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Abstract

Sequence analysis is being more and more widely used for the analysis of social se-
quences and other multivariate categorical time series data. However, it is often complex
to describe, visualize, and compare large sequence data, especially when there are multi-
ple parallel sequences per subject. Hidden (latent) Markov models (HMMs) are able to
detect underlying latent structures and they can be used in various longitudinal settings:
to account for measurement error, to detect unobservable states, or to compress informa-
tion across several types of observations. Extending to mixture hidden Markov models
(MHMMs) allows clustering data into homogeneous subsets, with or without external
covariates.

The seqHMM package in R is designed for the efficient modeling of sequences and
other categorical time series data containing one or multiple subjects with one or multiple
interdependent sequences using HMMs and MHMMs. Also other restricted variants of
the MHMM can be fitted, e.g. latent class models, Markov models, mixture Markov
models, or even ordinary multinomial regression models with suitable parameterization of
the HMM.

Good graphical presentations of data and models are useful during the whole analysis
process from the first glimpse at the data to model fitting and presentation of results. The
package provides easy options for plotting parallel sequence data, and proposes visualizing
HMMs as directed graphs.

Keywords: multichannel sequences, categorical time series, visualizing sequence data, visual-
izing models, latent Markov models, latent class models, R.
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1. Introduction

Sequence analysis is being more and more widely used for the analysis of categorical time
series. These data consist of multiple independent subjects with one or multiple interdepen-
dent sequences (channels). Sequence analysis is used for computing the (dis)similarities of
sequences, and often the goal is to find patterns in data using cluster analysis. However,
describing, visualizing, and comparing large sequence data is often complex, especially in the
case of multiple channels. Hidden (latent) Markov models (HMMs) can be used to compress
and visualize information in such data. These models are able to detect underlying latent
structures. Extending to mixture hidden Markov models (MHMMs) allows clustering via
latent classes, possibly with additional covariate information. One of the major benefits of
using hidden Markov modeling is that all stages of analysis are performed, evaluated, and
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compared in a probabilistic framework; e.g. well-known model selection criteria are available
for choosing the best clustering solution.

The seqHMM package for R (R Core Team 2015) is designed for modeling sequence data and
other categorical time series with one or multiple subjects and one or multiple channels using
HMMs and MHMMs. The package provides functions for the estimation and inference of
models, as well as functions for the easy visualization of multichannel sequences and HMMs.
Even though the package was originally developed for researchers familiar with social sequence
analysis, knowledge on sequence analysis or social sciences is not necessary for the usage of
seqHMM.

There are also other R packages in CRAN for HMM analysis of categorical data. The HMM
package (Himmelmann 2010) is a compact package designed for fitting an HMM for a single
observation sequence. The hmm.discnp package (Turner and Liu 2014) can handle multiple
observation sequences with possibly varying lengths. For modeling continuous-time processes
as hidden Markov models, the msm package (Jackson 2011) is available. Both hmm.discnp and
msm support only single-channel observations. The depmixS4 package (Visser and Speeken-
brink 2010) is able to fit HMMs for multiple interdependent time series (with continuous or
categorical values), but for one subject only. In the msm and depmixS4 packages, covari-
ates can be added for initial and transition probabilities. The mhsmm package (O’Connell
and Højsgaard 2011) allows modeling of multiple sequences using hidden Markov and semi-
Markov models. There are no ready-made options for modeling categorical data, but users
can write their own extensions for arbitrary distributions. The LMest package (Bartolucci
and Pandolfi 2015) is aimed to panel data with large number of subjects and small number
of time points. It can be used for hidden Markov modeling of multivariate and multichannel
categorical data, using covariates in emission and transition processes. LMest also support
mixed latent Markov models, where the latent process is allowed to vary in different latent
subpopulations. This differs from mixture hidden Markov models used in seqHMM, where
also the emission probabilities vary between groups. The seqHMM package also supports
covariates in explaining group memberships. A drawback in the LMest package is that the
user cannot define initial values or zero constraints for model parameters, and thus important
special cases such as left-to-right models cannot be used.

We start with describing data and methods: a short introduction to sequence data and
sequence analysis, then the theory of hidden Markov models for such data, an expansion to
mixture hidden Markov models and a glance at some special cases, and then some propositions
on visualizing multichannel sequence data and hidden Markov models. After the theoretic
part we take a look at features of the seqHMM package and at the end show an example on
using the package for the analysis of life course data. Appendices include a list of notations
and more thorough descriptions of some important algorithms.

2. Methods

2.1. Sequences and sequence analysis

By the term sequence we refer to an ordered set of categorical states. It can be a time series,
such as a career trajectory or residental history, or any other series with ordered categorical
observations, e.g. a DNA sequence or a structure of a story.



Satu Helske, Jouni Helske 3

As an example we study the biofam data available in the TraMineR package (Gabadinho,
Ritschard, Müller, and Studer 2011). It is a sample of 2000 individuals born in 1909–1972,
constructed from the Swiss Household Panel survey in 2002 (Müller, Studer, and Ritschard
2007). The data set contains sequences of annual family life statuses from age 15 to 30. Eight
observed states are defined from the combination of five basic states: living with parents, left
home, married, having children, and divorced. To show a more complex example, we split
the original data into three separate channels representing different life domains: marriage,
parenthood, and residence. The data for each individual now includes three parallel sequences
constituting of two or three states each: single/married/divorced, childless/parent, and living
with parents / having left home.

Sequence analysis (SA) is statistical analysis of successions of states. It has roots in bioinfor-
matics and computer science (see e.g. Durbin, Eddy, Krogh, and Mitchison 1998), but during
the past few decades SA has also become more common in other disciplines for the analysis of
longitudinal data. In social sciences SA has been used increasingly often and is now “central
to the life-course perspective” (Blanchard, Bühlmann, and Gauthier 2014). SA is model-free
data-driven approach, which is used for computing (dis)similarities of sequences. The most
well-known method is optimal matching (McVicar and Anyadike-Danes 2002), but several
alternatives exist (see e.g. Aisenbrey and Fasang 2010; Elzinga and Studer 2014; Gauthier,
Widmer, Bucher, and Notredame 2009; Halpin 2010; Hollister 2009; Lesnard 2010). Also a
method for analysing multichannel data has been developed (Gauthier, Widmer, Bucher, and
Notredame 2010). Often the goal in SA is to find typical and atypical patterns in trajectories
using cluster analysis, but any approach suitable for compressing information on the dissim-
ilarities can be used. The data are usually presented also graphically in some way. So far
the TraMineR package has been the most extensive and frequently used software for (social)
sequence analysis.

2.2. Hidden Markov models

In the context of hidden Markov models, sequence data consists of observed states, which
are regarded as probabilistic functions of hidden states. Hidden states cannot be observed
directly, but only through the sequence(s) of observations, since they emit the observations
on varying probabilities. A discrete first order hidden Markov model for a single sequence is
characterized by the following:

� Observed state sequence y = (y1, y2, . . . , yT ) with observed states m ∈ {1, . . . ,M}.

� Hidden state sequence z = (z1, z2, . . . , zT ) with hidden states s ∈ {1, . . . , S}.

� Transition matrix A = {asr} of size S × S, where asr is the probability of moving from
the hidden state s at time t− 1 to the hidden state r at time t:

asr = P (zt = r|zt−1 = s); s, r ∈ {1, . . . , S}.

We only consider homogeneous HMMs, where the transition probabilities asr are con-
stant over time.

