The sommer package has been developed to provide R users with a powerful multivariate mixed model solver for different genetic and non-genetic analysis in diploid and polyploid organisms. This package allows the user to estimate variance components for a mixed model with the advantage of specifying the variance-covariance structure of the random effects and obtain other parameters such as BLUPs, BLUEs, residuals, fitted values, variances for fixed and random effects, etc.
The package is focused on genomic prediction (or genomic selection) and GWAS analysis, although general mixed models can be fitted as well. The package provides kernels to estimate additive (A.mat
), dominance (D.mat
), and epistatic (E.mat
) relationship matrices that have been shown to increase prediction accuracy under certain scenarios. The package provides flexibility to fit other genetic models such as full and half diallel models as well.
Vignettes aim to provide several examples in how to use the sommer package under different scenarios in breeding and genetics. We will spend the rest of the space providing examples for:
The core of the package is the mmer
function and solves the mixed model equations. An user friendly version named mmer2
has been added as well, using the ASReml sintax. The functions are an interface to call one of the 4 ML/REML methods supported in the package; EMMA
efficient mixed model association (Kang et al. 2008), AI
average information (Gilmour et al. 1995; Lee et al. 2015), EM
expectation maximization (Searle 1993; Bernardo 2010), and the default NR
Newton-Raphson (Tunnicliffe 1989). All methods can estimate multiple random effect models specifying covariance structures.
The mixed model solved by the algorithms has the form:
\(y = X\beta+Zu+\epsilon\)
or
\(y = X\beta+Zu_1+...+Zu_i+\epsilon\)
where:
X is an incidence matrix for fixed effects
Z is an incidence matrix for random effects
\(\beta\) is the vector for BLUEs of fixed effects
u is the vector for BLUPs of random effects
\(\epsilon\) are the residuals
The variance of the response is known to be the random part of the model:
Var(y) = Var(\(Zu+\epsilon\)) = ZGZ + R = V
and with
u ~ MVN(u, G)
\(\epsilon\) ~ MVN(u, R)
When multiple random effects are present the Z matrix becomes the column binding of each of the \(Z_i\) matrices for the i random effects. And the G matrix becomes the diagonal binding of each of the variance covariance structures (K matrices) for the random effects:
\[\mathbf{Z} = \left[\begin{array} {rrr} Z_1 & ... & Z_i \\ \end{array}\right] \]
\[\mathbf{G} = \left[\begin{array} {rrr} K_1 \sigma^2_u1 & 0 & 0 \\ 0 & ... & 0 \\ 0 & 0 & K_i \sigma^2_ui \end{array}\right] \]
The program takes the Zs and Ks for each random effect and construct the neccesary structure inside and estimates the variance components by ML/REML using any of the 4 methods available in sommer; Average Information, Expectation-Maximization, Newton-Raphson, and Efficient Mixed Model Association. Please refer to the canonical papers listed in the Literature section to check how the methods work. We have tested widely the methods to make sure they provide the same solution when the likelihood behaves well but for complex problems they might lead to slightly different answers. If you have any concer please contact me at cova_ruber@live.com.mx or covarrubiasp@wisc.edu.
The heritability is one of the most famous parameters in breeding and genetics theory. The heritability is usually estimated as narrow sense (\(h^2\); only additive variance in the numerator \(\sigma^2_A\)), and broad sense (\(H^2\); all genetic variance in the numerator \(\sigma^2_G\)).
In a classical experiment with no molecular markers, special designs are performed to estimate and disect the additive (\(\sigma^2_A\)) and dominance (\(\sigma^2_D\)) variance along with environmental variability. Designs such as generation analysis, North Carolina designs are used to disect \(\sigma^2_A\) and \(\sigma^2_D\) to estimate the narrow sense heritability (\(h^2\)). When no special design is available we can still disect the genetic variance (\(\sigma^2_G\)) and estimate the broad sense heritability. In this example we will show the broad sense estimation which doesn’t use covariance structures for random effects. For big models with no covariance structures, sommer’s direct inversion is a bad idea to use but we will show anyways how to do it, for very sparse models we recommend using the lmer function from the lme4 package from Douglas Bates.
