasticity

In general, it is expected that caching will only be used when stochasticity is not relevant, or if a user
has achieved sufficient stochasticity (e.g., via sufficient number of calls to experiment) such that no
new explorations of stochastic outcomes are required. It will also be very useful in a reproducible
workflow.

useCache

Logical or numeric. If FALSE or @, then the entire Caching mechanism is bypassed and the function
is evaluated as if it was not being Cached. Default is getOption("reproducible.useCache™)),
which is TRUE by default, meaning use the Cache mechanism. This may be useful to turn all
Caching on or off in very complex scripts and nested functions. Increasing levels of numeric val-
ues will cause deeper levels of Caching to occur. Currently, only implemented in postProcess:
to do both caching of inner cropInputs, projectInputs and maskInputs, and caching of outer
postProcess, use useCache = 2; to skip the inner sequence of 3 functions, use useCache = 1. For
large objects, this may prevent many duplicated save to disk events.

If "overwrite"” (which can be set with options("reproducible.useCache” = "overwrite")),
then the function invoke the caching mechanism but will purge any entry that is matched, and it will
be replaced with the results of the current call.

If "devMode": The point of this mode is to facilitate using the Cache when functions and datasets
are continually in flux, and old Cache entries are likely stale very often. In ‘devMode°, the cache
mechanism will work as normal if the Cache call is the first time for a function OR if it successfully
finds a copy in the cache based on the normal Cache mechanism. It *differs* from the normal Cache
if the Cache call does *not* find a copy in the ‘cacheRepo*, but it does find an entry that matches
based on ‘userTags‘. In this case, it will delete the old entry in the ‘cacheRepo* (identified based
on matching ‘userTags®), then continue with normal ‘Cache‘. For this to work correctly, ‘userTags*
must be unique for each function call. This should be used with caution as it is still experimental.
Currently, if userTags are not unique to a single entry in the cacheRepo, it will default to the
behaviour of useCache = TRUE with a message. This means that "devMode” is most useful if used
from the start of a project.

useCloud

This is a way to store all or some of the local Cache in the cloud. Currently, the only cloud option is

Google Drive, via googledrive. For this to work, the user must be or be able to be authenticated with

googledrive: :drive_auth. The principle behind this useCloud is that it will be a full or partial

mirror of a local Cache. It is not intended to be used independently from a local Cache. To share ob-

jects that are in the Cloud with another person, it requires 2 steps. 1) share the cloudFolderID$id,

which can be retrieved by getOption("reproducible.cloudFolderID")$id after at least one

Cache call has been made. 2) The other user must then set their cacheFolderIDinaCache\(...,reproducible.cloudFolc
=\"the ID here\"\) call or set their option manually options\ (\"reproducible.cloudFolderID\"

=\"the ID here\"\).

30 Cache

If TRUE, then this Cache call will download (if local copy doesn’t exist, but cloud copy does exist),
upload (local copy does or doesn’t exist and cloud copy doesn’t exist), or will not download nor
upload if object exists in both. If TRUE will be at least 1 second slower than setting this to FALSE, and
likely even slower as the cloud folder gets large. If a user wishes to keep "high-level" control, set this
togetOption("reproducible.useCloud”,FALSE) or getOption("reproducible.useCloud”, TRUE)
(if the default behaviour should be FALSE or TRUE, respectively) so it can be turned on and off with

this option. NOTE: This argument will not be passed into inner/nested Cache calls.)

sideEffect

If sideEffect is not FALSE, then metadata about any files that added to sideEffect will be added
as an attribute to the cached copy. Subsequent calls to this function will assess for the presence
of the new files in the sideEffect location. If the files are identical (quick = FALSE) or their
file size is identical (quick = TRUE), then the cached copy of the function will be returned (and
no files changed). If there are missing or incorrect files, then the function will re-run. This will
accommodate the situation where the function call is identical, but somehow the side effect files
were modified. If sideEffect is logical, then the function will check the cacheRepo; if it is a path,
then it will check the path. The function will assess whether the files to be downloaded are found
locally prior to download. If it fails the local test, then it will try to recover from a local copy if
(makeCopy had been set to TRUE the first time the function was run. Currently, local recovery will
only work ifmakeCOpy was set to TRUE the first time Cache was run). Default is FALSE.

Note

As indicated above, several objects require pre-treatment before caching will work as expected.
The function . robustDigest accommodates this. It is an S4 generic, meaning that developers can
produce their own methods for different classes of objects. Currently, there are methods for several
types of classes. See . robustDigest.

See . robustDigest for other specifics for other classes.

Author(s)

Eliot MclIntire

See Also

showCache, clearCache, keepCache, CacheDigest, movedCache, .robustDigest

Examples

tmpDir <- file.path(tempdir())

Basic use
ranNumsA <- Cache(rnorm, 10, 16, cacheRepo = tmpDir)

All same

ranNumsB <- Cache(rnorm, 10, 16, cacheRepo = tmpDir) # recovers cached copy

ranNumsC <- Cache(cacheRepo = tmpDir) %C% rnorm(1@, 16) # recovers cached copy
ranNumsD <- Cache(quote(rnorm(n = 10, 16)), cacheRepo = tmpDir) # recovers cached copy

Cache 31

SHEHHHHHHEEEEHHEEHEEH BB HREEEEHEEHE RS

experimental devMode

AR AR AR
opt <- options("reproducible.useCache” = "devMode")
clearCache(tmpDir, ask = FALSE)

centralTendency <- function(x)

mean(x)
funnyData <- c(1, 1, 1, 1, 10)
uniqueUserTags <- c("thisIsUnique”, "reallyUnique")

ranNumsB <- Cache(centralTendency, funnyData, cacheRepo = tmpDir,
userTags = uniqueUserTags) # sets new value to Cache
showCache(tmpDir) # 1 unique artifact -- cacheld is 8be9cf2a0@72bdbb0515c5f0b3578f474

During development, we often redefine function internals
centralTendency <- function(x)
median(x)
When we rerun, we don't want to keep the "old” cache because the function will
never again be defined that way. Here, because of userTags being the same,
it will replace the entry in the Cache, effetively overwriting it, even though
it has a different cacheld
ranNumsD <- Cache(centralTendency, funnyData, cacheRepo = tmpDir, userTags = uniqueUserTags)
showCache(tmpDir) # 1 unique artifact -- cacheld is bb1195b40c8d37a60fd6004e5d526e6b

If it finds it by cacheID, doesn't matter what the userTags are
ranNumsD <- Cache(centralTendency, funnyData, cacheRepo = tmpDir, userTags = "thisIsUnique")

options(opt)

For more in depth uses, see vignette
Not run:
To use Postgres, set environment variables with the required credentials
if (requireNamespace("RPostgres”)) {
Sys.setenv(PGHOST = "server.url")
Sys.setenv(PGPORT = 5432)
Sys.setenv(PGDATABASE = "mydatabase")
Sys.setenv(PGUSER = "mydbuser™)
Sys.setenv(PGPASSWORD = "mysecurepassword”)

conn <- DBI::dbConnect(RPostgres: :Postgres())
options("reproducible.conn” = conn)

Will use postgres for cache data table, and tempdir() for saved R objects
Cache(rnorm, 1, cacheRepo = tempdir())

}
browseVignettes(package = "reproducible”)

End(Not run)

Equivalent

a <- Cache(rnorm, 1)
b %<% rnorm(1)

32 CacheDBFile

CacheDBFile A collection of low level tools for Cache

Description

These are not intended for normal use.

Usage

CacheDBFile(
cachePath,
drv = getOption("reproducible.drv”, RSQLite::SQLite()),
conn = getOption("reproducible.conn”, NULL)

)

CacheStorageDir (cachePath)

CacheStoredFile(
cachePath,
hash,
format = getOption("reproducible.cacheSaveFormat”, "rds")

)

CacheDBTableName(

cachePath,

drv = getOption("reproducible.drv”, RSQLite::SQLite())
)

CachelIsACache(
cachePath,
create = FALSE,
drv = getOption("reproducible.drv”, RSQLite::SQLite()),
conn = getOption("reproducible.conn”, NULL)

)
Arguments
cachePath A path describing the directory in which to create the database file(s)
drv an object that inherits from DBIDriver, or an existing DBIConnection object (in
order to clone an existing connection).
conn A DBIConnection object, as returned by dbConnect ().
hash The cacheld or otherwise digested hash value, as character string.
format The text string representing the file extension used normally by different save
formats; currently only "rds"” or "gs". Defaults to getOption("reproducible.cacheSaveFormat", "r
create Logical. Currently only affects non RQSLite default drivers. If this is TRUE and

there is no Cache database, the function will create one.

CacheDigest 33

Details

CacheStoredFile returns the file path to the file with the specified hash value.
CacheStoredFile returns the file path to the file with the specified hash value.

CacheIsACache returns a logical of whether the specified cachePath is actually a functioning cache.

CacheDigest The exact digest function that Cache uses

Description

This can be used by a user to pre-test their arguments before running Cache, for example to deter-
mine whether there is a cached copy.

Usage

CacheDigest(objsToDigest, algo = "xxhash64", calledFrom = "Cache"”, ...)

Arguments

objsToDigest A list of all the objects (e.g., arguments) to be digested

algo The algorithms to be used; currently available choices are md5, which is also
the default, shal, crc32, sha256, sha512, xxhash32, xxhash64, murmur32 and
spookyhash.

calledFrom a Character string, length 1, with the function to compare with. Default is

"Cache". All other values may not produce robust CacheDigest results.

passed to . robustDigest; this is generally empty except for advanced use.

Value

A list of length 2 with the outputHash, which is the digest that Cache uses for cacheld and also
preDigest, which is the digest of each sub-element in objsToDigest.

Examples

Not run:
a <- Cache(rnorm, 1)
CacheDigest(list(rnorm, 1))

End(Not run)

34 checkGDALVersion

checkAndMakeCloudFolderID
Check for presence of checkFolderID (for Cache(useCloud))

Description

Will check for presence of a cloudFolderID and make a new one if one not present on Google
Drive, with a warning.

Usage

checkAndMakeCloudFolderID(
cloudFolderID = getOption("reproducible.cloudFolderID"”, NULL),
cacheRepo = NULL,
create = FALSE,
overwrite = FALSE

Arguments

cloudFolderID The google folder ID where cloud caching will occur.

cacheRepo A repository used for storing cached objects. This is optional if Cache is used
inside a SpaDES module.
create Logical. If TRUE, then the cloudFolderID will be created. This should be used

with caution as there are no checks for overwriting. See googledrive: :drive_mkdir.
Default FALSE.

overwrite Logical. Passed to googledrive: :drive_mkdir.
checkGDALVersion Check whether the system has a minimum version of GDAL available
Description

Check whether the system has a minimum version of GDAL available

Usage

checkGDALVersion(version)

Arguments

version The minimum GDAL version to check for.

checkout Version 35

Value

Logical.

Author(s)
Eliot MclIntire and Alex Chubaty

Examples

Not run:
checkGDALVersion("2.0")

End(Not run)

checkoutVersion Clone, fetch, and checkout from GitHub.com repositories

Description

In reproducible research, not only do packages and R version have to be consistent, but also specific
versions of version controlled scripts. This function allows a simple way to create an exactly copy
locally of a git repository. It can use ssh keys (including GitHub deploy keys) or GitHub Personal
Access Tokens.

Usage
checkoutVersion(repo, localRepoPath = ".", cred = "", ...)
Arguments
repo Repository address in the format username/repo[/subdir][@ref |#pull]. Al-

ternatively, you can specify subdir and/or ref using the respective parameters
(see below); if both is specified, the values in repo take precedence.

localRepoPath Character string. The path into which the git repo should be cloned, fetched, and
checked out from.

cred Character string. Either the name of the environment variable that contains the
GitHub PAT or filename of the GitHub private key file.

Additional arguments passed to git2r functions.

Value

Invisibly returns a git_repository class object, defined in git2r.

Author(s)
Eliot MclIntire and Alex Chubaty

36

Examples

Not run:

tmpDir <- tempfile("")
dir.create(tmpDir)
repo <- "PredictiveEcology/reproducible”

get latest from master branch

localRepo <- checkoutVersion("PredictiveEcology/reproducible”,
localRepoPath = tmpDir)

git2r::summary(localRepo)

unlink(tmpDir, recursive = TRUE)

get latest from development branch

localRepo <- checkoutVersion(paste@(repo, "@", "development"), localRepoPath
git2r::summary(localRepo)

unlink(tmpDir, recursive = TRUE)

get a particular commit by sha

sha <- "8179e1910e7c617fdeacaddf9d81323e6aad57c3"

localRepo <- checkoutVersion(paste@(repo, "@", sha), localRepoPath = tmpDir)
git2r::summary(localRepo)

unlink(tmpDir, recursive = TRUE)

rm(localRepo, repo)

End(Not run)

checkPath

= tmpDir)

checkPath Check directory path

Description

Checks the specified path to a directory for formatting consistencies, such as trailing slashes, etc.

Usage

checkPath(path, create)

S4 method for signature 'character,logical’
checkPath(path, create)

S4 method for signature 'character,missing

checkPath(path)

S4 method for signature '“NULL‘,ANY'
checkPath(path)

S4 method for signature 'missing,ANY'
checkPath()

checkPath

Arguments

path

create

Value

37

A character string corresponding to a directory path.

A logical indicating whether the path should be created if it doesn’t exist. De-
fault is FALSE.

Character string denoting the cleaned up filepath.

Note

This will not work for paths to files. To check for existence of files, use file.exists, or use
file_test with op = "-f". To normalize a path to a file, use normPath or normalizePath.

See Also

file.exists, dir.create.

Examples

normalize file paths

paths <- list(".
./aaalzzz/",
.//aaa//zzz",
.//aaal//zzz/",
-\\\\aaa\\\\zzz",
\M\\\aaa\\\\zzz\\\\",

/aaa/zzz",

file.path(”.”, "aaa”, "zzz"))

checked <- normPath(paths)
length(unique(checked)) ## 1; all of the above are equivalent

check to see if a path exists
tmpdir <- file.path(tempdir(), "example_checkPath")

dir.exists(tmpdir) ## FALSE
tryCatch(checkPath(tmpdir, create = FALSE), error = function(e) FALSE) ## FALSE

checkPath(tmpdir, create = TRUE)
dir.exists(tmpdir) ## TRUE

unlink(tmpdir, recursive = TRUE)

38 Checksums

Checksums Calculate checksum

Description

Verify (and optionally write) checksums. Checksums are computed using .digest, which is simply
a wrapper around digest: :digest.

Usage

Checksums (
path,
write,
quickCheck = FALSE,
checksumFile = file.path(path, "CHECKSUMS.txt"),
files = NULL,

)

S4 method for signature 'character,logical’
Checksums (
path,
write,
quickCheck = FALSE,
checksumFile = file.path(path, "CHECKSUMS.txt"),
files = NULL,

)

S4 method for signature 'character,missing'
Checksums (

path,

write,

quickCheck = FALSE,

checksumFile = file.path(path, "CHECKSUMS.txt"),

files = NULL,
)
Arguments
path Character string giving the directory path containing CHECKSUMS. txt file, or
where it will be written if checksumFile = TRUE.
write Logical indicating whether to overwrite CHECKSUMS. txt. Default is FALSE, as

users should not change this file. Module developers should write this file prior
to distributing their module code, and update accordingly when the data change.

Checksums

quickCheck

checksumFile

files

Value

39

Logical. If TRUE, then this will only use file sizes, rather than a digest::digest
hash. This is generally faster, but will be much less robust.

The filename of the checksums file to read or write to. The default is ‘CHECKSUMS.

located at file.path(path,module, "data”,checksumFile). Itis likely not a
good idea to change this, and should only be used in cases such as Cache, which
can evaluate if the checksumFile has changed.

An optional character string or vector of specific files to checksum. This may be
very important if there are many files listed in a CHECKSUMS. txt file, but only a
few are to be checksummed.

Passed to digest and write. table. For digest, the notable argument is algo.
For write. table, the notable argument is append.

A data.table with columns: result, expectedFile, actualFile, checksum.x, checksum.y,
algorithm.x, algorithm.y, filesize.x, filesize.y indicating the result of comparison be-
tween local file (x) and expectation based on the CHECKSUMS. txt file.