� Emission matrix B = {bs(m)} of size S ×M , where bs(m) is the probability of the
hidden state s emitting the observed state m:

bs(m) = P (yt = m|zt = s); s ∈ {1, . . . , S},m ∈ {1, . . . ,M}.
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� Initial probability vector π = {πs} of length S, where πs is the probability of starting
from the hidden state s:

πs = P (z1 = s); s ∈ {1, . . . , S}.

The (first order) Markov assumption states that the hidden state transition probability at
time t only depends on the hidden state at the previous time point t− 1:

P (zt|zt−1, . . . , z1) = P (zt|zt−1). (1)

Also, the observation at time t is only dependent on the current hidden state, not on previous
hidden states or observations:

P (yt|yt−1, . . . , y1, zt, . . . , z1) = P (yt|zt). (2)

For a more detailed description of hidden Markov models, see e.g. Rabiner (1989), MacDonald
and Zucchini (1997), and Durbin et al. (1998).

HMM for multiple sequences

We can also fit the same HMM for multiple subjects; instead of one observed sequence y we
have N sequences as Y = (y1, . . . ,yN )>, where the observations yi = (yi1, . . . , yiT ) of each
subject i take values in the observed state space. Observed sequences are assumed to be
mutually independent given the hidden states. The observations are assumed to be generated
by the same model, but each subject has its own hidden state sequence.

HMM for multichannel sequences

In the case of multichannel sequence data, such as the example described in section 2.1, for
each subject i there are C parallel sequences. Observations are now of the form yitc, i =
1, . . . , N ; t = 1 . . . , T ; c = 1 . . . , C, so that our complete data is Y = {Y 1, . . . , Y C}. In
seqHMM, multichannel data are handled as a list of C data frames of size N × T . We also
define Yi as all the observations corresponding to subject i.

We apply the same latent structure for all channels. In such a case the model has one transition
matrix A but several emission matrices B1, . . . , BC , one for each channel. We assume that
the observed states in different channels at a given time point t are independent of each other
given the hidden state at t, i.e., P (yit|zit) = P (yit1|zit) · · ·P (yitC |zit).
Sometimes the independence assumption does not seem theoretically plausible. For example,
even conditioning on a hidden state representing a general life stage, are marital status and
parenthood truly independent? On the other hand, given a person’s religious views, could
their opinions on abortion and gay marriage be though as independent?

If the goal is to use hidden Markov models for prediction or simulating new sequence data,
the analyst should carefully check the validity of independence assumptions. However, if the
goal is merely to describe structures and compress information, it can be useful to accept the
independence assumption even though it is not completely reasonable in a theoretical sense.
When using multichannel sequences, the number of observed states is smaller, which leads
to a more parsimonious representation of the model and easier inference of the phenomenon.
Also due to the decreased number of observed states, the number of parameters of the model
is decreased leading to the improved computational efficiency of model estimation.
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The multichannel approach is particularly useful if some of the channels are only partially
observed; combining missing and non-missing information into one observation is usually
problematic. One would have to decide whether such observations are coded completely miss-
ing, which is simple but loses information, or whether all possible combinations of missing
and non-missing states are included, which grows the state space larger and makes the inter-
pretation of the model more difficult. In the multichannel approach the data can be used as
it is.

Missing data

Missing observations are handled straightforwardly in the context of HMMs. When obser-
vation yitc is missing, we gain no additional information regarding hidden states. In such a
case, we set the emission probability bs(yitc) = 1 for all s ∈ 1, . . . , S. Sequences with varying
lengths are handled by setting missing values before and/or after the observed states.

Log-likelihood and parameter estimation

The unknown transition, emission and initial probabilities are commonly estimated via max-
imum likelihood. The log-likelihood for multiple multichannel sequences is written as

logL =
N∑
i=1

logP (Yi|M) , (3)

where Yi are the observed sequences in channels c = 1, . . . , C for subject i and M describes
the model and its parameters {π,A,B1, . . . , BC}. The probability of the observation sequence
of subject i given the model is

P (Yi|M) =
∑
all z

P (Yi|z,M)P (z|M)

=
∑
all z

P (z1|M)P (yi1|z1,M)

T∏
t=2

P (zt|zt−1,M)P (yit|zt,M)

=
∑
all z

πz1bz1(yi11) · · · bz1(yi1C)
T∏
t=2

[
azt−1ztbzt(yit1) · · · bzt(yitC)

]
,

(4)

where the hidden state sequences z = (z1, . . . , zT ) take all possible combinations of values
in the hidden state space {1, . . . , S} and where yit are the observations of subject i at t in
channels 1, . . . , C; πz1 is the initial probability of the hidden state at time t = 1 in sequence
z; azt−1zt is the transition probability from the hidden state at time t− 1 to the hidden state
at t; and bzt(yitc) is the probability that the hidden state of subject i at time t emits the
observed state at t in channel c.

For direct numerical maximization (DNM) of the log-likelihood, any general-purpose optimiza-
tion routines such as BFGS or Nelder–Mead can be used (with suitable reparameterizations).
Another common estimation method is the expectation–maximization (EM) algorithm, also
known as the Baum–Welch algorithm in the HMM context. The EM algorithm rapidly con-
verges close to a local optimum, but compared to DNM, the converge speed is often slow near
the optimum.
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The probability (4) is efficiently calculated using the forward part of the forward–backward
algorithm (Baum and Petrie 1966; Rabiner 1989, see appendix B). The backward part of the
algorithm is needed for the EM algorithm, as well as for computation of analytical gradients
for derivative based optimization routines.

The estimation process starts by giving initial values to the estimates. Good starting values
are needed for finding the optimal solution in a reasonable time. In order to reduce the risk
of being trapped in a poor local maximum, a large number of initial values should be tested.

Inference on hidden states

Given our model and observed sequences, we can make several interesting inferences regard-
ing the hidden states. Forward probabilities αit(s) (Rabiner 1989) are defined as the joint
probability of hidden state s at time t and the observation sequences yi1, . . . ,yit given the
modelM, whereas backward probabilities βit(s) are defined as the joint probability of hidden
state s at time t and the observation sequences yi(t+1), . . . ,yiT given the model M.

From forward and backward probabilities we can compute the posterior probabilities of states,
which give the probability of being in each hidden state at each time point, given the observed
sequences of subject i. These are defined as

P (zit = s|Yi,M) =
αitβit

P (Yi|M)
. (5)

Posterior probabilities can be used to find the locally most probable hidden state at each
time point, but the resulting sequence is not necessarily globally optimal. To find the single
best hidden state sequence ẑi(Yi) = ẑi1, ẑi2, . . . , ẑiT for subject i, we maximize P (z|Yi,M) or,
equivalently, P (z, Yi|M). A dynamic programming method, the Viterbi algorithm (Rabiner
1989, see appendix C), is used for solving the problem.

Model comparison

Models with the same number of parameters can be compared with the log-likelihood. For
choosing between models with a different number of hidden states, we need to take account
of the number of parameters. We define the Bayesian information criterion (BIC) as

BIC = −2 log(Ld) + p log

(
N∑
i=1

T∑
t=1

1

C

C∑
c=1

I(yitc observed)

)
, (6)

where Ld is computed using equation 3, p is the number of estimated parameters, I is the
indicator function, and the summation in the logarithm is the size of the data. If data
are completely observed, the summation is simplified to N × T . Missing observations in
multichannel data may lead to non-integer data size.

2.3. Clustering by mixture hidden Markov models

There are many approaches for finding and describing clusters or latent classes when working
with HMMs. A simple option is to group sequences beforehand (e.g. using sequence analysis
and some clustering method), after which one HMM is fitted for each cluster. This approach
is simple in terms of HMMs. Models with a different number of hidden states and initial
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values are explored and compared one cluster at a time. HMMs are used for compressing
information and comparing different clustering solutions, e.g. finding the best number of
clusters. The problem with this solution is that it is, of course, very sensitive to the original
clustering and the estimated HMMs might not be well suited for borderline cases.