The dataset has 41 potato lines evaluated in 5 locations across 3 years in an RCBD design. We show how to fit the model and extract the variance components to calculate the \(h^2\).
library(sommer)
## Loading required package: Matrix
## Warning: package 'Matrix' was built under R version 3.2.5
## Loading required package: MASS
## Warning: package 'MASS' was built under R version 3.2.2
## Loading required package: parallel
data(h2)
head(h2)
## Name Env Loc Year Block y
## 1 W8822-3 FL.2012 FL 2012 FL.2012.1 2
## 2 W8867-7 FL.2012 FL 2012 FL.2012.2 2
## 3 MSL007-B MO.2011 MO 2011 MO.2011.1 3
## 4 CO00270-7W FL.2012 FL 2012 FL.2012.2 3
## 5 Manistee(MSL292-A) FL.2013 FL 2013 FL.2013.2 3
## 6 MSM246-B FL.2012 FL 2012 FL.2012.2 3
ans1 <- mmer2(y~1, random=~Name + Env + Name:Env + Block,data=h2, silent = TRUE)
vc <- ans1$var.comp
V_E <- vc[2,1];V_GE <- vc[3,1];V_G <- vc[1,1];Ve <- vc[5,1]
n.env <- length(levels(h2$Env))
h2 <- V_G/(V_G + V_GE/n.env + Ve/(2*n.env)) #the 2 is a reference for block
h2
## [1] 0.8594805
Recently with markers becoming cheaper, thousand of markers can be run in the breeding materials. When markers are available, an special design is not neccesary to disect the additive genetic variance. The estimation of the additive, dominance and epistatic relationship matrices allow us to estimate \(\sigma^2_A\), \(\sigma^2_D\) and \(\sigma^2_I\).
Assume you have a population, and a similar model like the one displayed previously has been fitted. Now we have BLUPs for the genotypes but in addition we have genetic markers. NOTICE WE WILL USE THE mmer
FUNCTION THIS TIME.
data(CPdata)
CPpheno <- CPdata$pheno
CPgeno <- CPdata$geno
### look at the data
head(CPpheno)
## id Row Col Year color Yield FruitAver Firmness
## P003 P003 3 1 2014 0.10075269 154.67 41.93 588.917
## P004 P004 4 1 2014 0.13891940 186.77 58.79 640.031
## P005 P005 5 1 2014 0.08681502 80.21 48.16 671.523
## P006 P006 6 1 2014 0.13408561 202.96 48.24 687.172
## P007 P007 7 1 2014 0.13519278 174.74 45.83 601.322
## P008 P008 8 1 2014 0.17406685 194.16 44.63 656.379
CPgeno[1:5,1:4]
## scaffold_50439_2381 scaffold_39344_153 uneak_3436043 uneak_2632033
## P003 0 0 0 1
## P004 0 0 0 1
## P005 0 -1 0 1
## P006 -1 -1 -1 0
## P007 0 0 0 1
## fit a model including additive and dominance effects
y <- CPpheno$color
Za <- diag(length(y)); Zd <- diag(length(y)); Ze <- diag(length(y))
A <- A.mat(CPgeno) # additive relationship matrix
D <- D.mat(CPgeno) # dominance relationship matrix
E <- E.mat(CPgeno) # epistatic relationship matrix
ETA.ADE <- list(add=list(Z=Za,K=A),dom=list(Z=Zd,K=D),epi=list(Z=Ze,K=E))
ans.ADE <- mmer(Y=y, Z=ETA.ADE,silent = TRUE)
(H2 <- sum(ans.ADE$var.comp[1:3,1])/sum(ans.ADE$var.comp[,1]))
## [1] 0.7503613
(h2 <- sum(ans.ADE$var.comp[1,1])/sum(ans.ADE$var.comp[,1]))
## [1] 0.620319
In the previous example we showed how to estimate the additive (\(\sigma^2_A\)), dominance (\(\sigma^2_D\)), and epistatic (\(\sigma^2_I\)) variance components based on markers and estimate broad (\(H^2\)) and narrow sense heritability (\(h^2\)).
When breeders are looking for the best single cross combinations, diallel designs have been by far the most used design in crops like maize. There are 4 tipes of diallel designs depending if reciprocate and self cross (omission of parents) are performed (full diallel with parents n^2; full diallel without parents n(n-1); half diallel with parents 1/2 * n(n+1); half diallel without parents 1/2 * n(n-1) ). In this example we will show a full dialle design (reciprocate crosses are performed) and half diallel designs (only one of the directions is performed).