Note

In version 1.2.0 and earlier, two checksums per file were required because of differences in the
checksum hash values on Windows and Unix-like platforms. Recent versions use a different (faster)
algorithm and only require one checksum value per file. To update your ‘CHECKSUMS. txt’ files
using the new algorithm, see https://github.com/PredictiveEcology/SpaDES/issues/295%#
issuecomment-246513405.

Author(s)
Alex Chubaty

Examples

Not run:

moduleName <- "my_module”
modulePath <- file.path(”path”, "to", "modules")

verify checksums of all data files
Checksums (moduleName, modulePath)

write new CHECKSUMS.txt file

1. verify that all data files are present (and no extra files are present)
list.files(file.path(modulePath, moduleName, "data"))

2. calculate file checksums and write to file (this will overwrite CHECKSUMS.txt)
Checksums(moduleName, modulePath, write = TRUE)

End(Not run)

txt’

https://github.com/PredictiveEcology/SpaDES/issues/295#issuecomment-246513405
https://github.com/PredictiveEcology/SpaDES/issues/295#issuecomment-246513405

40 clearCache

clearCache Examining and modifying the cache

Description

These are convenience wrappers around DBI package functions. They allow the user a bit of control
over what is being cached.

Usage
clearCache(
X’
userTags = character(),
after = NULL,

before = NULL,

ask = getOption("reproducible.ask"),

useCloud = FALSE,

cloudFolderID = getOption("reproducible.cloudFolderID"”, NULL),
drv = getOption("reproducible.drv”, RSQLite::SQLite()),

conn = getOption("reproducible.conn”, NULL),

)

S4 method for signature 'ANY'
clearCache(
X,
userTags = character(),
after = NULL,
before = NULL,
ask = getOption("reproducible.ask"),
useCloud = FALSE,
cloudFolderID = getOption("reproducible.cloudFolderID”, NULL),
drv = getOption("reproducible.drv”, RSQLite::SQLite()),
conn = getOption("reproducible.conn”, NULL),

)

cc(secs, ...)

showCache(
X7
userTags = character(),
after = NULL,

before = NULL,
drv = getOption("reproducible.drv”, RSQLite::SQLite()),
conn = getOption("reproducible.conn”, NULL),

clearCache 41

)

S4 method for signature 'ANY'
showCache(

X,
userTags = character(),

after = NULL,

before = NULL,

drv = getOption("reproducible.drv”, RSQLite::SQLite()),
conn = getOption("reproducible.conn”, NULL),

)

keepCache(
X)
userTags = character(),
after = NULL,

)

before = NULL,

ask = getOption("reproducible.ask"),

drv = getOption("reproducible.drv”, RSQLite::SQLite()),
conn = getOption("reproducible.conn”, NULL),

S4 method for signature 'ANY'
keepCache(

X,

userTags = character(),

after = NULL,

before = NULL,

ask = getOption("reproducible.ask"),

drv = getOption("”reproducible.drv”, RSQLite::SQLite()),
conn = getOption("reproducible.conn”, NULL),

)
Arguments
X A simList or a directory containing a valid Cache repository. Note: For compat-
ibility with Cache argument, cacheRepo can also be used instead of x, though x
will take precedence.
userTags Character vector. If used, this will be used in place of the after and before.

Specifying one or more userTag here will clear all objects that match those
tags. Matching is via regular expression, meaning partial matches will work
unless strict beginning (") and end ($) of string characters are used. Matching
will be against any of the 3 columns returned by showCache(), i.e., artifact,
tagValue or tagName. Also, length userTags > 1, then matching is by ‘and‘.
For ‘or‘ matching, use | in a single character string. See examples.

42 clearCache

after A time (POSIX, character understandable by data.table). Objects cached after
this time will be shown or deleted.

before A time (POSIX, character understandable by data.table). Objects cached before
this time will be shown or deleted.

ask Logical. If FALSE, then it will not ask to confirm deletions using clearCache or
keepCache. Default is TRUE

useCloud Logical. If TRUE, then every object that is deleted locally will also be deleted in
the cloudFolderID, if it is non-NULL

cloudFolderID A googledrive dribble of a folder, e.g., using drive_mkdir (). If left as NULL, the
function will create a cloud folder with name from last two folder levels of the
cacheRepo path, : paste@d(basename(dirname(cacheRepo)),"_",basename(cacheRepo)).
This cloudFolderID will be added to options("reproducible.cloudFolderID"),
but this will not persist across sessions. If this is a character string, it will treat

this as a folder name to create or use on GoogleDrive.

drv an object that inherits from DBIDriver, or an existing DBIConnection object (in
order to clone an existing connection).

conn A DBIConnection object, as returned by dbConnect ().

Other arguments. Currently, regexp, a logical, can be provided. This must be
TRUE if the use is passing a regular expression. Otherwise, userTags will need
to be exact matches. Default is missing, which is the same as TRUE. If there
are errors due to regular expression problem, try FALSE. For cc, it is passed to
clearCache, e.g., ask, userTags

secs Currently 3 options: the number of seconds to pass to clearCache(after =
secs), a POSIXct time e.g., from Sys.time(), or missing. If missing, the de-
fault, then it will delete the most recent entry in the Cache.

Details

If neither after or before are provided, nor userTags, then all objects will be removed. If both
after and before are specified, then all objects between after and before will be deleted. If
userTags is used, this will override after or before.

cc(secs) is just a shortcut for clearCache(repo = Paths$cachePath,after = secs), i.e., to re-
move any cache entries touched in the last secs seconds.

clearCache remove items from the cache based on their userTag or times values.
keepCache remove all cached items except those based on certain userTags or times values.

showCache display the contents of the cache.

Value

Will clear all objects (or those that match userTags, or those between after or before) from the
repository located at cachePath of the sim object, if sim is provided, or located in cacheRepo.
Invisibly returns a data. table of the removed items.

clearCache 43

Note
If the cache is larger than 10MB, and clearCache is used, there will be a message and a pause, if
interactive, to prevent accidentally deleting of a large cache repository.

See Also

mergeCache. Many more examples in Cache.

Examples

library(raster)

tmpDir <- file.path(tempdir(), "reproducible_examples"”, "Cache")
try(clearCache(tmpDir, ask = FALSE), silent = TRUE) # just to make sure it is clear

Basic use
ranNumsA <- Cache(rnorm, 10, 16, cacheRepo = tmpDir)

All same

ranNumsB <- Cache(rnorm, 10, 16, cacheRepo = tmpDir) # recovers cached copy

ranNumsC <- Cache(cacheRepo = tmpDir) %C% rnorm(1@, 16) # recovers cached copy
ranNumsD <- Cache(quote(rnorm(n = 10, 16)), cacheRepo = tmpDir) # recovers cached copy

Any minor change makes it different
ranNumst <- Cache(cacheRepo = tmpDir) %C% rnorm(10, 6)# different

Example 1: basic cache use with tags

ranNumsA <- Cache(rnorm, 4, cacheRepo = tmpDir, userTags = "objectName:a")
ranNumsB <- Cache(runif, 4, cacheRepo = tmpDir, userTags = "objectName:b")
ranNumsC <- Cache(runif, 4@, cacheRepo = tmpDir, userTags = "objectName:b")

showCache(tmpDir, userTags = c("objectName"))

showCache(tmpDir, userTags = c(""a$")) # regular expression ... "a" exactly

Fine control of cache elements -- pick out only the large runif object, and remove it
cachel <- showCache(tmpDir, userTags = c("runif”)) # show only cached objects made during runif
toRemove <- cachel[tagKey == "object.size"][as.numeric(tagValue) > 700]$cacheld

clearCache(tmpDir, userTags = toRemove, ask = FALSE)
cacheAfter <- showCache(tmpDir, userTags = c("runif”)) # Only the small one is left

tmpDir <- file.path(tempdir(), "reproducible_examples”, "Cache")
try(clearCache(tmpDir, ask = FALSE), silent = TRUE) # just to make sure it is clear

Cache(rnorm, 1, cacheRepo = tmpDir)
thisTime <- Sys.time()

Cache(rnorm, 2, cacheRepo = tmpDir)
Cache(rnorm, 3, cacheRepo = tmpDir)
Cache(rnorm, 4, cacheRepo = tmpDir)
showCache(x = tmpDir) # shows all 4 entries
cc(ask = FALSE, x = tmpDir)

showCache(x = tmpDir) # most recent is gone
cc(thisTime, ask = FALSE, x = tmpDir)

44

clearStubArtifacts

showCache(x = tmpDir) # all those after thisTime gone, i.e., only 1 left

cc(ask = FALSE, x = tmpDir) # Cache is
cc(ask = FALSE, x = tmpDir) # Cache is already empty

clearStubArtifacts Clear erroneous archivist artifacts

Description

Deprecated

Usage
clearStubArtifacts(repoDir = NULL)

S4 method for signature 'ANY'
clearStubArtifacts(repoDir = NULL)

Arguments
repoDir A character denoting an existing directory of the repository for which meta-
data will be returned. If NULL (default), it will use the repoDir specified in
archivist::setlLocalRepo.
Details

Stub artifacts can result from several causes. The most common being erroneous removal of a file
in the SQLite database. This can be caused sometimes if an archive object is being saved multiple
times by multiple threads. This function will clear entries in the SQLite database which have no

actual file with data.

Value

Invoked for its side effect on the repoDir.

Author(s)

Eliot MclIntire

Examples

tmpDir <- file.path(tempdir(), "reproducible_examples”, "clearStubArtifacts")

lapply(c(runif, rnorm), function(f) {
reproducible: :Cache(f, 10, cacheRepo = tmpDir)
»

clear out any stub artifacts
showCache (tmpDir)

cloudCache

file2Remove <- dir(CacheStorageDir(tmpDir), full.name = TRUE)[1]
file.remove(file2Remove)
showCache(tmpDir) # repository directory still thinks files are there

run clearStubArtifacts
suppressWarnings(clearStubArtifacts(tmpDir))
showCache(tmpDir) # stubs are removed

cleanup
clearCache(tmpDir, ask = FALSE)
unlink(tmpDir, recursive = TRUE)

45

cloudCache Deprecated

Description

Defunct

Usage
cloudCache(...)

Arguments

Passed to Cache

Details

Please use Cache, with args useCloud and cloudFolderID.

See Also
cloudSyncCacheOld, Cache, cloudWriteOld, cloudCheckOld

cloudCheck0Old Basic tool for using cloud-based caching

Description

Very experimental

Usage

cloudCheckOld(toDigest, checksumsFileID = NULL, cloudFolderID = NULL)

46

Arguments

toDigest

checksumsFileID

cloudFolderID

See Also

cloudDownload

The R object to consider, e.g., all the arguments to a function.

A google file ID where the checksums data.table is located, provided as a char-
acter string.

The google folder ID where a new checksums file should be written. This will
only be used if checksumsFileID is not provided provided as a character string.

cloudSyncCacheOld, Cache, cloudWriteOld

cloudDownload

Download from cloud, if necessary

Description

Meant for internal use, as there are internal objects as arguments.

Usage

cloudDownload(

outputHash,

newFileName,

gdrivels,
cacheRepo,

cloudFolderlID,
drv = getOption("reproducible.drv”, RSQLite::SQLite()),
conn = getOption("reproducible.conn”, NULL)

Arguments

outputHash
newFileName
gdrivelLs

cacheRepo

cloudFolderID

The cacheld of the object to upload
The character string of the local filename that the downloaded object will have
The result of googledrive: :drive_ls(as_id(cloudFolderID),pattern = "outputHash")

A repository used for storing cached objects. This is optional if Cache is used
inside a SpaDES module.

A googledrive dribble of a folder, e.g., using drive_mkdir (). If left as NULL, the

function will create a cloud folder with name from last two folder levels of the

cacheRepo path, : pasted(basename(dirname(cacheRepo)),"_",basename(cacheRepo)).
This cloudFolderID will be added to options("reproducible.cloudFolderID"),

but this will not persist across sessions. If this is a character string, it will treat

this as a folder name to create or use on GoogleDrive.

cloudSyncCacheOld 47

drv an object that inherits from DBIDriver, or an existing DBIConnection object (in
order to clone an existing connection).
conn A DBIConnection object, as returned by dbConnect ().
cloudSyncCache0ld Sync cloud with local Cache
Description

This is still experimental, see examples.

Usage

cloudSyncCache0ld(
cacheRepo = getOption("reproducible.cachePath”),
checksumsFileID = NULL,
cloudFolderID = NULL,
delete = TRUE,
upload = TRUE,
download = !delete,
ask = getOption("reproducible.ask"),
cachelds = NULL,

Arguments

cacheRepo See x in showCache

checksumsFileID
A google file ID where the checksums data.table is located, provided as a char-
acter string.

cloudFolderID A googledrive dribble of a folder, e.g., using drive_mkdir (). If left as NULL, the
function will create a cloud folder with name from last two folder levels of the
cacheRepo path, : paste@(basename(dirname(cacheRepo)),"_",basename(cacheRepo)).
This cloudFolderID will be added to options("reproducible.cloudFolderID"),
but this will not persist across sessions. If this is a character string, it will treat

this as a folder name to create or use on GoogleDrive.

delete Logical. If TRUE, the default, it will delete any objects that are in cloudFolderID
that are absent from local cacheRepo. If FALSE, it will not delete objects.

upload Logical. If TRUE, the default, it will upload any objects identified by the in-
ternal showCache(...) call. See examples. If FALSE, then no files will be
uploaded. Can be used in conjunction with delete to create behaviours similar
to clearCache and keepCache.

download Logical. If FALSE, the default, then the function will either delete the remote
copy if delete = TRUE and there is no local copy, or upload the local copy if
upload = TRUE and there is a local copy. If TRUE, then this will override delete,
and download to local machine if it exists remotely.

48

ask

cachelds

Details

cloudUpload

Logical. If FALSE, then it will not ask to confirm deletions using clearCache or
keepCache. Default is TRUE

If supplied, then only this/these cacheld objects will be uploaded or deleted. De-
fault is NULL, meaning do full sync (i.e., match cloudFolder with local cacheRepo,
constrained by delete or upload)

Passed to showCache to get the artifacts to delete.

cloudSyncCacheOld will remove any entries in a cloudCache that are not in a

See Also

cloudCache, Cache, cloudWriteOld, cloudCheckOld

cloudUpload

Upload to cloud, if necessary

Description

Meant for internal use, as there are internal objects as arguments.

Usage

cloudUpload(isInRepo, outputHash, gdrivelLs, cacheRepo, cloudFolderID, output)

Arguments

isInRepo
outputHash
gdrivels

cacheRepo

cloudFolderID

output

A data.table with the information about an object that is in the local cacheRepo
The cachelId of the object to upload
The result of googledrive: :drive_ls(as_id(cloudFolderID),pattern = "outputHash")

A repository used for storing cached objects. This is optional if Cache is used
inside a SpaDES module.

A googledrive dribble of a folder, e.g., using drive_mkdir (). If left as NULL, the

function will create a cloud folder with name from last two folder levels of the

cacheRepo path, : paste@(basename(dirname(cacheRepo)),"_",basename(cacheRepo)).
This cloudFolderID will be added to options("reproducible.cloudFolderID"),

but this will not persist across sessions. If this is a character string, it will treat

this as a folder name to create or use on GoogleDrive.

The output object of FUN that was run in Cache

cloudWriteOld 49

cloudWriteOld Basic tool for using cloud-based caching

Description

Very experimental

Usage
cloudWrite0ld(
object,
digest,
cloudFolderID = NULL,
checksums,
checksumsFilelD,
futurePlan = getOption("reproducible.futurePlan”)
)
Arguments
object The R object to write to cloud
digest The cacheld of the input arguments, outputted from cloudCheck0ld
cloudFolderID The google folder ID where a new object should be written
checksums A data. table that is outputted from cloudCheckO1d that is the the checksums
file
checksumsFileID

A google file ID where the checksums data.table is located, provided as a char-
acter string.

futurePlan Which future: :planto use. Default: getOption("reproducible. futurePlan”)

See Also
cloudSyncCacheOld, cloudCheck0Old

compareNA NA-aware comparison of two vectors

Description

Copied from http: //www. cookbook-r.com/Manipulating_data/Comparing_vectors_or_factors_
with_NA/. This function returns TRUE wherever elements are the same, including NA’s, and FALSE
everywhere else.

http://www.cookbook-r.com/Manipulating_data/Comparing_vectors_or_factors_with_NA/
http://www.cookbook-r.com/Manipulating_data/Comparing_vectors_or_factors_with_NA/

50 convertPaths

Usage

compareNA(v1, v2)

Arguments
v A vector
v2 A vector
Examples

a <- c(NA, 1, 2, NA)
b <- c(1, NA, 2, NA)
compareNA(a, b)

convertPaths Change the absolute path of a file

Description

convertPaths is simply a wrapper around gsub for changing the first part of a path. convertRasterPaths
is useful for changing the path to a file-backed raster (e.g., after copying the file to a new location).