Instead of fixing sequences into clusters, it is possible to fit one model for the whole data
and determine clustering during modeling. Now sequences are not in fixed clusters but get
assigned to clusters with certain probabilities during the modeling process. In this section
we expand the idea of HMMs to mixture hidden Markov models (MHMMs). This approach
was formulated by van de Pol and Langeheine (1990) as a mixed Markov latent class model
and later generalized to include time-constant and time-varying covariates by Menard (2008)
(who named the resulting model as mixture latent Markov model, MLMM). The MHMM
presented here is a variant of MLMM where only time-constant covariates are allowed. Time-
constant covariates deal with unobserved heterogeneity and they are used for predicting cluster
memberships of subjects.

Mixture hidden Markov model

Assume that we have a set of modelsM = {M1, . . . ,MK}, whereMk = {πk, Ak, Bk
1 , . . . , B

k
C}

for k = 1, . . . ,K. For each subject Yi, denote P (Mk) = wk as the prior probability that
the observation sequences of subject i belongs to the submodel/cluster Mk. Now the log-
likelihood is extended from equation (3) as

logL =

N∑
i=1

logP (Yi|M)

=

N∑
i=1

log

[
K∑
k=1

P (Mk)
∑
all z

P
(
Yi|z,Mk

)
P
(
z|Mk

)]

=
N∑
i=1

log

[
K∑
k=1

wk
∑
all z

πkz1b
k
z1(yi11) · · · bkz1(yi1C)

T∏
t=2

[
akzt−1ztb

k
zt(yit1) · · · b

k
zt(yitC)

]]
.

(7)

Compared to the usual hidden Markov model, there is an additional summation over the
clusters in equation (7), which seems to make the computations less straightforward than in
the non-mixture case. Fortunately, by redefining MHMM as a special type HMM allows us to
use standard HMM algorithms without major modifications. We combine the K submodels
into one large hidden Markov model consisting of

∑K
k=1 Sk states, where the initial state

vector contains elements of the form wkπ
k. Now the transition matrix is block diagonal

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · AK

 , (8)

where the diagonal blocks Ak, k = 1, . . . ,K, are square matrices containing the transition
probabilities of one cluster. The off-diagonal blocks are zero matrices, so transitions between
clusters are not allowed. Similarly, the emission matrices for each channel contain stacked
emission matrices Bk.
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Covariates and cluster probabilities

Covariates can be added to MHMM to explain cluster memberships as in latent class analysis.
The prior cluster probabilities now depend on the subject’s covariate values xi and are defined
as multinomial distribution:

P (Mk|xi) = wik =
eβkxi

1 +
∑K

j=2 e
βjxi

. (9)

The first cluster is set as the reference by fixing β1 = 0. Note that by convention we use β
when referring to regression coefficients. It is not to be mixed with backward probabilities,
which are usually given the same notation.

As in MHMM without covariates, we can still use standard HMM algorithms with a slight
modification; we now allow initial state probabilities to vary between subjects. Of course, we
also need to estimate the coefficients β. For direct numerical maximization the modifications
are straightforward. In the EM algorithm, regarding the M-step for β, seqHMM uses Newton’s
method with analytical gradients and Hessian which are straightforward to compute given
all other model parameters. This Hessian can also be used for computing the conditional
standard errors of coefficients. For unconditional standard errors, which take account of
possible correlation between the estimates of β and other model parameters, the Hessian is
computed using finite difference approximation of the Jacobian of the analytical gradients.

The posterior cluster probabilities P (Mk|Yi,xi) are obtained as

P (Mk|Yi,xi) =
P (Yi|Mk,xi)P (Mk|xi)

P (Yi|xi)

=
P (Yi|Mk,xi)P (Mk|xi)∑K
j=1 P (Yi|Mj ,xi)P (Mj |xi)

=
Lik
Li
,

(10)

where Li is the likelihood of the complete MHMM for subject i, and Lik is the likelihood
of cluster k for subject i. These are straightforwardly computed from forward probabilities.
Posterior cluster probabilities are used e.g. for computing classification tables.

2.4. Important special cases

The hidden Markov model is not the only important special case of the mixture hidden
Markov model. Here we cover some of the most important special cases that are included in
the seqHMM package.

Markov model

The Markov model (MM) is a special case of the HMM, where there is no hidden structure.
It can be regarded as an HMM where the hidden states correspond to the observed states
perfectly. Now the number of hidden states matches the number of the observed states. The
emission probability P (yit) = 1 if zt = yit and 0 otherwise, i.e., the emission matrices are
identity matrices. Note that for building Markov models the data must be in a single-channel
format.

Mixture Markov model

Like MM, the mixture Markov model (MMM) is a special case of the MHMM, where there is
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no hidden structure. The likelihood of the model is now of the form

logL =
N∑
i=1

logP (yi|xi,Mk) =
N∑
i=1

log
K∑
k=1

P (Mk|xi)P (yi|xi,Mk)

=

N∑
i=1

log

K∑
k=1

P (Mk|xi)P (yi1|xi,Mk)

T∏
t=2

P (yit|yi(t−1),xi,Mk).

(11)

Again, the data must be in a single-channel format.

Latent class model

Latent class models (LCM) are another class of models that are often used for longitudinal
research. Such models have been called, e.g., (latent) growth models, latent trajectory models,
or longitudinal latent class models (Menard 2008; Collins and Wugalter 1992). These models
assume that dependencies between observations can be captured by a latent class, i.e., a
time-constant variable which we call cluster in this paper.

The seqHMM includes a function for fitting an LCM as a special case of MHMM where there
is only one hidden state for each cluster. The transition matrix of each cluster is now reduced
to a scalar 1 and the likelihood is of the form

logL =

N∑
i=1

logP (Yi|xi,Mk) =

N∑
i=1

log

K∑
k=1

P (Mk|xi)P (Yi|xi,Mk)

=
N∑
i=1

log
K∑
k=1

P (Mk|xi)
T∏
t=1

P (yit|xi,Mk).

(12)

For LCMs, the data can consist of multiple channels, i.e., the data for each subject consists
of multiple parallel sequences. It is also possible to use seqHMM for estimating LCMs for
non-longitudinal data with only one time point, e.g. to study multiple questions in a survey.

3. Package features

The purpose of the seqHMM package is to offer tools for the whole HMM analysis process from
sequence data manipulation and description to model building, evaluation, and visualization.
Naturally, seqHMM builds on other packages, especially the TraMineR package designed for
sequence analysis. For constructing, summarizing, and visualizing sequence data, TraMineR
provides many useful features. First of all, we use the TraMineR’s stslist class as the
sequence data structure of seqHMM. These state sequence objects have attributes such as
color palette and alphabet, and they have specific methods for plotting, summarizing, and
printing. Many other TraMineR’s features for plotting or data manipulation are also used in
seqHMM.

On the other hand, seqHMM extends the functionalities of TraMineR, e.g. by providing
easy-to-use plotting functions for multichannel data and a simple function for converting such
data into single-channel representation.