In the first data set we show a full diallel among 40 lines from 2 heterotic groups, 20 in each. Therefore 400 possible hybrids are possible. We have pehnotypic data for 100 of them across 4 locations. We use the data available to fit a model of the form:
\(y = X\beta + Zu_1 + Zu_2 + Zu_S + \epsilon\)
We estimate variance components for \(GCA_1\), \(GCA_2\) and \(SCA\) and use them to estimate heritability. Additionally BLUPs for GCA and SCA effects can be used to predict crosses.
data(cornHybrid)
hybrid2 <- cornHybrid$hybrid # extract cross data
head(hybrid2)
## Location GCA1 GCA2 SCA Yield PlantHeight
## 1 1 A258 AS5707 A258:AS5707 NA NA
## 2 1 A258 B2 A258:B2 NA NA
## 3 1 A258 B99 A258:B99 NA NA
## 4 1 A258 LH51 A258:LH51 NA NA
## 5 1 A258 Mo44 A258:Mo44 NA NA
## 6 1 A258 NC320 A258:NC320 NA NA
modFD <- mmer2(Yield~Location, random=~GCA1+GCA2+SCA, data=hybrid2,silent = TRUE, draw=FALSE)
summary(modFD)
##
## Information contained in this fitted model:
## * Variance components, Residuals, Fitted values
## * BLUEs and BLUPs, Inverse phenotypic variance(V)
## * Variance-covariance matrix for fixed & random effects
## * Predicted error variance (PEV), LogLikelihood
## Use the '$' symbol to access such information
## =======================================================
## Linear mixed model fit by restricted maximum likelihood
## ******************** sommer 2.3 *********************
## =======================================================
## Method:[1] "NR"
##
## logLik AIC BIC
## -1340 2688 2703
## =======================================================
## Random effects:
## VarComp VarCompSE Zratio
## Var(GCA1) 0.000 8.109 0.0000
## Var(GCA2) 7.283 18.226 0.3996
## Var(SCA) 187.671 43.709 4.2937
## Var(Residual) 221.142 18.147 12.1860
## Number of obs: 400 Groups: 20 20 400
## =======================================================
## Fixed effects:
## Value Std.Error t.value
## (Intercept) 1.3793e+02 2.1212e+00 65.0255
## Location2 2.7001e-13 2.1030e+00 0.0000
## Location3 7.8353e+00 2.1030e+00 3.7258
## Location4 -9.0975e+00 2.1030e+00 -4.3259
## =======================================================
## Use the '$' symbol to access all information
Vgca <- sum(modFD$var.comp[1:2,1])
Vsca <- modFD$var.comp[3,1]
Ve <- modFD$var.comp[4,1]
Va = 4*Vgca
Vd = 4*Vsca
Vg <- Va + Vd
(H2 <- Vg / (Vg + (Ve)) )
## [1] 0.7790698
(h2 <- Va / (Vg + (Ve)) )
## [1] 0.02910431
Don’t worry too much about the small h2 value, the data was simulated to be mainly dominance variance, therefore the Va was simulated extremely small leading to such value of narrow sense h2.
In this second data set we show a small half diallel with 7 parents crossed in one direction. n(n-1)/2 crosses are possible 7(6)/2 = 21 unique crosses. Parents appear as males or females indistictly. Each with two replications in a CRD. For a half diallel design a single GCA variance component can be estimated and an SCA as well (\(\sigma^2_GCA\) and \(\sigma^2_SCA\) respectively). And BLUPs for GCA and SCA of the parents can be extracted. We would create the design matrices in sommer using the hdm
and model.matrix
functions for the GCA and SCA matrices respectively.