Usage

convertPaths(x, patterns, replacements)

convertRasterPaths(x, patterns, replacements)

Arguments
X For convertPaths, a character vector of file paths. For convertRasterPaths,
a disk-backed RasterLayer object, or a list of such rasters.
patterns Character vector containing a pattern to match (see ?gsub).

replacements Character vector of the same length of patterns containing replacement text
(see ?gsub).
Author(s)

Eliot MclIntire and Alex Chubaty
Eliot MclIntire and Alex Chubaty

Copy 51

Examples

filenames <- c("/home/userl/Documents/file.txt", "/Users/userl/Documents/file.txt")
oldPaths <- dirname(filenames)

newPaths <- c("/home/user2/Desktop”, "/Users/user2/Desktop”)
convertPaths(filenames, oldPaths, newPaths)

r1 <- raster::raster(system.file("external/test.grd”, package = "raster"))
r2 <- raster::raster(system.file("external/rlogo.grd”, package = "raster"))
rasters <- list(rl1, r2)

oldPaths <- system.file("external”, package = "raster")

newPaths <- file.path("~/rasters")
rasters <- convertRasterPaths(rasters, oldPaths, newPaths)
lapply(rasters, raster::filename)

Copy Recursive copying of nested environments, and other "hard to copy"
objects

Description

When copying environments and all the objects contained within them, there are no copies made:
it is a pass-by-reference operation. Sometimes, a deep copy is needed, and sometimes, this must be
recursive (i.e., environments inside environments).

Usage
Copy(object, filebackedDir, ...)

S4 method for signature 'ANY'
Copy(object, filebackedDir, ...)

S4 method for signature 'SQLiteConnection'
Copy(object, filebackedDir, ...)

S4 method for signature 'data.table'
Copy(object, filebackedDir, ...)

S4 method for signature 'list'
Copy(object, filebackedDir, ...)

S4 method for signature 'refClass'’
Copy(object, filebackedDir, ...)

S4 method for signature 'data.frame'
Copy(object, filebackedDir, ...)

52 Copy

S4 method for signature 'Raster’
Copy(
object,
filebackedDir,
drv = getOption("reproducible.drv”, RSQLite::SQLite()),
conn = getOption("reproducible.conn”, NULL),

Arguments

object An R object (likely containing environments) or an environment.

filebackedDir A directory to copy any files that are backing R objects, currently only valid for
Raster classes. Defaults to .reproducibleTempPath(), which is unlikely to
be very useful. Can be NULL, which means that the file will not be copied and
could therefore cause a collision as the pre-copied object and post-copied object
would have the same file backing them.

Only used for custom Methods

drv an object that inherits from DBIDriver, or an existing DBIConnection object (in
order to clone an existing connection).
conn A DBIConnection object, as returned by dbConnect ().
Details

To create a new Copy method for a class that needs its own method, try something like shown in
example and put it in your package (or other R structure).

Author(s)

Eliot MclIntire

See Also

.robustDigest

Examples

e <- new.env()

e$abc <- letters

e$one <- 1L

e$lst <- list(W = 1:10, X = runif(10), Y = rnorm(10), Z = LETTERS[1:10])
1s(e)

'normal' copy
f<-e

1s(f)

f$one

f$one <- 2L
f$one

copySingleFile 53

e$one ## uh oh, e has changed!

deep copy
e$one <- 1L
g <- Copy(e)
1s(g)
g$one
g$one <- 3L
g$one
f$one
e$one

Not run:

setMethod("Copy", signature = "the class”, # where = specify here if not in a package,
definition = function(object, filebackendDir, ...) {
write deep copy code here

b

End(Not run)

copySingleFile Copy a file using robocopy on Windows and rsync on Linux/macOS

Description

This is replacement for file. copy, but for one file at a time. The additional feature is that it will use
robocopy (on Windows) or rsync on Linux or Mac, if they exist. It will default back to file.copy
if none of these exists. If there is a possibility that the file already exists, then this function should
be very fast as it will do "update only", i.e., nothing.

Usage

copySingleFile(
from = NULL,
to = NULL,
useRobocopy = TRUE,
overwrite = TRUE,
delDestination = FALSE,
create = TRUE,
silent = FALSE

copyFile(
from = NULL,
to = NULL,
useRobocopy = TRUE,
overwrite = TRUE,
delDestination = FALSE,

54 copySingleFile
create = TRUE,
silent = FALSE
)
Arguments
from The source file.
to The new file.
useRobocopy For Windows, this will use a system call to robocopy which appears to be much
faster than the internal file.copy function. Uses /MIR flag. Default TRUE.
overwrite Passed to file. copy
delDestination Logical, whether the destination should have any files deleted, if they don’t exist
in the source. This is /purge for robocopy and —delete for rsync.
create Passed to checkPath.
silent Should a progress be printed.
Author(s)

Eliot MclIntire and Alex Chubaty

Examples

tmpDirFrom <- file.path(tempdir(), "example_fileCopy_from")
tmpDirTo <- file.path(tempdir(), "example_fileCopy_to")
tmpFilel <- tempfile("filel”, tmpDirFrom, ".csv")

tmpFile2 <- tempfile(”file2", tmpDirFrom, ".csv")
checkPath(tmpDirFrom, create = TRUE)

f1 <-
f2 <-
t1 <-
t2 <-

write.
write.

normalizePath(tmpFilel, mustWork = FALSE)
normalizePath(tmpFile2, mustWork = FALSE)
normalizePath(file.path(tmpDirTo, basename(tmpFilel)), mustWork = FALSE)
normalizePath(file.path(tmpDirTo, basename(tmpFile2)), mustWork = FALSE)

csv(data.frame(a = 1:10, b = runif(10), c = letters[1:10]), f1)
csv(data.frame(c = 11:20, d = runif(10), e = letters[11:20]), f2)

copyFile(c(f1, f2), c(t1, t2))

file.exists(t1) ## TRUE

file.exists(t2) ## TRUE
identical(read.csv(f1), read.csv(f2)) ## FALSE
identical(read.csv(f1), read.csv(t1)) ## TRUE
identical(read.csv(f2), read.csv(t2)) ## TRUE

unlink(tmpDirFrom, recursive = TRUE)
unlink(tmpDirTo, recursive = TRUE)

createCache

55

createCache Create a new cache

Description

Create a new cache

Low level tools to work with Cache

Usage

createCache(

)

cachePath,

drv = getOption("reproducible.drv”, RSQLite::SQLite()),
conn = getOption("reproducible.conn”, NULL),

force = FALSE

saveToCache(

)

cachePath,

drv = getOption("reproducible.drv”, RSQLite::SQLite()),
conn = getOption("reproducible.conn”, NULL),

obj,

userTags,

cacheld,

linkToCachelId = NULL

loadFromCache(

)

cachePath,

cacheld,

format = getOption("reproducible.cacheSaveFormat”, "rds"),
drv = getOption("reproducible.drv”, RSQLite::SQLite()),
conn = getOption("reproducible.conn”, NULL)

rmFromCache (

cachePath,

cacheld,

drv = getOption("reproducible.drv”, RSQLite::SQLite()),
conn = getOption("reproducible.conn”, NULL),

format = getOption("reproducible.cacheSaveFormat”, "rds")
)
Arguments
cachePath A path describing the directory in which to create the database file(s)

drv A driver, passed to dbConnect

56 cropInputs

conn A DBIConnection object, as returned by dbConnect ().

force Logical. Should it create a cache in the cachePath, even if it already exists,
overwriting.

obj The R object to save to the cache

userTags A character vector with descriptions of the Cache function call. These will be

added to the Cache so that this entry in the Cache can be found using userTags
e.g., via showCache.

cacheld The hash string representing the result of . robustDigest

linkToCacheId Optional. If a cacheld is provided here, then a file.link will be made to
the file with that cacheId name in the cache repo. This is used when identical
outputs exist in the cache. This will save disk space.

format The text string representing the file extension used normally by different save
formats; currently only "rds" or "qs". Defaults to getOption("reproducible.cacheSaveFormat”, "r

cropIlnputs Crop a Spatial* or Raster=* object

Description

This function can be used to crop or reproject module inputs from raw data.

Usage

cropInputs(x, studyArea, rasterToMatch, ...)

Default S3 method:
cropInputs(x, studyArea, rasterToMatch, ...)

S3 method for class 'spatialObjects'
cropInputs(
X,
studyArea = NULL,
rasterToMatch = NULL,
extentToMatch = NULL,
extentCRS = NULL,
useGDAL = getOption("reproducible.useGDAL"”, TRUE),

)

S3 method for class 'sf'
cropInputs(
X,
studyArea = NULL,
rasterToMatch = NULL,
extentToMatch = NULL,

cropInputs 57

extentCRS = NULL,

)
Arguments
X A Spatialx, sf, or Raster= object.
studyArea SpatialPolygons* object used for masking and possibly cropping if no rasterToMatch

is provided. If not in same CRS, then it will be spTransformed to CRS of x
before masking. Currently, this function will not reproject the x. Optional in
postProcess.

rasterToMatch Template Raster* object used for cropping (so extent should be the extent of
desired outcome) and reprojecting (including changing the resolution and pro-
jection). See details in postProcess.

Passed to raster::crop

extentToMatch Optional. Can pass an extent here and a crs to extentCRS instead of rasterToMatch.
These will override rasterToMatch, with a warning if both passed.

extentCRS Optional. Can pass a crs here with an extent to extentTomatch instead of
rasterToMatch
useGDAL Logical or "force"”. Defaults to getOption("reproducible.useGDAL" = TRUE).

If TRUE, then this function will use gdalwarp only when not small enough to fit
in memory (i.e., if the operation fails the raster: : canProcessInMemory(x, 3)
test). Using gdalwarp will usually be faster than raster: :projectRaster, the
function used if this is FALSE. Since since the two options use different algo-
rithms, there may be different projection results. "force” will cause it to use
GDAL regardless of the memory test described here.

Author(s)
Eliot Mclntire, Jean Marchal, Ian Eddy, and Tati Micheletti

Examples

Add a study area to Crop and Mask to
Create a "study area”

library(sp)

library(raster)

ow <- setwd(tempdir())

make a SpatialPolygon

coordsl <- structure(c(-123.98, -117.1, -80.2, -100, -123.98, 60.9, 67.73, 65.58, 51.79, 60.9),
.Dim = c(5L, 2L))

Sr1 <- Polygon(coords1)

Srs1 <- Polygons(list(Sr1), "s1")

shpEcozone <- SpatialPolygons(list(Srs1), 1L)

crs(shpEcozone) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

make a "study area” that is subset of larger dataset
coords <- structure(c(-118.98, -116.1, -99.2, -106, -118.98, 59.9, 65.73, 63.58, 54.79, 59.9),

58 determineFilename

.Dim = c(5L, 2L))
Sr1 <- Polygon(coords)
Srs1 <- Polygons(list(Sr1), "s1")
StudyArea <- SpatialPolygons(list(Srs1), 1L)
crs(StudyArea) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"
#
#
W
shpEcozonePostProcessed <- postProcess(shpEcozone, studyArea = StudyArea)
#
Try manually, individual pieces
shpEcozoneReprojected <- projectInputs(shpEcozone, StudyArea)
shpEcozoneCropped <- cropInputs(shpEcozone, StudyArea)
shpEcozoneClean <- fixErrors(shpEcozone)
shpEcozoneMasked <- maskInputs(shpEcozone, StudyArea)

setwd(ow)

determineFilename Determine filename, either automatically or manually

Description

Determine the filename, given various combinations of inputs.

Usage

determineFilename(
filename2 = TRUE,
filenamel = NULL,
destinationPath = getOption("reproducible.destinationPath”),
prefix = "Small",

)
Arguments

filename2 filename2 is optional, and is either NULL (no writing of outputs to disk), or
several options for writing the object to disk. If TRUE (the default), it will give
it a file name determined by .prefix(basename(filenamel),prefix). If a
character string, it will use this as its file name. See determineFilename.

filenamel Character strings giving the file paths of the input object (filename1) filename1l
is only used for messaging (i.e., the object itself is passed in as x) and possibly
naming of output (see details and filename?2).

destinationPath

Optional. If filename2 is a relative file path, then this will be the directory of
the resulting absolute file path.

prefix The character string to prepend to filenamel, if filename2 not provided.

determineFilename 59

Additional arguments passed to methods. For spatialObjects, these are: cropInputs,
fixErrors, projectInputs, maskInputs, determineFilename, and writeOutputs.
Each of these may also pass ... into other functions, like writeRaster, or
sf::st_write. This might include potentially important arguments like datatype,
format. Also passed to projectRaster, with likely important arguments such

as method = "bilinear"”. See details.

... passed to::

Function Arguments
cropInputs crop
projectInputs projectRaster
maskInputs fastMask or intersect
fixErrors buffer
writeOutputs writeRaster or shapefile
determineFilename

* Can be overridden with useSAcrs ** Will mask with NAs from rasterToMatch
if maskWithRTM

Details

The post processing workflow, which includes this function, addresses several scenarios, and de-
pending on which scenario, there are several file names at play. For example, Raster objects may
have file-backed data, and so possess a file name, whereas Spatial objects do not. Also, if post
processing is part of a prepInputs workflow, there will always be a file downloaded. From the
perspective of postProcess, these are the "inputs" or filenamel. Similarly, there may or may not
be a desire to write an object to disk after all post processing, filename2.

This subtlety means that there are two file names that may be at play: the "input" file name
(filenamel), and the "output" filename (filename2). When this is used within postProcess,
it is straight forward.

However, when postProcess is used within a prepInputs call, the filename1 file is the file name
of the downloaded file (usually automatically known following the downloading, and refered to as
targetFile) and the filename2 is the file name of the of post-processed file.

If filename2 is TRUE, i.e., not an actual file name, then the cropped/masked raster will be writ-
ten to disk with the original filenam1/targetFile name, with prefix prefixed to the base-
name(targetFile).

If filename?2 is a character string, it will be the path of the saved/written object e.g., passed to
writeOutput. It will be tested whether it is an absolute or relative path and used as is if absolute or
prepended with destinationPath if relative.

If filename2is logical, then the output filename will be prefix prefixed to the basename(filenamel).
If a character string, it will be the path returned. It will be tested whether it is an absolute or relative
path and used as is if absolute or prepended with destinationPath if provided, and if filename2

is relative.

Examples

Add a study area to Crop and Mask to

60

downloadFile

Create a "study area”
library(sp)
library(raster)

ow <- setwd(tempdir())

make a SpatialPolygon

coordsl <- structure(c(-123.98, -117.1, -80.2, -100, -123.98, 60.9, 67.73, 65.58, 51.79, 60.9),
.Dim = c(5L, 2L))

Sr1 <- Polygon(coords1)

Srs1 <- Polygons(list(Sr1), "s1")

shpEcozone <- SpatialPolygons(list(Srs1), 1L)

crs(shpEcozone) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

make a "study area” that is subset of larger dataset

coords <- structure(c(-118.98, -116.1, -99.2, -106, -118.98, 59.9, 65.73, 63.58, 54.79, 59.9),
.Dim = c(5L, 2L))

Sr1 <- Polygon(coords)

Srs1 <- Polygons(list(Sr1), "s1")

StudyArea <- SpatialPolygons(list(Srs1), 1L)

crs(StudyArea) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

#

#

i

shpEcozonePostProcessed <- postProcess(shpEcozone, studyArea = StudyArea)

#

Try manually, individual pieces

shpEcozoneReprojected <- projectInputs(shpEcozone, StudyArea)

shpEcozoneCropped <- cropInputs(shpEcozone, StudyArea)

shpEcozoneClean <- fixErrors(shpEcozone)

shpEcozoneMasked <- maskInputs(shpEcozone, StudyArea)

setwd(ow)

downloadFile A wrapper around a set of downloading functions

Description

Currently, this only deals with drive_download, and download.file.