Other significant packages include the igraph package (Csardi and Nepusz 2006), which is used
for drawing graphs of HMMs, and the nloptr package (Ypma, Borchers, and Eddelbuettel
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Table 1: Functions and methods in the seqHMM package
Usage Functions/methods

Model construction

build_hmm, build_mhmm, build_mm, build_mmm,
build_lcm, simulate_initial_probs,
simulate_transition_probs,
simulate_emission_probs

Model estimation fit_model

Model visualization plot, ssplot, mssplot

Model inference logLik, BIC, summary

State inference
hidden_paths, posterior_probs,
forward_backward

Data visualization ssplot, ssp + plot, ssp + gridplot

Data and model manipulation
mc_to_sc, mc_to_sc_data, trim_hmm,
separate_mhmm

Data simulation simulate_hmm, simulate_mhmm

2014; Johnson 2014), which is used in direct numerical optimization of model parameters.
The computationally intensive parts of the package are written in C++ with the help of the
Rcpp (Eddelbuettel and François 2011; Eddelbuettel 2013) and RcppArmadillo (Eddelbuettel
and Sanderson 2014) packages.

In addition of using C++ for major algorithms, seqHMM also supports parallel computation
via OpenMP interface by dividing computations for subjects between threads. The user can
choose the number of parallel threads (typically the number of cores) to use for the specific
task using argument threads where available.

Table 3 shows the functions and methods available in the seqHMM package. The package
includes functions for estimating and evaluating HMMs and MHMMs as well as visualizing
data and models. There are some functions for manipulating data and models, and for
simulating model parameters or sequence data given a model. In the next sections we will
discuss the usage of these functions more thoroughly.

As the straightforward implementation of the forward–backward algorithm poses a great risk
of under- and overflow, typically forward probabilities are scaled so that there should be no
underflow. Although scaling is often sufficient for forward algorithm, it can still result in
an overflow problem in the backward algorithm. This is especially true in case of global
optimization algorithms which can search infeasible areas of parameter space. Thus, seqHMM
also supports computation on the logarithmic scale in most of the algorithms, which further
reduces the numerical unstabilities. On the other hand, as there is a need to back-transform
to the natural scale during the algorithms, the log-space approach is somewhat slower than
the scaling approach. Therefore, the default option is to use the scaling approach, which can
be changed to the log-space approach by setting the log_space argument to TRUE e.g. in
fit_model.

3.1. Building and fitting models

A model is first constructed using an appropriate build function. As the Table 3 illustrates,
there are several such functions available: build_hmm for hidden Markov models, build_mhmm
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for mixture hidden Markov models, build_mm for Markov models, build_mmm for mixture
Markov models, and build_lcm for latent class models.

Build functions check that the data and matrices are of the right form and create an object of
class hmm (for HMMs and MMs) or mhmm (for MHMMs, MMMs, and LCMs). For the latter,
covariates can be omitted or added with the usual formula argument using symbolic formulas
familiar from e.g. the lm function. Even though missing observations are allowed in sequence
data, covariates must be completely observed.

After a model is constructed, model parameters are estimated with the fit_model function.
MMs, MMMs, and LCMs are handled internally as their more general counterparts, except
in the case of print methods where some reduntant parts of the model are not printed.

In all models, initial zero probabilities are regarded as structural zeroes and only positive
probabilities are estimated. Thus it is easy to construct e.g. a left-to-right model by defining
transition probability matrix as an upper triangular matrix.

The fit_model function provides three estimation steps: 1) EM algorithm, 2) global DNM,
and 3) local DNM. The user can call for one method or any combination of these steps, but
should note that they are performed in the above-mentioned order. At the first step starting
values are based on the model object given to fit_model. Results from a former step are then
used as starting values in a latter. Exception to this are some global optimization algorithms,
which do not use initial values (because of this, performing just the local DNM step can lead
to better solutions than global DNM with small number of iterations).

In order to reduce the risk of being trapped in a poor local optimum, a large number of initial
values should be tested. The seqHMM package strives to automize this. One option is to
run EM algorithm multiple times with more or less random starting values for transition or
emission probabilities or both. These are called for in the control_em argument. Although
not done by default, this method seems to perform very well as the EM algorithm is relatively
fast compared to DNM.

Another option is to use multilevel single-linkage method (MLSL) (Rinnooy Kan and Timmer
1987a,b). It draws multiple random starting values and performs local optimization from
each starting point. The LDS modification uses low-discrepancy sequences instead of random
numbers as starting points and should improve the convergence rate (Kucherenko and Sytsko
2005).

By default, the fit_model function uses the EM algorithm with a maximum of 1000 iterations
and skips the local and global DNM steps. For local step, the L-BFGS algorithm (Nocedal
1980; Liu and Nocedal 1989) is used by default. Setting global_step = TRUE the function
performs MSLS-LDS with the L-BFGS as the local optimizer. In order to reduce the com-
putation time spent on non-global optima, the convergence tolerance of the local optimizer
is set relatively large, so again local optimization should be performed at the final step. For
DNM steps (2 and 3), any optimization method available in the nloptr package can be used.

There are some theoretical guarantees that the MLSL method finds all local optima in a
finite number of local optimizations. Of course, it might not always succeed in a reason-
able time. Also, it requires setting boundaries for the parameter space, which is not always
straightforward. In DNM steps the transition, emission, and initial probabilities are estimated
using unconstrained reparameterization using softmax function (a generalization of the logis-
tic function), but good boundaries are essential for efficient use of the MLSL algorithm. If the
boundaries are too strict, the global optimum cannot be found; if too wide, the probability
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of finding the global optimum is decreased. The fit_model function uses starting values or
results from the preciding estimation step to adjust the boundaries. EM can help in setting
good boundaries, but in some cases it can also lead to worse results. For finding the best
solution, it is advisable to try a couple of different settings; e.g. randomized EM, EM followed
by MLSL, a couple of EM iterations followed by MLSL, and only MLSL.

State and model inference

In seqHMM, forward and backward probabilities are computed using the forward_backward

function, either on the logarithmic scale or in a form of scaled probabilities, depending on
the argument log_space. Posterior probabilities are obtained from the posterior_probs

function. In seqHMM, the most probable paths are computed with the hidden_paths function.
For details of Viterbi and forward–backward algorithm, see e.g. Rabiner (1989).

The seqHMM package provides the logLik method for computing the log-likelihood of a model.
The method returns an object of class logLik which is compatible with the generic information
criterion functions AIC and BIC of R. When constructing the hmm and mhmm objects via model
building functions, the number of observations and the number of parameters of the model are
stored as attributes nobs and df which are extracted by logLik method for computation of
information criterions. The number of model parameters are defined from the initial model by
taking account the parameter redundancy constraints (stemming from sum-to-one constraints
of transition, emission, and initial state probabilities) and by defining all zero probabilities as
structural, fixed values.

The summary method automatically computes some features for a MHMM, MMM, and latent
class model, e.g. standard errors for covariates and prior and posterior cluster probabilities
for subjects. A print method for this summary shows an output of the summaries: estimates
and standard errors for covariates, log-likelihood and BIC, and information on most probable
clusters and prior probabilities.
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Figure 1: Stacked sequence plot of the first ten individuals in the biofam data plotted with
the ssplot function. The top plot shows the original sequences, and the three bottom plots
show the sequences in the separate channels for the same individuals. The sequences are in
the same order in each plot, i.e., the same row always matches the same individual.

3.2. Visualizing sequence data

Good graphical presentations of data and models are useful during the whole analysis process
from the first glimpse into data to model fitting and presentation of results. The TraMineR
package provides nice plotting options and summaries for simple sequence data, but at the
moment there is no easy way of plotting multichannel data. We propose to use a so called
stacked sequence plot (ssp), where the channels are plotted on top of each other so that the
same row in each figure matches the same subject. Figure 1 illustrates an example of a stacked
sequence plot with the ten first sequences of the biofam data set. The code for creating the
figure is shown in section 4.1.

The ssplot function is the simplest way of plotting multichannel sequence data in seqHMM.
It can be used to illustrate state distributions or sequence index plots. The former is the
default option, since index plots can take a lot of time and memory if data are large. Figure
2 illustrates a default plot which the user can modify in many ways (see the code in section
4.1). More examples are shown in the documentation pages of the ssplot function.