\(y = X\beta + Zu_g + Zu_s + \epsilon\)
data(HDdata)
head(HDdata)
## rep geno male female sugar
## 1 1 12 1 2 13.950509
## 2 2 12 1 2 9.756918
## 3 1 13 1 3 13.906355
## 4 2 13 1 3 9.119455
## 5 1 14 1 4 5.174483
## 6 2 14 1 4 8.452221
# GCA matrix for half diallel using male and female columns
Z1 <- hdm(HDdata[,c(3:4)])
# SCA matrix
Z2 <- model.matrix(~as.factor(geno)-1, data=HDdata)
# Fit the model
y <- HDdata$sugar
ETA <- list(GCA=list(Z=Z1), SCA=list(Z=Z2)) # Zu component
modHD <- mmer(Y=y, Z=ETA,silent = TRUE)
summary(modHD)
##
## Information contained in this fitted model:
## * Variance components, Residuals, Fitted values
## * BLUEs and BLUPs, Inverse phenotypic variance(V)
## * Variance-covariance matrix for fixed & random effects
## * Predicted error variance (PEV), LogLikelihood
## Use the '$' symbol to access such information
## =======================================================
## Linear mixed model fit by restricted maximum likelihood
## ******************** sommer 2.3 *********************
## =======================================================
## Method:[1] "NR"
##
## logLik AIC BIC
## -58.18 118.36 120.09
## =======================================================
## Random effects:
## VarComp VarCompSE Zratio
## Var(GCA) 5.508 3.5771 1.540
## Var(SCA) 1.816 1.3637 1.332
## Var(Residual) 3.117 0.9619 3.241
## Number of obs: 42 Groups: 7 21
## =======================================================
## Fixed effects:
## Value Std.Error t.value
## Intercept 10.3332 1.8183 5.6828
## =======================================================
## Use the '$' symbol to access all information
Vgca <- modHD$var.comp[1,1]
Vsca <- modHD$var.comp[2,1]
Ve <- modHD$var.comp[3,1]
Va = 4*Vgca
Vd = 4*Vsca
Vg <- Va + Vd
(H2 <- Vg / (Vg + (Ve/2)) ) # 2 technical reps
## [1] 0.9494872
(h2 <- Va / (Vg + (Ve/2)) )
## [1] 0.7140583
plot(density(randef(modHD)$GCA[,1]), col="cadetblue",
lwd=10, main="GCA BLUPs")
With the development of modern statistical machinery the detection of markers associated to phenotypic traits have become quite straight forward. The days of QTL mapping using biparental populations exclusively are in the past. In this section we will show how to perform QTL mapping for diploid and polyploid organisms with complex genetic relationships. In addition we will show QTL mapping in biparental populations to clarify that the fact that is not required anymore doesn’t limit the capabilities of modern mixed model machinery.
First we will start doing the GWAS in a biparental population with 363 individuals genotyped with 2889 SNP markers. This is easily done by creating the variance covariance among individuals and using it in the random effect for genotypes. The markers are added in the W
argument to fit the model of the form:
\(y = X\beta + Zu + Wg + \epsilon\)
In this case \(X\beta\) is the fixed part only for the intercept, \(Zu\) is the random effect for genotypes with the additive relationship matrix (A) as the variance-covariance of the random effect, \(Wg\) is the marker matrix and the effects of each marker. This is done in this way:
data(CPdata)
CPpheno <- CPdata$pheno
CPgeno <- CPdata$geno
my.map <- CPdata$map
### look at the data
head(CPpheno); CPgeno[1:5,1:4]
## id Row Col Year color Yield FruitAver Firmness
## P003 P003 3 1 2014 0.10075269 154.67 41.93 588.917
## P004 P004 4 1 2014 0.13891940 186.77 58.79 640.031
## P005 P005 5 1 2014 0.08681502 80.21 48.16 671.523
## P006 P006 6 1 2014 0.13408561 202.96 48.24 687.172
## P007 P007 7 1 2014 0.13519278 174.74 45.83 601.322
## P008 P008 8 1 2014 0.17406685 194.16 44.63 656.379
## scaffold_50439_2381 scaffold_39344_153 uneak_3436043 uneak_2632033
## P003 0 0 0 1
## P004 0 0 0 1
## P005 0 -1 0 1
## P006 -1 -1 -1 0
## P007 0 0 0 1
y <- CPpheno$color # response
Za <- diag(length(y)) # inidence matrix for random effect
A <- A.mat(CPgeno) # additive relationship matrix
ETA.A <- list(add=list(Z=Za,K=A)) # create random component
ans.A <- mmer(Y=y, Z=ETA.A, W=CPgeno, silent=TRUE) # fit the model
### if you have a genetic map you can use it
ans.B <- mmer(Y=y, Z=ETA.A, W=CPgeno, silent=TRUE, map=my.map) # fit the model
Now we will show how to do GWAS in a tetraploid using potato data. Is not very different from diploids. We only need to pay attention to the ploidy
argument in the atcg1234
and A.mat
functions. In addition, when running the mmer
model there is more models that can be implemented according to Rosyara et al. (2016).