Usage

downloadFile(
archive,
targetFile,
neededFiles,
destinationPath = getOption("reproducible.destinationPath”),
quick,
checksumFile,
dlFun = NULL,

downloadFile 61

checkSums,

url,

needChecksums,

overwrite = getOption("reproducible.overwrite”, TRUE),
purge = FALSE,

.tempPath,

Arguments

archive Optional character string giving the path of an archive containing targetFile,
or a vector giving a set of nested archives (e.g., c("xxx. tar","inner.zip","inner.rar")).
If there is/are (an) inner archive(s), but they are unknown, the function will try

all until it finds the targetFile. See table in preProcess.

targetFile Character string giving the path to the eventual file (raster, shapefile, csv, etc.)
after downloading and extracting from a zip or tar archive. This is the file before
it is passed to postProcess. Currently, the internal checksumming does not
checksum the file after it is postProcessed (e.g., cropped/reprojected/masked).
Using Cache around prepInputs will do a sufficient job in these cases. See
table in preProcess.

neededFiles Character string giving the name of the file(s) to be extracted.

destinationPath
Character string of a directory in which to download and save the file that comes
from url and is also where the function will look for archive or targetFile.
NOTE (still experimental): To prevent repeated downloads in different loca-
tions, the user can also set options(”reproducible.inputPaths") to one or
more local file paths to search for the file before attempting to download. Default
for that option is NULL meaning do not search locally.

quick Logical. This is passed internally to Checksums (the quickCheck argument),
and to Cache (the quick argument). This results in faster, though less robust
checking of inputs. See the respective functions.

checksumFile A character string indicating the absolute path to the CHECKSUMS. txt file.

d1Fun Optional "download function" name, such as "raster: :getData”, which does
custom downloading, in addition to loading into R. Still experimental.

checkSums A checksums file, e.g., created by Checksums(..., write = TRUE)

url Optional character string indicating the URL to download from. If not specified,

then no download will be attempted. If not entry exists in the CHECKSUMS. txt (in
destinationPath), an entry will be created or appended to. This CHECKSUMS . txt
entry will be used in subsequent calls to prepInputs or preProcess, comparing
the file on hand with the ad hoc CHECKSUMS. txt. See table in preProcess.

needChecksums A numeric, with @ indicating do not write a new checksums, 1 write a new one,
2 append new information to existing one.

overwrite Logical. Should downloading and all the other actions occur even if they pass
the checksums or the files are all there.

62 extractFromArchive

purge Logical or Integer. @/FALSE (default) keeps existing CHECKSUMS. txt file and
prepInputs will write or append to it. 1/TRUE will deleted the entire CHECKSUMS . txt
file. Other options, see details.

.tempPath Optional temporary path for internal file intermediate steps. Will be cleared
on.exit from this function.

Passed to d1Fun. Still experimental.

Author(s)

Eliot MclIntire

extractFromArchive Extract files from archive

Description

Extract zip or tar archive files, possibly nested in other zip or tar archives.

Usage

extractFromArchive(
archive,
destinationPath = getOption("reproducible.destinationPath”, dirname(archive)),
neededFiles = NULL,
extractedArchives = NULL,
checkSums = NULL,
needChecksums = 0,
filesExtracted = character(),
checkSumFilePath = character(),
quick = FALSE,

.tempPath,
)
Arguments

archive Character string giving the path of the archive containing the file to be ex-
tracted. This path must exist or be NULL

destinationPath
Character string giving the path where neededFiles will be extracted. Defaults
to the archive directory.

neededFiles Character string giving the name of the file(s) to be extracted.

extractedArchives

Used internally to track archives that have been extracted from.

checkSums A checksums file, e.g., created by Checksums(..., write = TRUE)

fastMask 63

needChecksums A numeric, with @ indicating do not write a new checksums, 1 write a new one,
2 append new information to existing one.

filesExtracted Used internally to track files that have been extracted.
checkSumFilePath
The full path to the checksum.txt file

quick Passed to Checksums

.tempPath Optional temporary path for internal file intermediate steps. Will be cleared
on.exit from this function.

Passed to unzip or untar, e.g., overwrite

Value

A character vector listing the paths of the extracted archives.

Author(s)

Jean Marchal and Eliot Mclntire

fastMask Faster operations on rasters

Description

This alternative to raster: :mask is included here.

Usage

fastMask(
X,
Y,
cores = NULL,
useGDAL = getOption("reproducible.useGDAL"”, TRUE),

)
Arguments
X A Raster=* object.
y A SpatialPolygons object. If it is not in the same projection as X, it will be
reprojected on the fly to that of x
cores An integerx or 'AUTO'. This will be used if gdalwarp is triggered. 'AUTO" will

calculate 90 number of cores in the system, while an integer or rounded float
will be passed as the exact number of cores to be used.

64 fastMask

useGDAL Logical or "force”. Defaults to getOption("reproducible.useGDAL" = TRUE).
If TRUE, then this function will use gdalwarp only when not small enough to fit
in memory (i.e., if the operation fails the raster: : canProcessInMemory(x, 3)
test). Using gdalwarp will usually be faster than raster: :projectRaster, the
function used if this is FALSE. Since since the two options use different algo-
rithms, there may be different projection results. "force” will cause it to use
GDAL regardless of the memory test described here.

Currently unused.

Value

A Raster= object, masked (i.e., smaller extent and/or several pixels converted to NA)

Author(s)

Eliot MclIntire

Examples

library(raster)

Sr1 <- Polygon(cbind(c(2, 4, 4, 0.9, 2), c(2, 3, 5, 4, 2)))
Sr2 <- Polygon(cbind(c(5, 4, 2, 5), c(2, 3, 2, 2)))
Sr3 <- Polygon(cbind(c(4, 4, 5, 10, 4), c(5, 3, 2, 5, 5)))

Srs1 <- Polygons(list(Sr1), "s1")

Srs2 <- Polygons(list(Sr2), "s2")

Srs3 <- Polygons(list(Sr3), "s3")

shp <- SpatialPolygons(list(Srsi1, Srs2, Srs3), 1:3)

d <- data.frame(vals = 1:3, other = letters[3:1], stringsAsFactors = FALSE)
row.names(d) <- names(shp)

shp <- SpatialPolygonsDataFrame(shp, data = d)
poly <- list()

poly[[1]] <- raster(raster::extent(shp), vals
poly[[2]] <- raster(raster::extent(shp), vals
origStack <- stack(poly)

original mask function in raster

newStackl <- mask(origStack, mask = shp)
newStack2 <- fastMask(x = origStack, y = shp)

0, res
1, res

c(1, 1)
c(1, 1)

test all equal
all.equal(newStackl, newStack2)

newStackl <- stack(newStackl)
newStack2 <- stack(newStack?2)

if (interactive()) {
plot(newStack2[[1]1])
plot(shp, add = TRUE)
3

Filenames 65

Filenames Return the filename(s) from a Rasterx* object

Description

This is mostly just a wrapper around filename from the raster package, except that instead of re-
turning an empty string for a RasterStack object, it will return a vector of length >1 for RasterStack.

Usage
Filenames(obj, allowMultiple = TRUE)

S4 method for signature 'ANY'
Filenames(obj, allowMultiple = TRUE)

S4 method for signature 'Raster’
Filenames(obj, allowMultiple = TRUE)

S4 method for signature 'RasterStack'
Filenames(obj, allowMultiple = TRUE)

S4 method for signature 'environment'
Filenames(obj, allowMultiple = TRUE)

S4 method for signature 'list'
Filenames(obj, allowMultiple = TRUE)

Arguments

obj A Raster= object (i.e., RasterLayer, RasterStack, RasterBrick)

allowMultiple Logical. If TRUE, the default, then all relevant filenames will be returned, i.e., in
cases such as . grd where multiple files are required. If FALSE, then only the first
file will be returned, e.g., filename.grd, in the case of default Raster format in
R.

Author(s)

Eliot MclIntire

66

getUserTags

getGDALVersion Check the GDAL version in use

Description

Check the GDAL version in use

Usage

getGDALVersion()

Value

numeric_version

Author(s)
Alex Chubaty and Eliot Mclntire

getUserTags Cache helpers

Description

A few helpers to get specific things from the cache repository

Usage

getUserTags(cacheRepo, shownCache, cacheld, concatenated = TRUE)

getCacheld(cacheRepo, shownCache, artifact)

getArtifact(cacheRepo, shownCache, cacheld)

Arguments
cacheRepo A repository used for storing cached objects. This is optional if Cache is used
inside a SpaDES module.
shownCache Primary way of supplying cacheRepo; the data.table obj resulting from showCache,
i.e., it will override cacheRepo. If this and cacheRepo are missing, then it will
default to getOption('reproducible.cachePath')
cacheld A character vector of cacheld values to use in the cache

concatenated Logical. If TRUE, the returned userTags will be concatenated tagKey: tagValue.

artifact Character vector of artifact values in the artifact column of showCache

installed Versions 67

Value

getCacheld returns the cacheld values for 1 or more artifacts in the cache.

getArtifact returns the artifact value for 1 or more entries in the cache, by cacheId.

installedVersions Determine versions all installed packages

Description

This code is adapted from installed.versions. It will be anywhere from 2x to 10x faster than the

installed.versions function. This is also many times faster than utils::installed.packages,

especially if only a subset of "all" packages in 1ibPath are desired (1000x ? for the 1 package case).
Usage

installedVersions(packages, libPath)

Arguments
packages Character vector of packages to determine which version is installed in the
libPath.
libPath The library path where all packages should be installed, and looked for to load
(i.e., call library)
Examples

installedVersions("reproducible”, .libPaths()[11)

installVersions Install exact package versions from a package version text file &
GitHub

Description

Install exact package versions from a package version text file & GitHub

Usage

installVersions(
gitHubPackages,
packageVersionFile = ".packageVersions.txt",
libPath = .libPaths()[11],
standAlone = FALSE,
repos = getOption("repos”)["CRAN"]

68 install Versions

Arguments

gitHubPackages Character vectors indicating repository/packageName@branch

packageVersionFile
Path to the package version file, defaults to the ‘.packageVersions.txt’.

This uses CRAN, CRAN archives, or MRAN (accessed via versions: :install.versions)
for remote repositories. This will attempt to install all packages in the packageVersionFile,
with their exact version described in that file. For GitHub packages, it will

use install_github. This will be called internally by Require, and so often

doesn’t need to be used by a user.

Because of potential conflicts with loaded packages, this function will run install. packages
in a separate R process.

libPath The library path where all packages should be installed, and looked for to load
(i.e., call library)

standAlone Logical. If TRUE, all packages will be installed and loaded strictly from the
libPaths only. If FALSE, all . 1ibPaths will be used to find the correct versions.
This can be create dramatically faster installs if the user has a substantial number
of the packages already in their personal library. In the case of TRUE, there
will be a hidden file place in the 1ibPath directory that lists all the packages
that were needed during the Require call. Default FALSE to minimize package
installing.

repos The remote repository (e.g., a CRAN mirror), passed to either install.packages,
install_github or installVersions.

Examples

Not run:
requires the packageVersionFile -- this doesn't work -- safer to use Require
installVersions("PredictiveEcology/reproducible@development”)

make a package version snapshot -- this will be empty because no packages in directory
tempPkgFolder <- file.path(tempdir(), "Packages")

dir.create(tempPkgFolder)

packageVersionFile <- file.path(tempPkgFolder, ".packageVersion.txt")
pkgSnapshot(libPath = tempPkgFolder, packageVersionFile)

Require(”crayon”, libPath = tempPkgFolder) # install.packages first, then library
install a specific version

make a package version snapshot

packageVersionFile <- file.path(tempPkgFolder, ".packageVersion.txt")

pkgSnapshot (1libPath=tempPkgFolder, packageVersionFile, standAlone = FALSE)

installVersions("crayon”, packageVersionFile = packageVersionFile)

End(Not run)

linkOrCopy 69

1inkOrCopy Hardlink, symlink, or copy a file

Description
Attempt first to make a hardlink. If that fails, try to make a symlink (on non-windows systems and
symlink = TRUE). If that fails, copy the file.

Usage
linkOrCopy(from, to, symlink = TRUE)

Arguments
from, to Character vectors, containing file names or paths. to can alternatively be the
path to a single existing directory.
symlink Logical indicating whether to use symlink (instead of hardlink). Default FALSE.
Note

Use caution with files-backed objects (e.g., rasters). See examples.

Author(s)
Alex Chubaty and Eliot Mclntire

See Also

file.link, file.symlink, file.copy.

Examples

library(datasets)
library(magrittr)
library(raster)

tmpDir <- file.path(tempdir(), "symlink-test") %>%
normalizePath(winslash = '/', mustWork = FALSE)
dir.create(tmpDir)

fo <- file.path(tmpDir, "file@.csv")
write.csv(iris, f0)

d1 <- file.path(tmpDir, "dir1")
dir.create(d1)
write.csv(iris, file.path(d1l, "filel.csv"))

d2 <- file.path(tmpDir, "dir2")
dir.create(d2)

70 makeMemoisable

f2 <- file.path(tmpDir, "file2.csv")

create link to a file

linkOrCopy(f@, f2)

file.exists(f2) ## TRUE

identical(read.table(f@), read.table(f2)) ## TRUE

deleting the link shouldn't delete the original file
unlink(fo)

file.exists(f@) ## FALSE

file.exists(f2) ## TRUE

using rasters and other file-backed objects

f3a <- system.file("external/test.grd", package = "raster”)
f3b <- system.file("external/test.gri”, package = "raster”)
r3a <- raster(f3a)

f4a <- file.path(tmpDir, "raster4.grd")

f4b <- file.path(tmpDir, "raster4.gri")

linkOrCopy(f3a, f4a) ## hardlink

1linkOrCopy(f3b, f4b) ## hardlink

r4a <- raster(f4a)

isTRUE(all.equal(r3a, r4a)) # TRUE

cleanup
unlink(tmpDir, recursive = TRUE)

makeMemoisable Generic method to make or unmake objects memoisable

Description

This is just a pass through for all classes in reproducible. This generic is here so that downstream
methods can be created.

Usage
makeMemoisable(x)

Default S3 method:
makeMemoisable(x)

unmakeMemoisable(x)

Default S3 method:
unmakeMemoisable(x)

Arguments

X An object to make memoisable. See individual methods in other packages.

maskInputs 71

Value

The same object, but with any modifications, especially dealing with saving of environments, which
memoising doesn’t handle correctly in some cases.

maskInputs Mask module inputs

Description

This function can be used to mask inputs from data. Masking here is equivalent to raster: :mask
(though fastMask is used here) or raster: :intersect.

Usage

maskInputs(x, studyArea, ...)

S3 method for class 'Raster’
maskInputs(x, studyArea, rasterToMatch, maskWithRTM = FALSE, ...)

S3 method for class 'Spatial’
maskInputs(x, studyArea, ...)

S3 method for class 'sf'

maskInputs(x, studyArea, ...)
Arguments
X An object to do a geographic raster::mask/raster::intersect. See methods.
studyArea SpatialPolygons* object used for masking and possibly cropping if no rasterToMatch

is provided. If not in same CRS, then it will be spTransformed to CRS of x
before masking. Currently, this function will not reproject the x. Optional in
postProcess.