Another option is to define function arguments with the ssp function and then use previously
saved arguments for plotting with a simple plot method. It is also possible to combine several
ssp figures into one plot with the gridplot function. Figure 3 illustrates an example of such
plot showing sequence index plots for women and men (see the code in section 4.1). Sequences
are ordered in a more meaningful order using multidimensional scaling scores of observations
(computed from sequence dissimilarities). After defining the plot for one group, a similar plot
for others is easily defined using the update function.



14 seqHMM: Mixture Hidden Markov Models for Sequence Data

a15 a17 a19 a21 a23 a25 a27 a29

M
ar

ria
ge

P
ar

en
th

oo
d

R
es

id
en

ce

single
married
divorced

childless
children

with parents
left home

n = 2000

Figure 2: Stacked sequence plot of annual state distributions in the three-channel biofam
data. This is the default output of the ssplot function.
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Figure 3: Showing state distribution plots for women and men in the biofam data. Two figures
were defined with the ssp function and then combined into one figure with the gridplot

function.
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The gridplot function is useful for showing different features for the same subjects or same
features for different groups. The user has a lot of control over the layout, e.g. dimensions of
the grid, widths and heights of the cells, and positions of the legends.

We also provide a function mc_to_sc_data for easy conversion of multichannel sequence data
into a single channel representation. Plotting combined data is often useful in addition to (or
instead of) showing separate channels.

3.3. Visualizing hidden Markov models

For easy visualization of the model structure and parameters, we propose plotting HMMs as
directed graphs. Such graphs are easily called with the plot method, with an object of class
hmm as an argument. Figure 4 illustrates a five-state HMM. The code for producing the plot
is shown in section 4.4.

Hidden states are presented with pie charts as vertices (or nodes), and transition probabilities
are shown as edges (arrows, arcs). By default, the higher the transition probability, the thicker
the stroke of the edge. Emitted observed states are shown as slices in the pies. For gaining a
simpler view, observations with small emission probabilities (less than 0.05 by default) can be
combined into one category. Initial state probabilities are given below or next to the respective
vertices. In a case of multichannel sequences, the data and the model are converted into a
single-channel representation with the mc_to_sc function.

A simple default plot is easy to call, but the user has a lot of control over the layout. Figure
5 illustrates another possible visualization of the same model. The code is shown in section
4.4.

For defining the colors, the plotting functions use colorpalette data, which is a list of
ready-made color palettes with 1–200 distinct colors. It is provided in the package, so the
user can easily modify colors in the plots. See also the RColorBrewer package (Neuwirth
2014) for more color palettes with distinct colors. The plot_colors function is provided for
easy visualization of color palettes.

The ssplot function (see section 3.2) also accepts an object of class hmm. The user can easily
choose to plot observations, most probable paths of hidden states, or both. The function
automatically computes hidden paths if the user does not provide them.

Figure 6 shows observed sequences with the most probable paths of hidden states given the
model. Sequences are sorted according to multidimensional scaling scores computed from
hidden paths. The code for creating the plot is show in section 4.4.

The plot method works for mhmm objects as well. The user can choose between an interactive
mode, where the model for each (chosen) cluster is plotted separately, and a combined plot
with all models in one plot. The equivalent to the ssplot function for MHMMs is mssplot.
It plots stacked sequence plots separately for each cluster. If the user asks to plot more than
one cluster, the function is interactive by default.



16 seqHMM: Mixture Hidden Markov Models for Sequence Data

0.055

0.033

0.012

0.014

0.084

0.027

0.19

0.99 0.014 0 0 0

single/childless/with parents
single/childless/left home
divorced/childless/left home

married/childless/left home
married/children/left home
married/childless/with parents

States with prob. < 0.05

Figure 4: Illustrating a hidden Markov model as a directed graph. Pies represent five hidden
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Figure 5: Another version of the hidden Markov model of Figure 4 with a different layout
and modified labels, legends, and colors. All observed states are shown.

4. Examples with life course data

In this section we show examples of using the seqHMM package. We start by constructing
and visualizing sequence data, then show how HMMs are built and fitted for single-channel
and multichannel data, then move on to clustering with MHMMs, and finally illustrate how
to plot HMMs.

Throughout the examples we use the same biofam data described in section 2.1. We use
both the original single-channel data and the three-channel modification named biofam3c,
which is included in the seqHMM package. See more information on the conversion from the
documentation of the biofam3c data.

4.1. Sequence data

Before getting to estimation, it is good to get to know the data. We start by loading the
original biofam data as well as the three-channel version of the same data, biofam3c. We
convert the data into the stslist form with the seqdef function. We set the starting age at
15 and set the order of the states with the alphabet argument (for plotting). Colors of the
states can be modified and stored as an attribute in the stslist object – this way the user
only needs to define them once.

R> library("seqHMM")

R>

R> data("biofam", package = "TraMineR")

R> biofam_seq <- seqdef(
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Figure 6: Using the ssplot function for a hmm object makes it easy to plot observed sequences
together with the most probable paths of hidden states given the model.
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+ biofam[, 10:25],

+ labels = c("parent", "left", "married", "left+marr", "child",

+ "left+child", "left+marr+ch", "divorced"),

+ start = 15)

R>

R> data("biofam3c")

R> marr_seq <- seqdef(biofam3c$married, start = 15,

+ alphabet = c("single", "married", "divorced"))

R> child_seq <- seqdef(biofam3c$children, start = 15,

+ alphabet = c("childless", "children"))

R> left_seq <- seqdef(biofam3c$left, start = 15,

+ alphabet = c("with parents", "left home"))

R>

R> attr(marr_seq, "cpal") <- c("violetred2", "darkgoldenrod2", "darkmagenta")

R> attr(child_seq, "cpal") <- c("darkseagreen1", "coral3")

R> attr(left_seq, "cpal") <- c("lightblue", "red3")

Here we show codes for creating figures 2, 1, and 3. Such plots give a good glimpse on
multichannel data.

Figure 2: Plotting state distributions

We start by showing how to call the simple default plot of Figure 2 in section 3.3. By default
the function plots state distributions (type = "d"). Multichannel data are given as a list
where each component is an stslist corresponding one channel. If names are given, those
will be used as labels in plotting.

R> ssplot(list("Marriage" = marr_seq, "Parenthood" = child_seq,

+ "Residence" = left_seq))

Figure 1: Plotting sequences

Figure 1 with the whole sequences requires modifying more arguments. We call for sequence
index plots (type = "I") and sort sequences according to the first channel (the original
sequences), starting from the beginning. We give labels to y and x axes and modify the
positions of y labels. We give a title to the plot but omit the number of subjects, which
by default is printed. We set the proportion of the plot given to legends and the number of
columns in each legend.

R> ssplot(list(biofam_seq[1:10,], marr_seq[1:10,], child_seq[1:10,],

+ left_seq[1:10,]),

+ sortv = "from.start", sort.channel = 1, type = "I",

+ ylab = c("Original", "Marriage", "Parenthood", "Residence"),

+ xtlab = 15:30, xlab = "Age", title = "Ten first sequences",

+ title.n = FALSE, legend.prop = 0.63, ylab.pos = c(1, 1.5),

+ ncol.legend = c(3, 1, 1, 1))
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Figure 3: Plotting sequence data in a grid

For using the gridplot function, we first need to specify the ssp objects of the separate
plots. Here we start by defining the first plot for women with the ssp function. It stores the
features of the plot, but does not draw anything. We want to sort sequences according to
multidimensional scaling scores. These are computed from optimal matching dissimilarities
for observed sequences. Any dissimilarity method available in TraMineR can be used instead
of the default (see the documentation of the seqdef function for more information). We want
to use the same legends for the both plots, so we remove legends from the ssp objects.