data(PolyData)
genotypes <- PolyData$PGeno
phenotypes <- PolyData$PPheno
## convert markers to numeric format
numo <- atcg1234(data=genotypes, ploidy=4, silent = TRUE); numo[1:5,1:4]; dim(numo)
## Obtaining reference alleles
## Checking for markers with more than 2 alleles. If found will be removed.
## Converting to numeric format
## Calculating minor allele frequency (MAF)
## Imputing missing data with mode
## c2_41437 c2_24258 c2_21332 c2_21320
## A96104-2 1 2 2 4
## A97066-42 2 3 2 4
## ACBrador 2 4 2 4
## ACLPI175395 0 4 0 4
## ADGPI195204 0 4 0 4
## [1] 221 3521
# get only plants with both genotypes and phenotypes
common <- intersect(phenotypes$Name,rownames(numo))
marks <- numo[common,]; marks[1:5,1:4]
## c2_41437 c2_24258 c2_21332 c2_21320
## A97066-42 2 3 2 4
## ACBrador 2 4 2 4
## AdirondackBlue 2 2 2 4
## AF2291-10 0 4 2 4
## AF2376-5 1 3 2 4
phenotypes2 <- phenotypes[match(common,phenotypes$Name),];
phenotypes2[1:5,1:4]
## Name total_yield chip_color tuber_eye_depth
## 1 A97066-42 13.10 2.35 3.03
## 2 ACBrador 15.56 2.63 4.37
## 3 AdirondackBlue 11.77 2.82 3.76
## 4 AF2291-10 13.43 1.50 4.50
## 5 AF2376-5 12.58 1.83 4.50
# Additive relationship matrix, specify ploidy
yy <- phenotypes2$tuber_shape
K1 <- A.mat(marks, ploidy=4)
Z1 <- diag(length(yy))
ETA <- list( list(Z=Z1, K=K1)) # random effects for genotypes
# run the model
models <- c("additive","1-dom-alt","1-dom-ref","2-dom-alt","2-dom-ref")
ans2 <- mmer(Y=yy, Z=ETA, W=marks, method="EMMA",
ploidy=4, models=models[1], silent = TRUE)
summary(ans2)
##
## Information contained in this fitted model:
## * Variance components, Residuals, Fitted values
## * BLUEs and BLUPs, Inverse phenotypic variance(V)
## * Variance-covariance matrix for fixed & random effects
## * Predicted error variance (PEV), LogLikelihood
## Use the '$' symbol to access such information
## =======================================================
## Linear mixed model fit by restricted maximum likelihood
## ******************** sommer 2.3 *********************
## =======================================================
## Method:[1] "EMMA"
##
## logLik AIC BIC
## -192.5 387.0 390.3
## =======================================================
## Random effects:
## VarComp
## V(u.1) 0.60778
## V(Error) 0.03807
## Number of obs: 187 Groups: 187
## =======================================================
## Fixed effects:
## Value Std.Error t.value
## Intercept 3.307861 0.018302 180.74
## =======================================================
## Use the '$' symbol to access all information
In this section we will use wheat data from CIMMYT to show how is genomic selection performed. This is the case of prediction of specific individuals within a population. It basically uses a similar model of the form:
\(y = X\beta + Zu + \epsilon\)
and takes advantage of the variance covariance matrix for the genotype effect known as the additive relationship matrix (A) and calculated using the A.mat
function to establish connections among all individuals and predict the BLUPs for individuals that were not measured. The prediction accuracy depends on several factors such as the heritability (\(h^2\)), training population used (TP), size of TP, etc.