Passed to methods. None currently implemented.

rasterToMatch Template Raster* object used for cropping (so extent should be the extent of
desired outcome) and reprojecting (including changing the resolution and pro-
jection). See details in postProcess.

maskWithRTM Logical. If TRUE, then the default,

Author(s)

Eliot Mclntire and Jean Marchal

72 mergeCache

Examples

Add a study area to Crop and Mask to
Create a "study area”

library(sp)

library(raster)

ow <- setwd(tempdir())

make a SpatialPolygon

coordsl <- structure(c(-123.98, -117.1, -80.2, -100, -123.98, 60.9, 67.73, 65.58, 51.79, 60.9),
.Dim = c(5L, 2L))

Sr1 <- Polygon(coords1)

Srs1 <- Polygons(list(Sr1), "s1")

shpEcozone <- SpatialPolygons(list(Srs1), 1L)

crs(shpEcozone) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

make a "study area” that is subset of larger dataset

coords <- structure(c(-118.98, -116.1, -99.2, -106, -118.98, 59.9, 65.73, 63.58, 54.79, 59.9),
.Dim = c(5L, 2L))

Sr1 <- Polygon(coords)

Srs1 <- Polygons(list(Sr1), "s1")

StudyArea <- SpatialPolygons(list(Srs1), 1L)

crs(StudyArea) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

#

#

HHHHE

shpEcozonePostProcessed <- postProcess(shpEcozone, studyArea = StudyArea)

#

Try manually, individual pieces

shpEcozoneReprojected <- projectInputs(shpEcozone, StudyArea)

shpEcozoneCropped <- cropInputs(shpEcozone, StudyArea)

shpEcozoneClean <- fixErrors(shpEcozone)

shpEcozoneMasked <- maskInputs(shpEcozone, StudyArea)

setwd(ow)

mergeCache Merge two cache repositories together

Description

Experimental

Usage

mergeCache(
cacheTo,
cacheFrom,
drvTo = getOption("reproducible.drv”, RSQLite::SQLite()),
drvFrom = getOption("reproducible.drv”, RSQLite::SQLite()),

movedCache 73

connTo = NULL,
connFrom = NULL

)

S4 method for signature 'ANY'

mergeCache(
cacheTo,
cacheFrom,
drvTo = getOption("reproducible.drv”, RSQLite::SQLite()),
drvFrom = getOption("reproducible.drv”, RSQLite::SQLite()),
connTo = NULL,
connFrom = NULL

)
Arguments
cacheTo The cache repository (character string of the file path) that will become larger,
i.e., merge into this
cacheFrom The cache repository (character string of the file path) from which all objects
will be taken and copied from
drvTo The database driver for the cacheTo.
drvFrom The database driver for the cacheFrom
connTo The connection for the cacheTo. If not provided, then a new one will be made
from drvTo and cacheTo
connFrom The database for the cacheFrom. If not provided, then a new one will be made
from drvFrom and cacheFrom
Details

All the cacheFrom artifacts will be put into cacheTo repository. All userTags will be copied
verbatim, including accessed, with 1 exception: date will be the current Sys.time() at the time
of merging. The createdDate column will be similarly the current time of merging.

Value

The character string of the path of cacheTo, i.e., not the objects themselves.

movedCache Deal with moved cache issues

Description

If a user manually copies a complete Cache folder (including the db file and rasters folder), there
are issues that must be addressed. Primarily, the db table must be renamed. Run this function after
a manual copy of a cache folder. See examples for one way to do that.

74 newLibPaths

Usage

movedCache(
new,
old,
drv = getOption("reproducible.drv”, RSQLite::SQLite()),
conn = getOption("reproducible.conn”, NULL)

)
Arguments
new Either the path of the new cachePath where the cache was moved or copied to,
or the new DB Table Name
old Optional, if there is only one table in the new cache path. Either the path of the
previous cachePath where the cache was moved or copied from, or the old DB
Table Name
drv an object that inherits from DBIDriver, or an existing DBIConnection object (in
order to clone an existing connection).
conn A DBIConnection object, as returned by dbConnect ().
Examples

tmpCache <- file.path(tempdir(), "tmpCache")
tmpdir <- file.path(tempdir(), "tmpdir")
bb <- Cache(rnorm, 1, cacheRepo = tmpCache)

Copy all files from tmpCache to tmpdir
froms <- normPath(dir(tmpCache, recursive = TRUE, full.names = TRUE))
checkPath(file.path(tmpdir, "rasters"”), create = TRUE)
checkPath(file.path(tmpdir, "cacheOutputs"”), create = TRUE)
file.copy(from = froms, overwrite = TRUE,

to = gsub(normPath(tmpCache), normPath(tmpdir), froms))

Must use 'movedCache' to update the database table
movedCache(new = tmpdir, old = tmpCache)
bb <- Cache(rnorm, 1, cacheRepo = tmpdir) # should recover the previous call

newLibPaths A shortcut to create a .1ibPaths() with only two directories

Description
This will remove all but the top level of . 1ibPaths(), which should be the core packages installed
with R, and adds a second directory, the 1ibPath.

Usage

newLibPaths(libPath)

normPath

Arguments

libPath A path that will be the new .libPaths()[1]

Value

Invisibly, the new .1libPaths().

Examples

Not run:

newLibPaths("testPackages")

.libPaths() # new

End(Not run)

.libPaths

75

normPath

Normalize filepath

Description

Checks the specified filepath for formatting consistencies: 1) use slash instead of backslash; 2) do
tilde etc. expansion; 3) remove trailing slash.

Usage

normPath(path)

S4 method for
normPath(path)

S4 method for
normPath(path)

S4 method for
normPath(path)

S4 method for
normPath ()

Arguments

path A character vector of filepaths.

Value

signature

signature

signature

signature

'character’

"list’

I\NULL\v

'missing'’

Character vector of cleaned up filepaths.

76 objSize

Examples

normalize file paths

paths <- list("”./aaa/zzz",

./aaal/zzz/",

.//aaal//zzz",
".//aaal/zzz/",

"M\ \\aaa\\\\zzz",

" \\\\aaa\\\\zzz\\\\",
file.path(".", "aaa", "zzz"))

checked <- normPath(paths)
length(unique(checked)) ## 1; all of the above are equivalent

check to see if a path exists
tmpdir <- file.path(tempdir(), "example_checkPath")

dir.exists(tmpdir) ## FALSE
tryCatch(checkPath(tmpdir, create = FALSE), error = function(e) FALSE) ## FALSE

checkPath(tmpdir, create = TRUE)
dir.exists(tmpdir) ## TRUE

unlink(tmpdir, recursive = TRUE)

objSize Recursive object.size

Description

This has methods for various types of things that may not correctly report their object size using
object.size. Also, for lists and environments, it will return the object size separately for each
element. These are estimates only, and could be inaccurate. Alternative, similar functions include
object.size and pryr::object_size. See Details for the special case of functions and their
enclosing environments.

Usage

objSize(x, quick, enclosingEnvs, .prevEnvirs, ...)

Default S3 method:
objSize(
X,
quick = getOption("reproducible.quick"”, FALSE),
enclosingEnvs = TRUE,
.prevEnvirs = list(),

objSize 77

S3 method for class 'list'
objSize(
X,
quick = getOption("reproducible.quick"”, FALSE),
enclosingEnvs = TRUE,
.prevEnvirs = list(),

)

S3 method for class 'environment'
objSize(
X,
quick = getOption("reproducible.quick"”, FALSE),
enclosingEnvs = TRUE,
.prevEnvirs = list(),

)

S3 method for class 'Path'
objSize(
X,
quick = getOption("reproducible.quick"”, FALSE),
enclosingEnvs = TRUE,
.prevEnvirs = list(),

)

S3 method for class '‘function''
objSize(
X,
quick = getOption("reproducible.quick"”, FALSE),
enclosingEnvs = TRUE,
.prevEnvirs = list(),

)

objSizeSession(sumLevel = Inf, enclosingEnvs = TRUE, .prevEnvirs = list())

Arguments
X An object
quick Logical. Only some methods use this. e.g., Path class objects. In which case,

file.size will be used instead of object.size.
enclosingEnvs Logical indicating whether to include enclosing environments. Default TRUE.
.prevEnvirs For internal account keeping to identify and prevent duplicate counting
Additional arguments (currently unused)

sumLevel Numeric, indicating at which depth in the list of objects should the object sizes
be summed (summarized). Default is Inf, meaning no sums. Currently, the

78 Path-class

only option other than Inf is 1: objSizeSession(1), which gives the size of
each package.

Details

For functions, a user can include the enclosing environment as described https://www.r-bloggers.
com/using-closures-as-objects-in-r/ and http://adv-r.had.co.nz/memory.html. It is
not entirely clear which estimate is better. However, if the enclosing environment is the . GLlobalEnv,
it will not be included even though enclosingEnvs = TRUE.

objSizeSession will give the size of the whole session, including loaded packages. Because of
the difficulties in calculating the object size of base and methods packages and Autoloads, these
are omitted.

Examples

library(utils)
foo <- new.env()
foo$b <- 1:10
foo$d <- 1:10

objSize(foo) # all the elements in the environment
object.size(foo) # different - only measuring the environment as an object

object.size(prepInputs) # only the function, without its enclosing environment
objSize(prepInputs) # the function, plus its enclosing environment

Size of all packages; includes their imported functions

Not run:
bar <- objSizeSession(1)
print(bar, units = "auto")

End(Not run)

0os1 <- object.size(as.environment("”package:reproducible”))

0s2 <- objSize(as.environment("package:reproducible”))

(os1) # very small -- just the environment container

sum(unlist(os2)) # around 13 MB, with all functions, objects
and imported functions

Path-class Coerce a character string to a class "Path"

Description

Allows a user to specify that their character string is indeed a filepath. Thus, methods that require
only a filepath can be dispatched correctly.

https://www.r-bloggers.com/using-closures-as-objects-in-r/
https://www.r-bloggers.com/using-closures-as-objects-in-r/
http://adv-r.had.co.nz/memory.html

pipe 79
Usage
asPath(obj, nParentDirs = 0)

S3 method for class 'character'
asPath(obj, nParentDirs = 0)

S3 method for class 'null'
asPath(obj, nParentDirs = 0)

Arguments
obj A character string to convert to a Path.
nParentDirs A numeric indicating the number of parent directories starting from basename(obj)
= 0 to keep for the digest
Details

It is often difficult or impossible to know algorithmically whether a character string corresponds to
a valid filepath. In the case where it is en existing file, file.exists can work. But if it does not
yet exist, e.g., for a save, it is difficult to know whether it is a valid path before attempting to save
to the path.

This function can be used to remove any ambiguity about whether a character string is a path. It
is primarily useful for achieving repeatability with Caching. Essentially, when Caching, arguments
that are character strings should generally be digested verbatim, i.e., it must be an exact copy for
the Cache mechanism to detect a candidate for recovery from the cache. Paths, are different. While
they are character strings, there are many ways to write the same path. Examples of identical
meaning, but different character strings are: path expanding of ~ vs. not, double back slash vs.
single forward slash, relative path vs. absolute path. All of these should be assessed for their actual
file or directory location, NOT their character string. By converting all character string that are
actual file or directory paths with this function, then Cache will correctly assess the location, NOT
the character string representation.

Examples

tmpf <- tempfile(fileext = ".csv")
file.exists(tmpf) ## FALSE
tmpfPath <- asPath(tmpf)

is(tmpf, "Path") ## FALSE
is(tmpfPath, "Path") ## TRUE

pipe A cache-aware pipe that does not mask with %>%

Description

STILL EXPERIMENTAL. THIS MAY NOT WORK AS ANTICIPATED.

80

Usage
lhs %C% rhs

Arguments

lhs A value or the magrittr placeholder.

rhs A function call using the magrittr semantics.
Details

pipe

This pipe can only be used at any point in a pipe chain, but must be preceded by Cache(. ..) (which

allows other Cache arguments to be passed).

This will take the input arguments of the first function immediately following the Cache() and the
pipe chain until the special %C%, evaluate them both against the cacheRepo argument in Cache. If
they exist, then the entire pipe chain will be skipped, and only the previous final result will be given.
If there is no previous cached copy of the initial function’s arguments, then all chain elements will
be evaluated. The final result will be cached for future use. Therefore, the entire chain must be
identical. The required usage should be straight forward to insert into existing code that uses pipes

(Cache() %C% ... remaining pipes).

Note

This is still experimental; use with care.

Examples

library(magrittr) # standard pipe

dontrun{ # these can't be automatically run due to package conflicts with magrittr

tmpdir <- file.path(tempdir(), "testCache")

checkPath(tmpdir, create = TRUE)
a <- rnorm(10, 16) %>%

mean() %>%

prod(., 6)

b <- Cache(cacheRepo = tmpdir) %C% # use of the %C% pipe!

rnorm(10, 16) %>% # everything after here is NOT cached!

mean() %>%
prod(., 6)
d <- Cache(cacheRepo = tmpdir) %C%
rnorm(10, 16) %>%
mean() %>%
prod(., 6)
e <- Cache(cacheRepo = tmpdir) %C%
rnorm(10, 16) %>%
mean() %>%
prod(., 5) # changed
all.equal(b,d) # TRUE

all.equal(a,d) # different because 'a' uses a unique rnorm,

'd' uses the Cached rnorm

because the arguments to rnorm, i.e., 10 and 16, and
the subsequent functions in the chain, are identical
all.equal(a,e) # different because the final function, prod, has a changed argument.

pkgDep 81

HHHEHHHAE
multiple random elements shows Cached sequence up to %C%
al <- Cache(cacheRepo = tmpdir) %>%

seq(1, 10) %>%

rnorm(2, mean = .) %>%
mean() %C% # Cache pipe here --
means this pipe is the last one that is Cached
rnorm(3, mean = .) %>%
mean(.) %>%
rnorm(4, mean = .) # Random 4 numbers, the mean is same each time

a2 <- Cache(cacheRepo = tmpdir) %>%
seq(1, 10) %>%

rnorm(2, mean = .) %>%
mean() %C% # Cache pipe here --
means this pipe is the last one that is Cached
rnorm(3, mean = .) %>%
mean(.) %>%
rnorm(4, mean = .) # Random 4 numbers, the mean is same each time

sum(al - a2) # not @ # i.e., numbers are different

NOW DO WITH CACHE AT END
b1 <- Cache(cacheRepo = tmpdir) %>%
seq(1, 10) %>%
rnorm(2, mean = .) %>%
mean() %>%
means this pipe is the last one that is Cached

rnorm(3, mean = .) %>%
mean(.) %C% # Cache pipe here --
rnorm(4, mean = .) # These are samethe mean is same each time

b2 <- Cache(cacheRepo = tmpdir) %>%

seq(1, 10) %>%

rnorm(2, mean = .) %>%

mean() %>%

means this pipe is the last one that is Cached

rnorm(3, mean = .) %>%

mean(.) %C% # Cache pipe here --

rnorm(4, mean J) # These are samethe mean is same each time
sum(b1 - b2) # @ # i.e., numbers are same

unlink(tmpdir, recursive = TRUE)

#3}

pkgDep Determine package dependencies, first looking at local filesystem

Description

This is intended to replace package_dependencies or pkgDep in the miniCRAN package, but
with modifications for speed. It will first check local package directories in 1ibPath, and it if the
function cannot find the packages there, then it will use package_dependencies.

82 pkgDep

pkgDep?2 is a convenience wrapper of pkgDep that "goes one level in", i.e., the first order dependen-
cies, and runs the pkgDep on those.

This is a wrapper around tools: :dependsOnPkgs, but with the added option of sorted, which
will sort them such that the packages at the top will have the least number of dependencies that
are in pkgs. This is essentially a topological sort, but it is done heuristically. This can be used to
e.g., detach or unloadNamespace packages in order so that they each of their dependencies are
detached or unloaded first.

Usage

pkgDep(
packages,
libPath,
recursive = TRUE,
depends = TRUE,
imports = TRUE,
suggests = FALSE,
linkingTo = TRUE,
topoSort = FALSE,
repos = getOption("repos”),
refresh = FALSE,
verbose = getOption("reproducible.verbose”)

)

pkgDep2(
packages,
recursive = TRUE,
depends = TRUE,
imports = TRUE,
suggests = FALSE,
linkingTo = TRUE,
repos = getOption("repos”),
refresh = FALSE,
verbose = getOption("reproducible.verbose”),
sorted = TRUE

)

pkgDepTopoSort (
pkgs,
deps,
reverse = FALSE,
topoSort = TRUE,
useAllInSearch = FALSE,
returnfFull = TRUE

Arguments

packages a character vector of package names.

pkgDep
libPath
recursive
depends
imports
suggests
linkingTo
topoSort
repos

refresh

verbose
sorted

pkgs

deps

reverse
useAllInSearch

returnfFull

Value

83

The library path where all packages should be installed, and looked for to load
(i.e., call library)

Logical. Should dependencies of dependencies be searched, recursively. NOTE:
Dependencies of suggests will not be recursive. Default TRUE.

Logical. Include packages listed in "Depends". Default TRUE.
Logical. Include packages listed in "Imports". Default TRUE.
Logical. Include packages listed in "Suggests". Default FALSE.
Logical. Include packages listed in "LinkingTo". Default TRUE.

Logical. If TRUE, the default, then the returned list of packages will be in order
with the least number of dependencies listed in pkgs at the top of the list.

The remote repository (e.g., a CRAN mirror), passed to either install.packages,
install_github or installVersions.

There is an internal type of caching. If the results are wrong, likely set refresh
= TRUE.

logical indicating if output should monitor the package search cycles.

Logical. If TRUE, the default, the packages will be sorted in the returned list from
most number of dependencies to least.

A vector of package names to evaluate their reverse depends (i.e., the packages
that use each of these packages)

An optional named list of (reverse) dependencies. If not supplied, then tools: : dependsOnPkgs(. ..