Since we are going to plot to two similar figures, one for women and one for men, we can pass
the first ssp object to the update function. This way we only need to define the changesand
omit everything that is similar.

These two ssp objects are then passed on to the gridplot function. Here we make a 2 × 2
grid, of which the bottom row is for the legends, but the function can also automatically
determine the number of rows and columns and the positions of the legends.

R> ssp_f <- ssp(

+ list(marr_seq[biofam3c$covariates$sex == "woman",],

+ child_seq[biofam3c$covariates$sex == "woman",],

+ left_seq[biofam3c$covariates$sex == "woman",]),

+ type = "I", sortv = "mds.obs", withlegend = FALSE,

+ title = "Women", ylab.pos = c(1, 2, 1),

+ ylab = c("Married", "Children", "Residence"), xtlab = 15:30)

R>

R> ssp_m <- update(ssp_f, title = "Men",

+ x = list(marr_seq[biofam3c$covariates$sex == "man",],

+ child_seq[biofam3c$covariates$sex == "man",],

+ left_seq[biofam3c$covariates$sex == "man",]))

R>

R> gridplot(list(ssp_f, ssp_m), ncol = 2, nrow = 2, byrow = TRUE,

+ legend.pos = "bottom", legend.pos2 = "top", row.prop = c(0.65, 0.35))

Figure 7: Converting multichannel data to single-channel

When working with multiple channels, it is useful to look at the combined data as well. The
mc_to_sc_data converts the data into a single-channel representation. At each time point of
each subject, the states in each channel are combined into one. Note that here the number
of combined observations (10 states) is larger than in the original data (8 states), because we
have split the original divorced state into three.

Also single-channel data can be plotted with the ssplot function. Figure 7 illustrates the
state distributions of the combined data. Here we asko to show y axis, which by default is
omitted for gaining less cluttered output in stacked plots.

R> sc_data <- mc_to_sc_data(list(marr_seq, child_seq, left_seq))

R>

R> ssplot(sc_data, type = "d", ylab = "Proportion", yaxis = TRUE,

+ xtlab = 15:30, xlab = "Age", title = "Combined states", legend.prop = 0.4)
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Figure 7: Three-channel biofam3c data converted into single-channel data.

4.2. Hidden Markov models

We start by showing how to fit a HMM for single-channel biofam data.

First we set starting values for initial, transition, and emission probabilities. Here the hidden
states are regarded as more general life stages during which individuals are more likely to
meet certain observable life events. We expect that the life stages are somehow related to
age, so constructing starting values from observed state frequencies by age group seems like
an option worth a try (these are easily computed using the seqstatf function in TraMineR).
We construct a model with four hidden states using age groups 15–18, 19–21, 22–24, 25–27
and 28–30.

The fit_model function uses the probabilities given by the initial model as starting values
when estimating the parameters. Only positive probabilities are estimated; zero values are
fixed to zero. Thus amount of 0.1 is added to each value in a case of zero-frequencies in some
categories (at this point we do not want to fix any parameters to zero). Each row is divided
with its sum, so that the row sums equal to 1.

R> sc_init <- c(0.9, 0.06, 0.02, 0.01, 0.01)

R>

R> sc_trans <- matrix(

+ c(0.80, 0.10, 0.05, 0.03, 0.02,

+ 0.02, 0.80, 0.10, 0.05, 0.03,

+ 0.02, 0.03, 0.80, 0.10, 0.05,

+ 0.02, 0.03, 0.05, 0.80, 0.10,

+ 0.02, 0.03, 0.05, 0.05, 0.85),

+ nrow = 5, ncol = 5, byrow = TRUE)

R>

R> sc_emiss <- matrix(NA, nrow = 5, ncol = 8)

R> sc_emiss[1,] <- seqstatf(biofam_seq[, 1:4])[, 2] + 0.1

R> sc_emiss[2,] <- seqstatf(biofam_seq[, 5:7])[, 2] + 0.1

R> sc_emiss[3,] <- seqstatf(biofam_seq[, 8:10])[, 2] + 0.1
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R> sc_emiss[4,] <- seqstatf(biofam_seq[, 11:13])[, 2] + 0.1

R> sc_emiss[5,] <- seqstatf(biofam_seq[, 14:16])[, 2] + 0.1

R> sc_emiss <- sc_emiss / rowSums(sc_emiss)

The model is initialized with the build_hmm function. It checks that the data and matrices
are of the right form and creates an object of class hmm. Markov models are constructed in a
similar way using the build_mm function, only emission probabilities are omitted.

R> sc_initmod <- build_hmm(observations = biofam_seq, initial_probs = sc_init,

+ transition_probs = sc_trans, emission_probs = sc_emiss)

We then use fit_model for parameter estimation. Here we estimate the model using the
default options of the EM step.

R> sc_fit <- fit_model(sc_initmod)

The fitting function returns the estimated model, its log-likelihood, and information on the
optimization steps.

R> sc_fit$logLik

[1] -16781.99

R> sc_fit$model

Initial probabilities :

State 1 State 2 State 3 State 4 State 5

0.986 0.000 0.014 0.000 0.000

Transition probabilities :

to

from State 1 State 2 State 3 State 4 State 5

State 1 0.786 0.175 0.0391 0.00000 0.0000

State 2 0.000 0.786 0.0751 0.07567 0.0631

State 3 0.000 0.000 0.8898 0.08342 0.0267

State 4 0.000 0.000 0.0000 0.78738 0.2126

State 5 0.000 0.000 0.0000 0.00136 0.9986

Emission probabilities :

symbol_names

state_names 0 1 2 3 4 5 6 7

State 1 1 0 0.00000 0.000 0.00000 0.0000 0.000 0.0000

State 2 1 0 0.00000 0.000 0.00000 0.0000 0.000 0.0000

State 3 0 1 0.00000 0.000 0.00000 0.0000 0.000 0.0000

State 4 0 0 0.00195 0.992 0.00581 0.0000 0.000 0.0000

State 5 0 0 0.21508 0.000 0.00000 0.0246 0.713 0.0474

R> BIC(sc_fit$model)
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[1] 34176.02

As a multichannel example we fit a 5-state model for the 3-channel data. Emission probabil-
ities are now given as a list of three emission matrices, one for each channel. The alphabet

function from the TraMineR package can be used to check the order of the observed states –
the same order is used in the build functions. Here we construct a left-to-right model where
transitions to earlier states are not allowed, so the transition matrix is upper-triangular. This
seems like a valid option from a life-course prespective. Also, in the previous single-channel
model of the same data the transition matrix was estimated almost upper triangular. We also
give names for channels – these are used when printing and plotting the model.

We estimate model parameters using the local step with the default L-BFGS algorithm using
parallel computation with 4 threads.