data(wheatLines)
X <- wheatLines$wheatGeno; X[1:5,1:4]; dim(X)
## wPt.0538 wPt.8463 wPt.6348 wPt.9992
## [1,] -1 1 1 1
## [2,] 1 1 1 1
## [3,] 1 1 1 1
## [4,] -1 1 1 1
## [5,] -1 1 1 1
## [1] 599 1279
Y <- wheatLines$wheatPheno
rownames(X) <- rownames(Y)
# select environment 1
y <- Y[,1] # response grain yield
Z1 <- diag(length(y)) # incidence matrix
K <- A.mat(X) # additive relationship matrix
# GBLUP pedigree-based approach
set.seed(12345)
y.trn <- y
vv <- sample(1:length(y),round(length(y)/5))
y.trn[vv] <- NA
ETA <- list(g=list(Z=Z1, K=K))
ans <- mmer(Y=y.trn, Z=ETA, method="EMMA", silent = TRUE) # kinship based
cor(ans$u.hat$g[vv],y[vv])
## [1] 0.4885687
## maximum prediction value that can be achieved
sqrt(ans$var.comp[1,1]/sum(ans$var.comp[,1]))
## Var(g)
## 0.5771923
When doing prediction of single cross performance the phenotype can be dissected in three main components, the general combining abilities (GCA) and specific combining abilities (SCA). This can be expressed with the same model analyzed in the diallel experiment mentioned before:
\(y = X\beta + Zu_1 + Zu_2 + Zu_S + \epsilon\)
with:
\(u_1\) ~ N(0, \(K_1\)\(\sigma^2_u1\))
\(u_2\) ~ N(0, \(K_2\)\(\sigma^2_u2\))
\(u_s\) ~ N(0, \(K_3\)\(\sigma^2_us\))
And we can specify the K matrices. The main difference between this model and the full and half diallel designs is the fact that this model will include variance covariance structures in each of the three random effects (GCA1, GCA2 and SCA) to be able to predict the crosses that have not ocurred yet. We will use the data published by Technow et al. (2015) to show how to do prediction of single crosses.
data(Technow_data)
A.flint <- Technow_data$AF # Additive relationship matrix Flint
A.dent <- Technow_data$AD # Additive relationship matrix Dent
M.flint <- Technow_data$MF # Marker matrix Flint
M.dent <- Technow_data$MD # Marker matrix Dent
pheno <- Technow_data$pheno # phenotypes for 1254 single cross hybrids
pheno$hy <- paste(pheno$dent, pheno$flint, sep=":");head(pheno);dim(pheno)
## hybrid dent flint GY GM hy
## 1 518.298 518 298 -8.04 -0.85 518:298
## 2 518.305 518 305 -11.10 1.70 518:305
## 3 518.306 518 306 -16.85 2.24 518:306
## 4 518.316 518 316 2.08 -1.33 518:316
## 5 518.323 518 323 5.65 -2.71 518:323
## 6 518.327 518 327 -16.95 -0.52 518:327
## [1] 1254 6
# CREATE A DATA FRAME WITH ALL POSSIBLE HYBRIDS
DD <- kronecker(A.dent,A.flint,make.dimnames=TRUE)
hybs <- data.frame(sca=rownames(DD),yield=NA,matter=NA,gcad=NA, gcaf=NA)
hybs$yield[match(pheno$hy, hybs$sca)] <- pheno$GY
hybs$matter[match(pheno$hy, hybs$sca)] <- pheno$GM
hybs$gcad <- as.factor(gsub(":.*","",hybs$sca))
hybs$gcaf <- as.factor(gsub(".*:","",hybs$sca))
head(hybs)
## sca yield matter gcad gcaf
## 1 513:316 10.02 -2.05 513 316
## 2 513:323 6.97 -3.78 513 323
## 3 513:330 NA NA 513 330
## 4 513:336 NA NA 513 336
## 5 513:340 NA NA 513 340
## 6 513:341 NA NA 513 341
# CREATE INCIDENCE MATRICES
Z1 <- model.matrix(~gcad-1, data=hybs)
Z2 <- model.matrix(~gcaf-1, data=hybs)
# SORT INCIDENCE MATRICES ACCORDING TO RELATIONSHIP MATRICES, REAL ORDERS
real1 <- match( colnames(A.dent), gsub("gcad","",colnames(Z1)))
real2 <- match( colnames(A.flint), gsub("gcaf","",colnames(Z2)))
Z1 <- Z1[,real1]
Z2 <- Z2[,real2]
# RUN THE PREDICTION MODEL
y.trn <- hybs$yield
vv1 <- which(!is.na(hybs$yield))
vv2 <- sample(vv1, 100)
y.trn[vv2] <- NA
ETA2 <- list(GCA1=list(Z=Z1, K=A.dent), GCA2=list(Z=Z2, K=A.flint))
anss2 <- mmer(Y=y.trn, Z=ETA2, method="EM", silent=TRUE)