= TRUE) will be used

logical: if FALSE (default), regular dependencies are calculated, otherwise re-
verse dependencies.

Logical. If TRUE, then all non-core R packages in search() will be appended to
pkgs to allow those to also be identified

Logical. If TRUE, then the full reverse dependencies will be returned; if FALSE,
the default, only the reverse dependencies that are found within the pkgs (and
search() if useAllInSearch = TRUE) will be returned.

A possibly ordered, named (with packages as names) list where list elements are either full reverse

depends.

Note

package_dependencies and pkgDep will differ under the following circumstances:

1. GitHub packages are not detected using tools: : package_dependencies;

2. tools: :package_dependencies does not detect the dependencies of base packages among
themselves, e.g., methods depends on stats and graphics.

Examples

pkgDep("crayon™)

pkgDep2("reproducible”)

,rec

84 pkgSnapshot

pkgSnapshot Take a snapshot of all the packages and version numbers

Description

This can be used later by installVersions to install or re-install the correct versions.

Usage

pkgSnapshot(packageVersionFile, libPath, standAlone = FALSE)

Arguments

packageVersionFile
A filename to save the packages and their currently installed version numbers.
Defaults to " . packageVersions.txt".

libPath The path to the local library where packages are installed. Defaults to the .1ib-
Paths()[1]

standAlone Logical. If TRUE, all packages will be installed and loaded strictly from the
libPaths only. If FALSE, all . 1ibPaths will be used to find the correct versions.
This can be create dramatically faster installs if the user has a substantial number
of the packages already in their personal library. In the case of TRUE, there
will be a hidden file place in the 1ibPath directory that lists all the packages
that were needed during the Require call. Default FALSE to minimize package
installing.

Details

A file is written with the package names and versions of all packages within 1ibPath. This can
later be passed to Require.

Examples

pkgSnapFile <- tempfile()
pkgSnapshot (pkgSnapFile, .libPaths()[11)
data.table: :fread(pkgSnapFile)

postProcess 85

postProcess Generic function to post process objects

Description

Maturing

The method for spatialObjects (Rasterx and Spatialx) will crop, reproject, and mask, in that order.
This is a wrapper for cropInputs, fixErrors, projectInputs, maskInputs and writeOutputs
with a decent amount of data manipulation between these calls so that the crs match.

Usage

postProcess(x, ...)

Default S3 method:
postProcess(x, ...)

S3 method for class 'list'
postProcess(x, ...)

S3 method for class 'spatialObjects'
postProcess(
X,
filenamel = NULL,
filename2 = TRUE,
studyArea = NULL,
rasterToMatch = NULL,
overwrite = getOption("reproducible.overwrite”, TRUE),
useSAcrs = FALSE,
useCache = getOption("reproducible.useCache”, FALSE),

)

S3 method for class 'sf'
postProcess(
X,
filenamel = NULL,
filename2 = TRUE,
studyArea = NULL,
rasterToMatch = NULL,
overwrite = getOption("reproducible.overwrite”, TRUE),
useSAcrs = FALSE,
useCache = getOption("reproducible.useCache”, FALSE),

86

Arguments

X

filenamel

filename2

studyArea

rasterToMatch

overwrite

useSAcrs

useCache

postProcess

An object of postProcessing, e.g., spatialObjects. See individual methods.
This can be provided as a rlang: : quosure or a normal R object.

Additional arguments passed to methods. For spatialObjects, these are: cropInputs,
fixErrors, projectInputs, maskInputs, determineFilename, and writeOutputs.
Each of these may also pass ... into other functions, like writeRaster, or
sf::st_write. This might include potentially important arguments like datatype,
format. Also passed to projectRaster, with likely important arguments such

as method = "bilinear”. See details.

... passed to::

Function Arguments
cropInputs crop
projectInputs projectRaster
maskInputs fastMask or intersect
fixErrors buffer
writeOutputs writeRaster or shapefile
determineFilename

* Can be overridden with useSAcrs ** Will mask with NAs from rasterToMatch
if maskWithRTM

Character strings giving the file paths of the input object (filename1) filename1
is only used for messaging (i.e., the object itself is passed in as x) and possibly
naming of output (see details and filename?2).

filename2 is optional, and is either NULL (no writing of outputs to disk), or
several options for writing the object to disk. If TRUE (the default), it will give
it a file name determined by .prefix(basename(filenamel),prefix). If a
character string, it will use this as its file name. See determineFilename.

SpatialPolygons* object used for masking and possibly cropping if no rasterToMatch
is provided. If not in same CRS, then it will be spTransformed to CRS of x

before masking. Currently, this function will not reproject the x. Optional in
postProcess.

Template Raster#* object used for cropping (so extent should be the extent of
desired outcome) and reprojecting (including changing the resolution and pro-
jection). See details in postProcess.

Logical. Should downloading and all the other actions occur even if they pass
the checksums or the files are all there.

Logical. If FALSE, the default, then the desired projection will be taken from
rasterToMatch or none at all. If TRUE, it will be taken from studyArea. See
table in details below.

Passed to Cache in various places. Defaults to getOption("reproducible.useCache").

Post processing sequence

If the rasterToMatch or studyArea are passed, then the following sequence will occur:

postProcess 87

1. Fix errors fixErrors. Currently only errors fixed are for SpatialPolygons using buffer(...,width
=0).

. Crop using cropInputs
. Project using projectInputs
. Mask using maskInputs

. Determine file name determineFilename

AN N kAW

. Write that file name to disk, optionally writeOutputs

NOTE: checksumming does not occur during the post-processing stage, as there are no file down-
loads. To achieve fast results, wrap prepInputs with Cache

NOTE: sf objects are still very experimental.

Passing rasterToMatch and/or studyArea

Depending on which of these were passed, different things will happen to the targetFile located
at filenamel.

If targetFile is a Rasterx object::

rasterToMatch studyArea Both
extent Yes Yes rasterToMatch
resolution Yes No rasterToMatch
projection Yes No* rasterToMatch*
alignment Yes No rasterToMatch
mask No** Yes studyArea**

* Can be overridden with useSAcrs ** Will mask with NAs from rasterToMatch if maskWithRTM

If targetFile is a Spatial* object::

rasterToMatch studyArea Both
extent Yes Yes rasterToMatch
resolution NA NA NA
projection Yes No* rasterToMatch*
alignment NA NA NA
mask No Yes studyArea

* Can be overridden with useSAcrs

See Also

prepInputs

Examples

Add a study area to Crop and Mask to

88

postProcess

Create a "study area”
library(sp)
library(raster)

ow <- setwd(tempdir())

make a SpatialPolygon

coordsl <- structure(c(-123.98, -117.1, -80.2, -100, -123.98, 60.9, 67.73, 65.58, 51.79, 60.9),
.Dim = c(5L, 2L))

Sr1 <- Polygon(coords1)

Srs1 <- Polygons(list(Sr1), "s1")

shpEcozone <- SpatialPolygons(list(Srs1), 1L)

crs(shpEcozone) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

make a "study area” that is subset of larger dataset

coords <- structure(c(-118.98, -116.1, -99.2, -106, -118.98, 59.9, 65.73, 63.58, 54.79, 59.9),
.Dim = c(5L, 2L))

Sr1 <- Polygon(coords)

Srs1 <- Polygons(list(Sr1), "s1")

StudyArea <- SpatialPolygons(list(Srs1), 1L)

crs(StudyArea) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

#

#

i

shpEcozonePostProcessed <- postProcess(shpEcozone, studyArea = StudyArea)

#

Try manually, individual pieces

shpEcozoneReprojected <- projectInputs(shpEcozone, StudyArea)

shpEcozoneCropped <- cropInputs(shpEcozone, StudyArea)

shpEcozoneClean <- fixErrors(shpEcozone)

shpEcozoneMasked <- maskInputs(shpEcozone, StudyArea)

setwd(ow)

Add a study area to Crop and Mask to
Create a "study area”

library(sp)

library(raster)

ow <- setwd(tempdir())

make a SpatialPolygon

coordsl <- structure(c(-123.98, -117.1, -80.2, -100, -123.98, 60.9, 67.73, 65.58, 51.79, 60.9),
.Dim = c(5L, 2L))

Sr1 <- Polygon(coords1)

Srs1 <- Polygons(list(Sr1), "s1")

shpEcozone <- SpatialPolygons(list(Srs1), 1L)

crs(shpEcozone) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

make a "study area"” that is subset of larger dataset

coords <- structure(c(-118.98, -116.1, -99.2, -106, -118.98, 59.9, 65.73, 63.58, 54.79, 59.9),
.Dim = c(5L, 2L))

Sr1 <- Polygon(coords)

Srs1 <- Polygons(list(Sr1), "s1")

StudyArea <- SpatialPolygons(list(Srs1), 1L)

crs(StudyArea) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

preplnputs 89

#
#

W

shpEcozonePostProcessed <- postProcess(shpEcozone, studyArea = StudyArea)
#

Try manually, individual pieces

shpEcozoneReprojected <- projectInputs(shpEcozone, StudyArea)
shpEcozoneCropped <- cropInputs(shpEcozone, StudyArea)

shpEcozoneClean <- fixErrors(shpEcozone)

shpEcozoneMasked <- maskInputs(shpEcozone, StudyArea)

setwd(ow)

prepInputs Download and optionally post-process files

Description

Maturing

Usage

prepInputs(
targetFile = NULL,
url = NULL,
archive = NULL,
alsoExtract = NULL,
destinationPath = getOption("reproducible.destinationPath”, "."),
fun = NULL,
quick = getOption("reproducible.quick”),
overwrite = getOption("reproducible.overwrite”, FALSE),
purge = FALSE,
useCache = getOption("reproducible.useCache”, FALSE),

.tempPath,
)
Arguments

targetFile Character string giving the path to the eventual file (raster, shapefile, csv, etc.)
after downloading and extracting from a zip or tar archive. This is the file before
it is passed to postProcess. Currently, the internal checksumming does not
checksum the file after it is postProcessed (e.g., cropped/reprojected/masked).
Using Cache around prepInputs will do a sufficient job in these cases. See
table in preProcess.

url Optional character string indicating the URL to download from. If not specified,

then no download will be attempted. If not entry exists in the CHECKSUMS. txt (in
destinationPath), an entry will be created or appended to. This CHECKSUMS . txt

90 prepInputs

entry will be used in subsequent calls to prepInputs or preProcess, comparing
the file on hand with the ad hoc CHECKSUMS. txt. See table in preProcess.

archive Optional character string giving the path of an archive containing targetFile,
or a vector giving a set of nested archives (e.g., c("xxx. tar","inner.zip","inner.rar")).
If there is/are (an) inner archive(s), but they are unknown, the function will try

all until it finds the targetFile. See table in preProcess.

alsoExtract Optional character string naming files other than targetFile that must be ex-
tracted from the archive. If NULL, the default, then it will extract all files. Other
options: "similar"” will extract all files with the same filename without file
extension as targetFile. NA will extract nothing other than targetFile. A
character string of specific file names will cause only those to be extracted. See
table in preProcess.

destinationPath
Character string of a directory in which to download and save the file that comes
from url and is also where the function will look for archive or targetFile.
NOTE (still experimental): To prevent repeated downloads in different loca-
tions, the user can also set options("reproducible.inputPaths”) to one or
more local file paths to search for the file before attempting to download. Default
for that option is NULL meaning do not search locally.

fun Function or character string indicating the function to use to load targetFile
into an R object, e.g., in form with package name: "raster::raster”. NOTE:
passing NULL will skip loading object into R.

quick Logical. This is passed internally to Checksums (the quickCheck argument),
and to Cache (the quick argument). This results in faster, though less robust
checking of inputs. See the respective functions.

overwrite Logical. Should downloading and all the other actions occur even if they pass
the checksums or the files are all there.

purge Logical or Integer. @/FALSE (default) keeps existing CHECKSUMS. txt file and
prepInputs will write or append to it. 1/TRUE will deleted the entire CHECKSUMS.. txt
file. Other options, see details.

useCache Passed to Cache in various places. Defaults to getOption("reproducible.useCache").

.tempPath Optional temporary path for internal file intermediate steps. Will be cleared
on.exit from this function.

Additional arguments passed to fun (i.e,. user supplied), postProcess and
Cache. Since ... is passed to postProcess, these will . .. will also be passed
into the inner functions, e.g., cropInputs. See details and examples.

Details

This function can be used to prepare R objects from remote or local data sources. The object of
this function is to provide a reproducible version of a series of commonly used steps for getting,
loading, and processing data. This function has two stages: Getting data (download, extracting
from archives, loading into R) and post-processing (for Spatial* and Raster* objects, this is crop,
reproject, mask/intersect). To trigger the first stage, provide url or archive. To trigger the second
stage, provide studyArea or rasterToMatch. See examples.

preplnputs 91

Stage 1 - Getting data

See preProcess for combinations of arguments.

1. Download from the web via either drive_download, download.file;
2. Extract from archive using unzip or untar;
3. Load into R using raster, shapefile, or any other function passed in with fun;

4. Checksumming of all files during this process. This is put into a ‘CHECKSUMS. txt’ file in the
destinationPath, appending if it is already there, overwriting the entries for same files if
entries already exist.

Stage 2 - Post processing

This will be triggered if either rasterToMatch or studyArea is supplied.

1. Fix errors. Currently only errors fixed are for SpatialPolygons using buffer(...,width =
9);
. Crop using cropInputs;

. Project using projectInputs;

2

3

4. Mask using maskInputs;

5. Determine file name determineFilename via filename2;
6

. Optionally, write that file name to disk via writeOutputs.

NOTE: checksumming does not occur during the post-processing stage, as there are no file down-
loads. To achieve fast results, wrap prepInputs with Cache.

NOTE: sf objects are still very experimental.

postProcessing of Raster* and Spatialx objects::

If rasterToMatch or studyArea are used, then this will trigger several subsequent functions,
specifically the sequence, Crop, reproject, mask, which appears to be a common sequence in
spatial simulation. See postProcess.spatialObjects.

Understanding various combinations of rasterToMatch and/or studyArea: Please see postProcess.spatialObjects.

purge

In options for control of purging the CHECKSUMS . txt file are:

keep file

delete file

delete entry for targetFile

delete entry for alsoExtract

delete entry for archive

delete entry for targetFile & alsoExtract

delete entry for targetFile, alsoExtract & archive

delete entry that is failing (i.e., for the file downloaded by the url)

N oo w AN =S

92

preplnputs

will only remove entries in the CHECKSUMS . txt that are associated with targetFile, alsoExtract
or archive When preplnputs is called, it will write or append to a (if already exists) CHECKSUMS . txt
file. If the CHECKSUMS. txt is not correct, use this argument to remove it.

Note

This function is still experimental: use with caution.

Author(s)

Eliot MclIntire, Jean Marchal, and Tati Micheletti

See Also

downloadFile, extractFromArchive, postProcess.