R> mc_init <- c(0.9, 0.05, 0.02, 0.02, 0.01)

R>

R> mc_trans <- matrix(

+ c(0.80, 0.10, 0.05, 0.03, 0.02,

+ 0, 0.90, 0.05, 0.03, 0.02,

+ 0, 0, 0.90, 0.07, 0.03,

+ 0, 0, 0, 0.90, 0.10,

+ 0, 0, 0, 0, 1),

+ nrow = 5, ncol = 5, byrow = TRUE)

R>

R> mc_emiss_marr <- matrix(

+ c(0.90, 0.05, 0.05,

+ 0.90, 0.05, 0.05,

+ 0.05, 0.90, 0.05,

+ 0.05, 0.90, 0.05,

+ 0.30, 0.30, 0.40),

+ nrow = 5, ncol = 3, byrow = TRUE)

R>

R> mc_emiss_child <- matrix(

+ c(0.9, 0.1,

+ 0.9, 0.1,

+ 0.1, 0.9,

+ 0.1, 0.9,

+ 0.5, 0.5),

+ nrow = 5, ncol = 2, byrow = TRUE)

R>

R> mc_emiss_left <- matrix(

+ c(0.9, 0.1,

+ 0.1, 0.9,

+ 0.1, 0.9,

+ 0.1, 0.9,

+ 0.5, 0.5),

+ nrow = 5, ncol = 2, byrow = TRUE)

R>
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R> mc_initmod <- build_hmm(

+ observations = list(marr_seq, child_seq, left_seq),

+ initial_probs = mc_init, transition_probs = mc_trans,

+ emission_probs = list(mc_emiss_marr, mc_emiss_child, mc_emiss_left),

+ channel_names = c("Marriage", "Parenthood", "Residence"))

R>

R> # For CRAN vignette: load the estimated model object for speed-up

R> data("hmm_biofam")

R> # mc_fit <- fit_model(mc_initmod, em_step = FALSE, local_step = TRUE,

R> # threads = 4)

We store the model as a separate object for ease of use and then compute BIC.

R> # Vignette: already loaded hmm_biofam

R> #hmm_biofam <- mc_fit$model

R> BIC(hmm_biofam)

[1] 28842.7

4.3. Clustering and mixture hidden Markov models

When fitting mixture hidden Markov models, the starting values are given as lists, with one
component per cluster. For multichannel data, emission probabilities are given as a list of
lists. Here we fit a model for two clusters with 5 and 4 hidden states. For the cluster with
five states we use the same starting values as for the multichannel HMM described earlier.
Covariates are defined with the usual formula and data arguments.

Here we fit a model using 100 random restarts of the EM algorithm followed by the local
L-BFGS method. Again we use parallel computation.

R> mc_init2 <- c(0.9, 0.05, 0.03, 0.02)

R>

R> mc_trans2 <- matrix(

+ c(0.85, 0.05, 0.05, 0.05,

+ 0, 0.90, 0.05, 0.05,

+ 0, 0, 0.95, 0.05,

+ 0, 0, 0, 1),

+ nrow = 4, ncol = 4, byrow = TRUE)

R>

R> alphabet(marr_seq)

[1] "single" "married" "divorced"

R> mc_emiss_marr2 <- matrix(

+ c(0.90, 0.05, 0.05,

+ 0.90, 0.05, 0.05,
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+ 0.05, 0.85, 0.10,

+ 0.05, 0.80, 0.15),

+ nrow = 4, ncol = 3, byrow = TRUE)

R>

R> alphabet(child_seq)

[1] "childless" "children"

R> mc_emiss_child2 <- matrix(

+ c(0.9, 0.1,

+ 0.5, 0.5,

+ 0.5, 0.5,

+ 0.5, 0.5),

+ nrow = 4, ncol = 2, byrow = TRUE)

R>

R> alphabet(left_seq)

[1] "with parents" "left home"

R> mc_emiss_left2 <- matrix(

+ c(0.9, 0.1,

+ 0.5, 0.5,

+ 0.5, 0.5,

+ 0.5, 0.5),

+ nrow = 4, ncol = 2, byrow = TRUE)

R>

R> init_mhmm <- build_mhmm(

+ observations = list(marr_seq, child_seq, left_seq),

+ initial_probs = list(mc_init, mc_init2),

+ transition_probs = list(mc_trans, mc_trans2),

+ emission_probs = list(list(mc_emiss_marr, mc_emiss_child, mc_emiss_left),

+ list(mc_emiss_marr2, mc_emiss_child2, mc_emiss_left2)),

+ formula = ~sex + birthyr, data = biofam3c$covariates,

+ cluster_names = c("Cluster 1", "Cluster 2"),

+ channel_names = c("Marriage", "Parenthood", "Residence"))

R>

R> # Vignette: One thread and less restarts

R> set.seed(1001)

R> mhmm_fit <- fit_model(

+ init_mhmm, local_step = TRUE, threads = 1,

+ control_em = list(restart = list(times = 10)))

R> mhmm <- mhmm_fit$model

The summary method automatically computes some features for a MHMM, e.g. standard
errors for covariates and prior and posterior cluster probabilities for subjects. A print method
shows some summaries of these: estimates and standard errors for covariates (see section 2.3),
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log-likelihood and BIC, and information on most probable clusters and prior probabilities.
Parameter estimates for transitions, emissions, and initial probabilities are omitted by default.
The classification table shows mean probabilities of belonging to each cluster by the most
probable cluster (defined from posterior cluster probabilities). A good model shoud have
values close to 1 on the diagonal.

R> summary(mhmm, conditional_se = FALSE)

Covariate effects :

Cluster 1 is the reference.

Cluster 2 :

Estimate Std. error

(Intercept) 99.3275 12.52342

sexwoman 0.1767 0.14137

birthyr -0.0522 0.00646

Log-likelihood: -12965.93 BIC: 26575.01

Means of prior cluster probabilities :

Cluster 1 Cluster 2

0.857 0.143

Most probable clusters :

Cluster 1 Cluster 2

count 1748 252

proportion 0.874 0.126

Classification table :

Mean cluster probabilities (in columns) by the most probable cluster (rows)

Cluster 1 Cluster 2

Cluster 1 0.9784 0.0216

Cluster 2 0.0125 0.9875

4.4. Visualizing hidden Markov models

The figures in section 3.3 illustrate the five-state multichannel HMM fitted in section 4.2.

A basic HMM graph is easily called with the plot method.

R> plot(hmm_biofam)

A simple default plot is a convenient way of visualizing the models during analysis process,
but for publishing it is often better to modify the plot to get an output that best illustrates
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Figure 8: A default plot of a hidden Markov model.

the structure of the model in hand. Figure 4 and Figure 5 show two variations of the same
model.

Figure 4: HMM plot with modifications

In Figure 4 we draw larger vertices, control the distances of initial probabilities (vertex labels),
set the curvatures of the edges, give a more descriptive label for the combined slices and give
less space for the legend.

R> plot(hmm_biofam, vertex.size = 50, vertex.label.dist = 1.5,

+ edge.curved = c(0, 0.8, -0.8, 0.8, 0, 0.8, 0),

+ legend.prop = 0.3, combined.slice.label = "States with prob. < 0.05")

Figure 5: HMM plot with a different layout

Here we position the vertices using given coordinates. Coordinates are given in a two-column
matrix, with x coordinates in the first column and y coordinates in the second. Arguments
xlim and ylim set the lengths of the axes and rescale = FALSE prevents rescaling the co-
ordinates to the [−1, 1] × [−1, 1] interval (the default). We modify the positions of initial
probabilities, fix edge widths to 1, reduce the size of the arrows in edges, position legend
on top of the figure, and print labels in two columns in the legend. Parameter values are
shown with one significant digit. All emission probabilities are shown regardless of their value
(combine.slices = 0).
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New colors are set from the ready-defined colorpalette data. The seqHMM package uses
these palettes when determining colors automatically, e.g. in the mc_to_sc function. Since
here there are 10 combined states, the default color palette is number 10. For getting different
colors, we choose the ten first colors from palette number 14.