## Column names of Z and K for random effect are not the same. Make sure they are in the correct order.
## Column names of Z and K for random effect are not the same. Make sure they are in the correct order.
summary(anss2)
##
## Information contained in this fitted model:
## * Variance components, Residuals, Fitted values
## * BLUEs and BLUPs, Inverse phenotypic variance(V)
## * Variance-covariance matrix for fixed & random effects
## * Predicted error variance (PEV), LogLikelihood
## Use the '$' symbol to access such information
## =======================================================
## Linear mixed model fit by restricted maximum likelihood
## ******************** sommer 2.3 *********************
## =======================================================
## Method:[1] "EM"
##
## logLik AIC BIC
## -4998 9999 10004
## =======================================================
## Random effects:
## VarComp
## Var(GCA1) 16.01
## Var(GCA2) 11.16
## Var(Residual) 17.71
## Number of obs: 1154 Groups: 123 86
## =======================================================
## Fixed effects:
## Value Std.Error t.value
## Intercept 0.24778 0.20360 1.2169
## =======================================================
## Use the '$' symbol to access all information
cor(anss2$fitted.y[vv2], hybs$yield[vv2])
## [1] 0.8778897
In the previous model we only used the GCA effects (GCA1 and GCA2) for practicity, altough it’s been shown that the SCA effect doesn’t actually help that much in increasing prediction accuracy and increase a lot the computation intensity required since the variance covariance matrix for SCA is the kronecker product of the variance covariance matrices for the GCA effects, resulting in a 10578x10578 matrix that increases in a very intensive manner the computation required.
A model without covariance structures would show that the SCA variance component is insignificant compared to the GCA effects. This is why including the third random effect doesn’t increase the prediction accuracy.
Sometimes is important to estimate genetic variance-covariance among traits, multi-reponse models are very useful for such task. Currently sommer can deal with multivariate models for multiple random effects of the form:
\(Y = X\beta + Zu + \epsilon\)
with:
\[\mathbf{V} = \left[\begin{array} {rrr} Z_1 G_1 Z_1' + ... + Z_1 R_1 Z_1' & ... & Z_1 H_1 Z_t' + ... + Z_1 S_1 Z_t' \\ ... & ... & ...\\ Z_t H_1 Z_1' + ... + Z_t S_1 Z_1' & ... & Z_t G_1 Z_t' + ... + Z_t R_1 Z_t' \\ \end{array}\right] \]
where G are H are variance and covariance matrices among random effects for the “t” trait, and R and S are variance and covariance matrices among residuals. Here R=S=I\(\sigma_\epsilon\) , where I is an identity matrix. We can specify the covariance matrices. BLUPs will also be corrected for such covariances usually leading to more accurate predictions.