Examples

This function works within a module; however, currently,
\cde{sourceURL} is not yet working as desired. Use \code{url}.
Not run:
download a zip file from internet, unzip all files, load as shapefile, Cache the call
First time: don't know all files - prepInputs will guess, if download file is an archive,
then extract all files, then if there is a .shp, it will load with raster::shapefile
dPath <- file.path(tempdir(), "ecozones")
shpEcozone <- preplnputs(destinationPath = dPath,

url = "http://sis.agr.gc.ca/cansis/nsdb/ecostrat/zone/ecozone_shp.zip")

Robust to partial file deletions:
unlink(dir(dPath, full.names = TRUE)[1:3])
shpEcozone <- prepInputs(destinationPath = dPath,
url = "http://sis.agr.gc.ca/cansis/nsdb/ecostrat/zone/ecozone_shp.zip")
unlink(dPath, recursive = TRUE)

Once this is done, can be more precise in operational code:
specify targetFile, alsoExtract, and fun, wrap with Cache
ecozoneFilename <- file.path(dPath, "ecozones.shp")
ecozoneFiles <- c("ecozones.dbf"”, "ecozones.prj",
"ecozones.sbhn", "ecozones.sbx", "ecozones.shp”, "ecozones.shx")
shpEcozone <- prepInputs(targetFile = ecozoneFilename,
url = "http://sis.agr.gc.ca/cansis/nsdb/ecostrat/zone/ecozone_shp.zip",
alsoExtract = ecozoneFiles,
fun = "shapefile”, destinationPath = dPath)
unlink(dPath, recursive = TRUE)

#' # Add a study area to Crop and Mask to

Create a "study area”

library(sp)

library(raster)

coords <- structure(c(-122.98, -116.1, -99.2, -106, -122.98, 59.9, 65.73, 63.58, 54.79, 59.9),
.Dim = c(5L, 2L))

Sr1 <- Polygon(coords)

preProcess 93

Srs1 <- Polygons(list(Sr1), "s1")
StudyArea <- SpatialPolygons(list(Srs1), 1L)
crs(StudyArea) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

specify targetFile, alsoExtract, and fun, wrap with Cache
ecozoneFilename <- file.path(dPath, "ecozones.shp")

Note, you don't need to "alsoExtract” the archive... if the archive is not there, but the
targetFile is there, it will not redownload the archive.
ecozoneFiles <- c("”ecozones.dbf", "ecozones.prj",

"ecozones.sbn", "ecozones.sbx", "ecozones.shp”", "ecozones.shx")

shpEcozoneSm <- Cache(prepInputs,
url = "http://sis.agr.gc.ca/cansis/nsdb/ecostrat/zone/ecozone_shp.zip”,
targetFile = reproducible: :asPath(ecozoneFilename),
alsoExtract = reproducible::asPath(ecozoneFiles),
studyArea = StudyArea,
fun = "shapefile”, destinationPath = dPath,

filename2 = "EcozoneFile.shp"”) # passed to determineFilename
plot(shpEcozone)
plot(shpEcozoneSm, add = TRUE, col = "red")
unlink(dPath)

Big Raster, with crop and mask to Study Area - no reprojecting (lossy) of raster,

but the StudyArea does get reprojected, need to use rasterToMatch

dPath <- file.path(tempdir(), "LCC")

lcc2005Filename <- file.path(dPath, "LCC2005_V1_4a.tif")

url <- file.path("ftp://ftp.ccrs.nrcan.gc.ca/ad/NLCCLandCover”,
"LandcoverCanada2005_250m/LandCover0fCanada2005_V1_4.zip")

messages received below may help for filling in more arguments in the subsequent call
LCC2005 <- prepInputs(url = url,

destinationPath = asPath(dPath),

studyArea = StudyArea)

plot (LCC2005)

if wrapped with Cache, will be fast second time, very fast 3rd time (via memoised copy)
LCC2005 <- Cache(prepInputs, url = url,
targetFile = lcc2005Filename,
archive = asPath(”LandCoverOfCanada2005_V1_4.zip"),
destinationPath = asPath(dPath),
studyArea = StudyArea)
Using dlFun -- a custom download function -- passed to preProcess
testl <- preplnputs(targetFile = "GADM_2.8_LUX_adm@.rds"”, # must specify currently
dlFun = "raster::getData”, name = "GADM", country = "LUX", level = 0,
path = dPath)

End(Not run)

preProcess Download, Checksum, Extract files

94 preProcess

Description

This does downloading (via downloadFile), checksumming (Checksums), and extracting from
archives (extractFromArchive), plus cleaning up of input arguments (e.g., paths, function names).
This is the first stage of three used in prepInputs.

Usage

preProcess(
targetFile = NULL,
url = NULL,
archive = NULL,
alsoExtract = NULL,
destinationPath = getOption("reproducible.destinationPath”, "."),
fun = NULL,
dlFun = NULL,
quick = getOption("reproducible.quick”),
overwrite = getOption("reproducible.overwrite”, FALSE),
purge = FALSE,
useCache = getOption("reproducible.useCache”, FALSE),
.tempPath,

Arguments

targetFile Character string giving the path to the eventual file (raster, shapefile, csv, etc.)
after downloading and extracting from a zip or tar archive. This is the file before
it is passed to postProcess. Currently, the internal checksumming does not
checksum the file after it is postProcessed (e.g., cropped/reprojected/masked).
Using Cache around prepInputs will do a sufficient job in these cases. See
table in preProcess.

url Optional character string indicating the URL to download from. If not specified,
then no download will be attempted. If not entry exists in the CHECKSUMS. txt (in
destinationPath), an entry will be created or appended to. This CHECKSUMS . txt
entry will be used in subsequent calls to prepInputs or preProcess, comparing
the file on hand with the ad hoc CHECKSUMS. txt. See table in preProcess.

archive Optional character string giving the path of an archive containing targetFile,
or a vector giving a set of nested archives (e.g., c("xxx.tar"”,"inner.zip","inner.rar")).
If there is/are (an) inner archive(s), but they are unknown, the function will try

all until it finds the targetFile. See table in preProcess.

alsoExtract Optional character string naming files other than targetFile that must be ex-
tracted from the archive. If NULL, the default, then it will extract all files. Other
options: "similar” will extract all files with the same filename without file
extension as targetFile. NA will extract nothing other than targetFile. A
character string of specific file names will cause only those to be extracted. See
table in preProcess.

preProcess

destinationPath

fun

d1Fun

quick

overwrite

purge

useCache
.tempPath

Value

95

Character string of a directory in which to download and save the file that comes
from url and is also where the function will look for archive or targetFile.
NOTE (still experimental): To prevent repeated downloads in different loca-
tions, the user can also set options(”reproducible.inputPaths") to one or
more local file paths to search for the file before attempting to download. Default
for that option is NULL meaning do not search locally.

Function or character string indicating the function to use to load targetFile
into an R object, e.g., in form with package name: "raster::raster”. NOTE:
passing NULL will skip loading object into R.

Optional "download function" name, such as "raster::getData”, which does
custom downloading, in addition to loading into R. Still experimental.

Logical. This is passed internally to Checksums (the quickCheck argument),
and to Cache (the quick argument). This results in faster, though less robust
checking of inputs. See the respective functions.

Logical. Should downloading and all the other actions occur even if they pass
the checksums or the files are all there.

Logical or Integer. @/FALSE (default) keeps existing CHECKSUMS. txt file and

prepInputs will write or append to it. 1/TRUE will deleted the entire CHECKSUMS . txt

file. Other options, see details.

Passed to Cache in various places. Defaults to getOption("reproducible.useCache”).

Optional temporary path for internal file intermediate steps. Will be cleared
on.exit from this function.

Additional arguments passed to fun (i.e,. user supplied), postProcess and
Cache. Since ... is passed to postProcess, these will . .. will also be passed
into the inner functions, e.g., cropInputs. See details and examples.

A list with 5 elements, checkSums (the result of a Checksums after downloading), dots (cleaned up
..., including deprecated argument checks), fun (the function to be used to load the preProcessed
object from disk), and targetFilePath (the fully qualified path to the targetFile).

Combinations of targetFile, url, archive, alsoExtract

Params url

targetFile archive alsoExtract Result

1 char NULL NULL NULL Download, extract all files if an archive, guess at targetFile
NULL char NULL NULL load targetFile into R
NULL NULL char NULL extract all files, guess at targetFile, load into R
NULL NULL NULL char guess at targetFile from files in alsoExtract, load into R
2 char char NULL NULL Download, extract all files if an archive, load targetFile int
char NULL char NULL Download, extract all files, guess at targetFile, load into R
char NULL NULL char Download, extract only named files in alsoExtract, guess a
NULL char NULL char load targetFile into R

96

NULL char char
NULL NULL char
3 char char char
char NULL char
char NULL char
char char NULL
char char NULL
char char char
NULL char char
4 char char char
char char char

NULL
char
NULL
char
"similar"”
char
"similar”
NULL
char
char
"similar"”

projectlnputs

Extract all files, load targetFile into R

Extract only named files in alsoExtract, guess at targetFi
Download, extract all files, load targetFile into R
Download, extract files named in alsoExtract, guess at tar
Download, extract all files (can’t understand "similar"), gues:
Download, if an archive, extract files named in targetFile
Download, if an archive, extract files with same base as targ
Download, extract all files from archive, load targetFile in
Extract files named in alsoExtract from archive, load targ
Download, extract files named in targetFile and alsoExtr
Download, extract all files with same base as targetFile, lo

* If the url is a file on Google Drive, checksumming will work even without a targetFile specified
because there is an initial attempt to get the remove file information (e.g., file name). With that, the
connection between the url and the filename used in the CHECKSUMS.txt file can be made.

Author(s)

Eliot MclIntire

projectInputs Project Rasterx or Spatial* or sf objects

Description

A simple wrapper around the various different tools for these GIS types.

Usage

projectInputs(x, targetCRS,

Default S3 method:

projectInputs(x, targetCRS,

S3 method for class
projectInputs(
X,
targetCRS = NULL,
rasterToMatch = NULL,
cores = NULL,

useGDAL = getOption("reproducible.useGDAL"

L)

)

'Raster’

, TRUE),

projectInputs 97

S3 method for class 'sf'
projectInputs(x, targetCRS, ...)

S3 method for class 'Spatial’

projectInputs(x, targetCRS, ...)
Arguments
X A Raster=, Spatialx or sf object
targetCRS The CRS of x at the end of this function (i.e., the goal)

Passed to projectRaster.

rasterToMatch Template Raster* object passed to the to argument of projectRaster, thus
will changing the resolution and projection of x. See details in postProcess.

cores An integerx or 'AUTO'. This will be used if gdalwarp is triggered. 'AUTO'=*
will calculate 90 number of cores in the system, while an integer or rounded
float will be passed as the exact number of cores to be used.

useGDAL Logical or "force". Defaults to getOption("reproducible.useGDAL" = TRUE).
If TRUE, then this function will use gdalwarp only when not small enough to fit
in memory (i.e., if the operation fails the raster: : canProcessInMemory(x, 3)
test). Using gdalwarp will usually be faster than raster: :projectRaster, the
function used if this is FALSE. Since since the two options use different algo-
rithms, there may be different projection results. "force” will cause it to use
GDAL regardless of the memory test described here.

Value

A file of the same type as starting, but with projection (and possibly other characteristics, including
resolution, origin, extent if changed).

Examples

Add a study area to Crop and Mask to
Create a "study area”

library(sp)

library(raster)

ow <- setwd(tempdir())

make a SpatialPolygon

coords1 <- structure(c(-123.98, -117.1, -80.2, -100, -123.98, 60.9, 67.73, 65.58, 51.79, 60.9),
.Dim = c(5L, 2L))

Sr1 <- Polygon(coords1)

Srs1 <- Polygons(list(Sr1), "s1")

shpEcozone <- SpatialPolygons(list(Srs1), 1L)

crs(shpEcozone) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

make a "study area” that is subset of larger dataset

coords <- structure(c(-118.98, -116.1, -99.2, -106, -118.98, 59.9, 65.73, 63.58, 54.79, 59.9),
.Dim = c(5L, 2L))

Sr1 <- Polygon(coords)

98 reproducibleOptions

Srs1 <- Polygons(list(Sr1), "s1")

StudyArea <- SpatialPolygons(list(Srs1), 1L)

crs(StudyArea) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"
#

#

W

shpEcozonePostProcessed <- postProcess(shpEcozone, studyArea = StudyArea)
#

Try manually, individual pieces

shpEcozoneReprojected <- projectInputs(shpEcozone, StudyArea)
shpEcozoneCropped <- cropInputs(shpEcozone, StudyArea)

shpEcozoneClean <- fixErrors(shpEcozone)

shpEcozoneMasked <- maskInputs(shpEcozone, StudyArea)

setwd(ow)

reproducibleOptions reproducible options

Description
These provide top-level, powerful settings for a comprehensive reproducible workflow. To see
defaults, run reproducibleOptions(). See Details below.

Usage

reproducibleOptions()

Details

Below are options that can be set with options("reproducible.xxx" = newValue), where xxx is
one of the values below, and newValue is a new value to give the option. Sometimes these options
can be placed in the user’s .Rprofile file so they persist between sessions.

The following options are likely of interest to most users

OPTION DEFAULT VALUE DESCRIPTION

ask TRUE Used in clearCache and keepC
cachePath .reproducibleTempCacheDir Used in Cache and many others
cacheSaveFormat "rds" ‘What save format to use; curren
cacheSpeed "slow" either "slow" or "fast" (1 or 2). '
conn NULL Sets a specific connection to a d
destinationPath NULL Used in prepInputs, preProce
drv RSQLite::SQLite() Sets the default driver for the ba
futurePlan FALSE On Linux OSs, Cache and clou
inputPaths NULL Used in prepInputs, preProce
inputPathsRecursive FALSE Used in prepInputs, preProce
nThreads 1 The number of threads to use fo

overwrite FALSE Used in prepInputs, preProce

Require 99

quick FALSE Used in Cache. This will cause
showSimilar Passed to Cache. Default FALSE.

useCache TRUE Used in Cache. If FALSE, then tl
useCloud Passed to Cache. Default FALSE.

useDBI TRUE As of reproducible 0.3, the back
useGDAL Passed to useGDAL in projectInputs.Raster. Default TRUE.

useMemoise FALSE Used in Cache. If TRUE, recover
useNewDigestAlgorithm TRUE This will mean that previous cac
verbose FALSE If set to TRUE then every Cache

Advanced

The following options are likely not needed by a user.

cloudChecksumsFilename file.path(dirname(.reproducibleTempCacheDir()), "checksums.rds”) Used in clouc
length Inf Used in Cache
useragent "https://github.com/PredictiveEcology/reproducible” User agent fot

Require Repeatability-safe install and load packages, optionally with specific
versions

Description

Maturing

Usage

Require(
packages,
packageVersionFile,
libPath = .libPaths()[11],
install_githubArgs = list(),
install.packagesArgs = list(),
standAlone = FALSE,
repos = getOption("repos”),
forget = FALSE

)
Arguments
packages Character vector of packages to install via install.packages, then load (i.e.,
with library). If it is one package, it can be unquoted (as in require)
packageVersionFile

If provided, then this will override all install.package calls with versions: :install.versions

100 Require

libPath The library path where all packages should be installed, and looked for to load
(i.e., call library)
install_githubArgs
List of optional named arguments, passed to install_github.
install.packagesArgs
List of optional named arguments, passed to install.packages.

standAlone Logical. If TRUE, all packages will be installed and loaded strictly from the
libPaths only. If FALSE, all . 1ibPaths will be used to find the correct versions.
This can be create dramatically faster installs if the user has a substantial number
of the packages already in their personal library. In the case of TRUE, there
will be a hidden file place in the 1ibPath directory that lists all the packages
that were needed during the Require call. Default FALSE to minimize package
installing.

repos The remote repository (e.g., a CRAN mirror), passed to either install.packages,
install_github or installVersions.

forget Internally, this function identifies package dependencies using a memoised func-
tion for speed on reuse. But, it may be inaccurate in some cases, if packages
were installed manually by a user. Set this to TRUE to refresh that dependency
calculation.

Details

This is an "all in one" function that will run install.packages for CRAN packages, remotes: :install_github
for https://github.com/ packages and will install specific versions of each package if there is

a packageVersionFile supplied. Plus, when packages is provided as a character vector, or a
packageVersionFile is supplied, all package dependencies will be first assessed for unique (dependencies)

so the same package is not installed multiple times. Finally 1library is called on the packages. If

packages are already installed (packages supplied), and their version numbers are exact (when
packageVersionFile is supplied), then the "install" component will be skipped very quickly with

a message.

standAlone will either put the Required packages and their dependencies all within the libPath
(if TRUE) or if FALSE will only install packages and their dependencies that are otherwise not in-
stalled in .1ibPaths(), i.e., the personal or base library paths. Any packages or dependencies
that are not yet installed will be installed in 1ibPath. Importantly, a small hidden file (named
._packageVersionsAuto. txt) will be saved in 1ibPath that will store the information about the
packages and their dependencies, even if the version used is located in .1ibPaths(), i.e., not the
libPath provided. This hidden file will be used if a user runs pkgSnapshot, enabling a new user to
rebuild the entire dependency chain, without having to install all packages in an isolated directory
(as does packrat). This will save potentially a lot of time and disk space, and yet maintain repro-
ducibility. NOTE: since there is only one hidden file in a 1ibPath, any call to pkgSnapshot will
make a snapshot of the most recent call to Require.

To build a snapshot of the desired packages and their versions, first run Require with all packages,
then pkgSnapshot. If a 1ibPath is used, it must be used in both functions.

This function works best if all required packages are called within one Require call, as all de-
pendencies can be identified together, and all package versions will be saved automatically (with
standAlone = TRUE or standAlone = FALSE), allowing a call to pkgSnapshot when a more perma-
nent record of versions can be made.

https://github.com/

retry 101

Note

This function will use memoise internally to determine the dependencies of all packages. This will
speed up subsequent calls to Require dramatically. However, it will not take into account version
numbers for this memoised step. If package versions are updated manually by the user, then this
cached element should be wiped, using forget = TRUE.