R> plot(hmm_biofam, layout = matrix(c(1, 3, 3, 5, 3,

+ 0, 0, 1, 0, -1), ncol = 2),

+ xlim = c(0.5, 5.5), ylim = c(-1.5,1.5), rescale = FALSE,

+ vertex.size=50, edge.curved = FALSE, edge.width = 1, edge.arrow.size = 1,

+ vertex.label.pos = c(pi, pi/2, -pi/2, 0, pi/2),

+ withlegend = "top", legend.prop = 0.3, ncol.legend = 2,

+ label.signif = 1, combine.slices = 0, cpal = colorpalette[[30]][c(14:5)])

Figure 6: ssplot for HMM object

Plotting observed and hidden state sequences is easy with the ssplot function: the function
accepts an hmm object instead of (a list of) stslists. If hidden state paths are not provided,
the function automatically computes them when needed.

R> ssplot(hmm_biofam, plots = "both", type = "I", sortv = "mds.hidden",

+ xtlab = 15:30, xlab = "Age", title = "Observed and hidden state sequences")

4.5. Visualizing mixture hidden Markov models

Objects of class mhmm have similar plotting methods to hmm objects. The default way of
visualizing a model is to plot in an interactive mode, where the model for each cluster is
plotted separately. Another option is a combined plot with all models in one plot, although
it can be difficult to fit several graphs and legends in one figure.

Figure 9 illustrates the MHMM fitted in section 4.3. By setting interactive = FALSE and
nrow = 2 we tell to plot graphs in a grid with two rows. The rest of the arguments are similar
to basic HMM plotting and apply for all the graphs.

R> plot(mhmm, interactive = FALSE, nrow = 2, legend.prop = 0.35,

+ cex.legend = 1.3, edge.label.cex = 1.3, vertex.label.cex = 1.3)

The equivalent of the ssplot function for mhmm objects is mssplot. It shows data and/or
hidden paths one cluster at a time. The function is interactive if more than one cluster is
plotted (thus omitted here). Subjects are allocated to clusters according to the posterior
cluster probabilities.

R> mssplot(mhmm, ask = TRUE)

If the user wants more control than the default mhmm plotting functions offer, they can use the
separate_mhmm function to convert a mhmm object into a list of separate hmm objects. These
can then be plotted as any hmm objects, e.g. use ssp and gridplot for plotting sequences and
hidden paths of each cluster into the same figure.
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Figure 9: Plotting submodels of a MHMM with the plot method.
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5. Conclusion

Hidden Markov models are useful in various longitudinal settings with categorical observa-
tions. They can be used for accounting measurement error in the observations (e.g. drug
use as in Menard 2008), for detecting true unobservable states (e.g. different periods of the
bipolar disorder as in Lopez 2008), and for compressing information accross several types of
observations. The life course example of this paper serves as a simple illustration of such
problem, where hidden states are regarded as general life stages during which individuals are
more likely to encounter certain life events.

The seqHMM package is designed for analyzing categorical sequences with hidden Markov
models and mixture hidden Markov models, as well as their restricted variants Markov models,
mixture Markov models, and latent class models. It can handle many types of data from a
single sequence to multiple multichannel sequences. Covariates can be included in MHMMs
to explain cluster membership. The package also offers versatile plotting options for sequence
data and HMMs, and can easily convert multichannel sequence data and models into single-
channel representations.

Parameter estimation in (M)HMMs is often very sensitive to starting values. To deal with
that, seqHMM offers several fitting options with global and local optimization using direct
numerical estimation and the EM algorithm.

Almost all intensive computations are done in C++. The package also supports parallel
computation.

Especially combined with the TraMineR package, seqHMM is designed to offer tools for the
whole analysis process from data preparation and description to model fitting, evaluation, and
visualization. In future we could develop MHMMs to deal with time-varying covariates and
add an option to incorporate sampling weights for model estimation. Also the computational
efficiency of the restricted variants of (M)HMMs such as latent class models could be im-
proved by taking account of the restricted structure of those models in EM and log-likelihood
computations.
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A. Notations

Symbol Meaning

Yi Observation sequences of subject i, i = 1 . . . , N
yit Observations of subject i at time t, t = 1, . . . , T
yitc Observation of subject i at time t in channel c, c = 1, . . . , C
mc ∈ {1, . . . ,Mc} Observed state space for channel c
zit Hidden state at time t for subject i
s ∈ {1, . . . , S} Hidden state space
A = {asr} Transition matrix of size S × S
asr = P (zt = r|zt−1 = s) Transition probability between hidden states s and r
Bc = {bs(mc)} Emission matrix of size S ×Mc for channel c
bs(mc) = P (yitc = mc|zit = s) Emission probability of observed state mc in channel c given

hidden state s
bs(yit) = bs(yit1) · · · bs(yitC) Joint emission probability of observations at time t in channels

1, . . . , C given hidden state s
π = (π1, . . . , πS) Vector of initial probabilities
πs = P (z1 = s) Initial probability of hidden state s
ẑi(Yi) The most probable hidden state sequence for subject i
xi Covariates of subject i
Mk, k = 1, . . . ,K Submodel for cluster k (latent class/cluster)
wik Probability of cluster k for subject i
βk Regression coefficients for cluster k
{πk, Ak, Bk

1 , . . . , B
k
C , βk} Model parameters for cluster k

B. Forward–Backward Algorithm

The forward variable
αit(s) = P (yi1, . . . ,yit, zt = s|M)

is the joint probability of partial observation sequences for subject i until time t and the
hidden state s at time t given the model M . Let us denote bs(yit) = bs(yit1) · · · bs(yitC), the
joint emission probability of observations at time t in channels 1, . . . , C given hidden state s.
The forward variable can be solved inductively:

1. Initialization
αi1(s) = πsbs(yi1), i = 1, . . . , N, s = 1, . . . , S

2. Induction
αi(t+1)(r) =

[∑S
s=1 αit(s)asr

]
br(yi(t+1)), t = 1, . . . , T − 1, r = 1, . . . , S

3. Termination
P (Yi|M) =

∑S
s=1 αiT (s)

The backward variable
βit(s) = P (yi(t+1), . . . ,yiT |zt = s,M)

is the joint probability of the partial observation sequence after time t and hidden state s at
time t given the model parameters M . (By convention we use the notion β for the backward
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variable. This is not to be confused with the regression coefficients in the mixture HMM.)
Also this can be solved inductively:

1. Initialization
βiT (s) = 1, i = 1, . . . , N, s = 1, . . . , S

2. Induction
βi(t+1)(s) =

[∑S
r=1 asr

]
bs(yi(t+1))βi(t+1)(r), t = T − 1, . . . , 1, s = 1, . . . , S

C. Viterbi Algorithm

We define the score

δit(s) = max
zi1zi2···zi(t−1)

P (zi1 · · · zit = s,yi1 · · ·yit|M), (13)

which is the highest probability of the hidden state sequence up to time t ending in state s.
By induction we have

δi(t+1)(r) =
[
max
s
δit(s)asr

]
· br(yi(t+1)). (14)

We collect the arguments maximizing equation (14) in an array ψit(r) to keep track of the
best hidden state sequence. The full Viterbi algorithm can be stated as follows:

1. Initialization
δi1(s) = πsbs(yi1), s = 1, . . . , S
ψi1(s) = 0

2. Recursion
δit(r) = maxs=1,...,S(δi(t−1)(s)asr)bh(yit),
ψit(s) = arg maxs=1,...,S(δi(t−1)(s)asr), s = 1, . . . , S; t = 2, . . . , T

3. Termination
P̂ = maxs=1,...,S(δiT (s))
ẑiT = arg maxs=1,...,S(δiT (s))

4. Sequence backtracking
ẑit = ψi(t+1)(ŝi(t+1)), t = T − 1, . . . , 1.

To avoid underflow error due to multiplying many small probabilities, the Viterbi algorithm
can be computed in log space, i.e., calculating log(δit(s)).
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