Examples

Not run:

simple usage, like conditional install.packages then library

Require("stats”) # analogous to require(stats), but slower because it checks for
pkg dependencies, and installs them, if missing

tempPkgFolder <- file.path(tempdir(), "Packages")

use standAlone, means it will put it in libPath, even if it already exists
in another local library (e.g., personal library)
Require(”crayon”, libPath = tempPkgFolder, standAlone = TRUE)

make a package version snapshot
packageVersionFile <- file.path(tempPkgFolder, ".packageVersion.txt")
pkgSnapshot (libPath=tempPkgFolder, packageVersionFile)

confirms that correct version is installed
Require("crayon"”, packageVersionFile = packageVersionFile)

Create mismatching versions -- desired version is older than current installed

This will try to install the older version, overwriting the newer version

desiredVersion <- data.frame(instPkgs="crayon”, instVers = "1.3.2", stringsAsFactors = FALSE)
write.table(file = packageVersionFile, desiredVersion, row.names = FALSE)

won't work because newer crayon is loaded

Require(”crayon”, packageVersionFile = packageVersionFile)

unload it first
detach("package:crayon”, unload = TRUE)

run again, this time, correct "older"” version installs in place of newer one
Require(”crayon”, packageVersionFile = packageVersionFile)

Mutual dependencies, only installs once -- e.g., httr
Require(c(”cranlogs”, "covr"), libPath = tempPkgFolder)

End(Not run)

retry A wrapper around try that retries on failure

Description

This is useful for functions that are "flaky", such as curl, which may fail for unknown reasons that
do not persist.

102 searchFull

Usage

retry(
expr,
envir = parent.frame(),
retries = 5,
exponentialDecayBase = 1.3,
silent = TRUE

)
Arguments
expr Quoted expression to run, i.e., quote(...)
envir The environment in which to evaluate the quoted expression, default to parent.frame(1)
retries Numeric. The maximum number of retries.
exponentialDecayBase
Numeric > 1.0. The delay between successive retries will be runif(1,min =
0,max = exponentialDecayBase * i -1) where i is the retry number (i.e., fol-
lows seq_len(retries))
silent Logical indicating whether to try silently.
Details

Basedon https://github.com/jennybc/googlesheets/issues/219#issuecomment-195218525.

searchFull Search up the full scope for functions

Description

This is like base: : search but when used inside a function, it will show the full scope (see figure in
the section Binding environments on http://adv-r.had.co.nz/Environments.html). This full
search path will be potentially much longer than just search() (which always starts at . GlobalEnv).

searchFullEx shows an example function that is inside this package whose only function is to
show the Scope of a package function.
Usage

searchFull(env = parent.frame(), simplify = TRUE)

searchFullEx()

Arguments
env The environment to start searching at. Default is calling environment, i.e.,
parent.frame()

simplify Logical. Should the output be simplified to character, if possible (usually it is
not possible because environments don’t always coerce correctly)

https://github.com/jennybc/googlesheets/issues/219#issuecomment-195218525
http://adv-r.had.co.nz/Environments.html

studyAreaName 103

Details

searchFullEx can be used to show an example of the use of searchFull.

Value

A list of environments that is the actual search path, unlike search() which only prints from
.GlobalEnv up to base through user attached packages.

See Also

search

Examples

seeScope <- function() {
searchFull()

}

seeScope()

searchFull()

searchFullEx()

studyAreaName Get a unique name for a given study area

Description

Digest a spatial object to get a unique character string (hash) of the study area. Use .suffix() to
append the hash to a filename, e.g., when using filename2 in prepInputs.

Usage

studyAreaName (studyArea, ...)

S4 method for signature 'SpatialPolygonsDataFrame'

studyAreaName (studyArea, ...)
Arguments
studyArea Spatial object.

Other arguments (not currently used)

104 unrarPath

tempdir2 Make a temporary sub-directory or file in that subdirectory

Description

Create a temporary subdirectory in . reproducibleTempPath(), or a temporary file in that tempo-
rary subdirectory.

Usage

tempdir2(
sub = nn ,
tempdir = getOption("reproducible.tempPath”, .reproducibleTempPath())

)

tempfile2(sub = "", ...)
Arguments
sub Character string, length 1. Can be a result of file.path("smth","smth2") for

nested temporary sub directories.

tempdir Optional character string where the temporary dir should be placed. Defaults to
.reproducibleTempPath()

passed to tempfile, e.g., fileext

unrarPath The known path for unrar or 7z

Description

The known path for unrar or 7z

Usage

.unrarPath

Format

An object of class NULL of length 0.

writeFuture

105

writeFuture

Write to cache repository, using future: : future

Description

This will be used internally if options("reproducible. futurePlan” = TRUE). This is still exper-

imental.

Usage

writeFuture(
written,

outputToSave,

cacheRepo,
userTags,

drv = getOption("reproducible.drv”, RSQLite::SQLite()),
conn = getOption("reproducible.conn”, NULL),

cacheld

Arguments

written
outputToSave
cacheRepo
userTags

drv

conn

cacheld

Integer. If zero or positive then it needs to be written still. Should be O to start.
The R object to save to repository

The file path of the repository

Character string of tags to attach to this outputToSave in the CacheRepo

an object that inherits from DBIDriver, or an existing DBIConnection object (in
order to clone an existing connection).

A DBIConnection object, as returned by dbConnect ().

Character string. If passed, this will override the calculated hash of the inputs,
and return the result from this cacheld in the cacheRepo. Setting this is equiv-
alent to manually saving the output of this function, i.e., the object will be on
disk, and will be recovered in subsequent This may help in some particularly
finicky situations where Cache is not correctly detecting unchanged inputs. This
will guarantee the object will be identical each time; this may be useful in oper-
ational code.

106 writeOutputs

writeOutputs Write module inputs on disk

Description

Can be used to write prepared inputs on disk.

Usage

writeOutputs(
X,
filename2,
overwrite = getOption("reproducible.overwrite”, NULL),

)
S3 method for class 'Raster’
writeOutputs(

X,

filename2 = NULL,

overwrite = getOption("reproducible.overwrite”, FALSE),

)
S3 method for class 'Spatial’
writeOutputs(

X’

filename2 = NULL,

overwrite = getOption("reproducible.overwrite”, TRUE),

)
S3 method for class 'sf'
writeOutputs(

X,

filename2 = NULL,

overwrite = getOption("reproducible.overwrite”, FALSE),

)

S3 method for class 'quosure'
writeOutputs(x, filename2, ...)

Default S3 method:
writeQutputs(x, filename2, ...)

writeOutputs 107

Arguments
X The object save to disk i.e., write outputs
filename?2 File name passed to writeRaster, or shapefile or st_write (dsn argument).
overwrite Logical. Should file being written overwrite an existing file if it exists.
Passed into shapefile or writeRaster or st_write
Author(s)

Eliot MclIntire and Jean Marchal

Examples

Add a study area to Crop and Mask to
Create a "study area”

library(sp)

library(raster)

ow <- setwd(tempdir())

make a SpatialPolygon

coordsl <- structure(c(-123.98, -117.1, -80.2, -100, -123.98, 60.9, 67.73, 65.58, 51.79, 60.9),
.Dim = c(5L, 2L))

Sr1 <- Polygon(coords1)

Srs1 <- Polygons(list(Sr1), "s1")

shpEcozone <- SpatialPolygons(list(Srs1), 1L)

crs(shpEcozone) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

make a "study area” that is subset of larger dataset

coords <- structure(c(-118.98, -116.1, -99.2, -106, -118.98, 59.9, 65.73, 63.58, 54.79, 59.9),
.Dim = c(5L, 2L))

Sr1 <- Polygon(coords)

Srs1 <- Polygons(list(Sr1), "s1")

StudyArea <- SpatialPolygons(list(Srs1), 1L)

crs(StudyArea) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

#

#

HHEHEHEHHE

shpEcozonePostProcessed <- postProcess(shpEcozone, studyArea = StudyArea)

#

Try manually, individual pieces

shpEcozoneReprojected <- projectInputs(shpEcozone, StudyArea)

shpEcozoneCropped <- cropInputs(shpEcozone, StudyArea)

shpEcozoneClean <- fixErrors(shpEcozone)

shpEcozoneMasked <- maskInputs(shpEcozone, StudyArea)

setwd(ow)

Index

*Topic datasets %<% (Cache), 23
unrarPath, 104 %C% (pipe), 79
.addChangedAttr, 6
.addChangedAttr, ANY-method asPath (Path-class), 78
(.addChangedAttr), 6 assessDataType, 18
.addTagsToOutput, 7 assessDataTypeGDAL, 21
.addTagsToOutput,ANY-method
(.addTagsToOutput), 7 basename, 23

basename2, 23

.cacheMessage, 8
buffer, 59, 86

.cacheMessage, ANY-method
(.cacheMessage), 8
.checkCacheRepo, 9
.checkCacheRepo, ANY-method
(.checkCacheRepo), 9
.debugCache, 9
.digest, 38
.installPackages, 10
.orderDotsUnderscoreFirst
(.sortDotsUnderscoreFirst), 17 cc (clearCache), 40

.preD%gestByClass,ll checkAndMakeCloudFolderlID, 34
.preDigestByClass,ANY-method checkGDALVersion, 34

(.preDigestByClass), 11

Cache, 23,43, 45, 46, 48, 61, 90, 95, 98, 99
Cache,ANY-method (Cache), 23
CacheDBFile, 32

CacheDBTableName (CacheDBFile), 32
CacheDigest, 30, 33, 99

CachelIsACache (CacheDBFile), 32
CacheStorageDir (CacheDBFile), 32
CacheStoredFile (CacheDBFile), 32

checkoutVersion, 35

-prefix, 12 checkPath, 36
-prepareFileBackedRaster, 13 checkPath, character, logical-method
.prepareQutput, 14 (checkPath), 36
-prepareOutput, ANY-method checkPath, character,missing-method
(.prepareQutput), 14 (checkPath), 36
-prepareQutput,Raster-method checkPath,missing, ANY-method
(.prepareOutput), 14 (checkPath), 36
.removeCacheAtts, 15 checkPath,NULL , ANY-method (checkPath),
.requireNamespace, 16 36
.robustDigest, 30, 52 Checksums, 38, 61, 90, 95
.setSubAttrInlList, 16 Checksums, character, logical-method
.sortDotsUnderscoreFirst, 17 (Checksums), 38
.suffix (.prefix), 12 Checksums, character,missing-method
.tagsByClass, 18 (Checksums), 38
.tagsByClass,ANY-method (.tagsByClass), clearCache, 28, 30, 40, 98
18 clearCache, ANY-method (clearCache), 40
.unrarPath (unrarPath), 104 clearStubArtifacts, 44

108

INDEX

clearStubArtifacts, ANY-method
(clearStubArtifacts), 44
cloudCache, 45, 48, 99
cloudCheck01d, 45, 45, 48, 49
cloudDownload, 46
cloudSyncCache0ld, 45, 46, 47, 49
cloudUpload, 48
cloudWrite0Old, 45, 46, 48, 49
compareNA, 49
convertPaths, 50
convertRasterPaths (convertPaths), 50
Copy, 51
Copy,ANY-method (Copy), 51
Copy,data. frame-method (Copy), 51
Copy,data.table-method (Copy), 51
Copy, list-method (Copy), 51
Copy,Raster-method (Copy), 51
Copy, refClass-method (Copy), 51
Copy, SQLiteConnection-method (Copy), 51
copyFile (copySingleFile), 53
copySingleFile, 53
createCache, 55
crop, 59, 86
cropInputs, 56, 59, 85-87, 90, 91, 95

dataType, 19, 22

dbConnect(), 13, 14,27,32,42, 47,52, 56,
74, 105

DBIConnection, 13, 14,27, 32,42, 47,52, 56,
74, 105

DBIDriver, 13, 14,27, 32,42,47, 52, 74, 105

determineFilename, 58, 58, 59, 86, 87, 91

digest, 27, 39

dir.create, 37

download.file, 60, 91

downloadFile, 60, 92, 98

drive_download, 60, 91

extractFromArchive, 62, 92

fastMask, 59, 63, 71, 86

file.copy, 69

file.exists, 37

file.link, 69

file.symlink, 69

file_test, 37

Filenames, 65

Filenames, ANY-method (Filenames), 65

109

Filenames,environment-method
(Filenames), 65
Filenames,list-method (Filenames), 65
Filenames,Raster-method (Filenames), 65
Filenames,RasterStack-method
(Filenames), 65
fixErrors, 59, 85-87

getArtifact (getUserTags), 66
getCacheld (getUserTags), 66
getGDALVersion, 66
getUserTags, 66

install_github, 68
installed.versions, 67
installedVersions, 67
installVersions, 67
intersect, 59, 86

keepCache, 30, 98
keepCache (clearCache), 40
keepCache, ANY-method (clearCache), 40

1inkOrCopy, 69
loadFromCache (createCache), 55

makeMemoisable, 70
maskInputs, 59, 71, 85-87, 91
mergeCache, 43, 72

mergeCache, ANY-method (mergeCache), 72
movedCache, 30, 73

newLibPaths, 74

normalizePath, 37

normPath, 37, 75
normPath,character-method (normPath), 75
normPath,list-method (normPath), 75
normPath,missing-method (normPath), 75
normPath,NULL-method (normPath), 75

objSize, 76
objSizeSession (objSize), 76
options, 5

package_dependencies, 8/
Path-class, 78

pipe, 79

pkgDep, 81

pkgDep2 (pkgDep), 81
pkgDepTopoSort (pkgDep), 81

110 INDEX

pkgSnapshot, 84
postProcess, 57, 71, 85, 86, 90, 92, 95, 97, 98
postProcess.spatialObjects, 91/
prepInputs, 59, 89, 98
preProcess, 61, 89-91, 93, 94, 98
projectInputs, 59, 85-87, 91, 96
projectRaster, 59, 86, 97

raster, 91

reproducible (reproducible-package), 5
reproducible-package, 5
reproducibleOptions, 5, 98

Require, 99

retry, 101

rmFromCache (createCache), 55

saveToCache (createCache), 55

search, 103

searchFull, 102

searchFullEx (searchFull), 102

shapefile, 59, 86, 91, 107

showCache, 25, 30, 47, 56

showCache (clearCache), 40

showCache, ANY-method (clearCache), 40

st_write, /107

studyAreaName, 103

studyAreaName, SpatialPolygonsDataFrame-method
(studyAreaName), 103

suffix (.prefix), 12

tempdir2, 104
tempfile2 (tempdir2), 104
trimVersionNumber (.installPackages), 10

unmakeMemoisable (makeMemoisable), 70
unrarPath, 104

untar, 91

unzip, 91

write.table, 39
writeFuture, 105
writeOutputs, 59, 85-87, 91, 106
writeRaster, 59, 86, 107

	reproducible-package
	.addChangedAttr
	.addTagsToOutput
	.cacheMessage
	.checkCacheRepo
	.debugCache
	.installPackages
	.preDigestByClass
	.prefix
	.prepareFileBackedRaster
	.prepareOutput
	.removeCacheAtts
	.requireNamespace
	.setSubAttrInList
	.sortDotsUnderscoreFirst
	.tagsByClass
	assessDataType
	assessDataTypeGDAL
	basename2
	Cache
	CacheDBFile
	CacheDigest
	checkAndMakeCloudFolderID
	checkGDALVersion
	checkoutVersion
	checkPath
	Checksums
	clearCache
	clearStubArtifacts
	cloudCache
	cloudCheckOld
	cloudDownload
	cloudSyncCacheOld
	cloudUpload
	cloudWriteOld
	compareNA
	convertPaths
	Copy
	copySingleFile
	createCache
	cropInputs
	determineFilename
	downloadFile
	extractFromArchive
	fastMask
	Filenames
	getGDALVersion
	getUserTags
	installedVersions
	installVersions
	linkOrCopy
	makeMemoisable
	maskInputs
	mergeCache
	movedCache
	newLibPaths
	normPath
	objSize
	Path-class
	pipe
	pkgDep
	pkgSnapshot
	postProcess
	prepInputs
	preProcess
	projectInputs
	reproducibleOptions
	Require
	retry
	searchFull
	studyAreaName
	tempdir2
	unrarPath
	writeFuture
	writeOutputs
	Index