data(CPdata)
CPpheno <- CPdata$pheno[,-c(1:4)]
CPgeno <- CPdata$geno
### look at the data
head(CPpheno)
## color Yield FruitAver Firmness
## P003 0.10075269 154.67 41.93 588.917
## P004 0.13891940 186.77 58.79 640.031
## P005 0.08681502 80.21 48.16 671.523
## P006 0.13408561 202.96 48.24 687.172
## P007 0.13519278 174.74 45.83 601.322
## P008 0.17406685 194.16 44.63 656.379
CPgeno[1:5,1:4]
## scaffold_50439_2381 scaffold_39344_153 uneak_3436043 uneak_2632033
## P003 0 0 0 1
## P004 0 0 0 1
## P005 0 -1 0 1
## P006 -1 -1 -1 0
## P007 0 0 0 1
## fit a model including additive and dominance effects
Y <- CPpheno
Za <- diag(dim(Y)[1])
A <- A.mat(CPgeno) # additive relationship matrix
####================####
#### ADDITIVE MODEL ####
####================####
ETA.A <- list(add=list(Z=Za,K=A))
ans.A <- mmer(Y=Y, Z=ETA.A, MVM=TRUE, method="EMMA")
## Running multivariate model
summary(ans.A)
## Information contained in this structure:
## * Results for a multi response model
## Displayed:
## * Variance-covariance component summaries
## Use the '$' sign to access parameters
## =======================================================
## Multivariate Linear Mixed Model fit by REML
## ******************** sommer 2.3 *********************
## =======================================================
## Method:[1] "EMMAM"
## logLik AIC BIC
## MVM 1849.151 -3696.302 -3692.407
## =======================================================
## Variance-Covariance components:
##
## Var-Covar(add)
## color Yield FruitAver Firmness
## color 0.005275 0.3241 0.06042 0.577
## Yield 0.324111 644.3235 26.73624 -81.254
## FruitAver 0.060416 26.7362 10.02137 -20.154
## Firmness 0.577043 -81.2542 -20.15401 1269.856
##
## Var-Covar(Residual)
## color Yield FruitAver Firmness
## color 0.002692 0.2106 0.06136 -0.06473
## Yield 0.210586 4010.0260 29.18299 168.24899
## FruitAver 0.061364 29.1830 40.17632 72.37994
## Firmness -0.064727 168.2490 72.37994 1201.09209
## =======================================================
## Fixed effects:
## color Yield FruitAver Firmness
## Intercept 0.1825 133 45.39 638.8
## =======================================================
## Groups and observations:
## Observ Groups
## add 363 363
## =======================================================
## Use the '$' sign to access parameters
Now you can extract the BLUPs using the ‘randef’ function or simple accesing with the ‘$’ sign and pick ‘u.hat’. Calculate genetic correlations and heritabilities easily.
## genetic variance covariance
gvc <- ans.A$var.comp$Vu
## extract variances (diagonals) and get standard deviations
sd.gvc <- as.matrix(sqrt(diag(gvc)))
## get possible products sd(Vgi) * sd(Vgi')
prod.sd <- sd.gvc %*% t(sd.gvc)
## genetic correlations cov(gi,gi')/[sd(Vgi) * sd(Vgi')]
(gen.cor <- gvc/prod.sd)
## color Yield FruitAver Firmness
## color 1.0000000 0.17580938 0.2627761 0.22296201
## Yield 0.1758094 1.00000000 0.3327245 -0.08982895
## FruitAver 0.2627761 0.33272445 1.0000000 -0.17865726
## Firmness 0.2229620 -0.08982895 -0.1786573 1.00000000
## heritabilities
(h2 <- diag(gvc) / diag(cov(Y, use = "complete.obs")))
## color Yield FruitAver Firmness
## 0.8479870 0.1415729 0.2315060 0.4955782
Following the same theory of multivariate methods, theorically the marker effects can take advantage of the information contained in the correlation among traits besides exploiting the correlations between individuals. We have extended the GWAS framework to multivariate GWAS. Here, we will show a multivariate GWAS in a biparental population using the information of 4 traits.
data(CPdata)
CPpheno <- CPdata$pheno[,-c(1:4)]
CPgeno <- CPdata$geno
### look at the data
head(CPpheno)
## color Yield FruitAver Firmness
## P003 0.10075269 154.67 41.93 588.917
## P004 0.13891940 186.77 58.79 640.031
## P005 0.08681502 80.21 48.16 671.523
## P006 0.13408561 202.96 48.24 687.172
## P007 0.13519278 174.74 45.83 601.322
## P008 0.17406685 194.16 44.63 656.379
CPgeno[1:5,1:4]
## scaffold_50439_2381 scaffold_39344_153 uneak_3436043 uneak_2632033
## P003 0 0 0 1
## P004 0 0 0 1
## P005 0 -1 0 1
## P006 -1 -1 -1 0
## P007 0 0 0 1
## fit a model including additive and dominance effects
Y <- CPpheno
Za <- diag(dim(Y)[1])
A <- A.mat(CPgeno) # additive relationship matrix
####================####
#### ADDITIVE MODEL ####
####================####
ETA.A <- list(add=list(Z=Za,K=A))
ans.A <- mmer(Y=Y, Z=ETA.A, W=CPgeno, MVM=TRUE, EIGEND=TRUE,
map=CPdata$map, silent=TRUE,gwas.plots = FALSE)
## EIGEND feature activated. Eigen decomposition of K will be performed
summary(ans.A)
## Information contained in this structure:
## * Results for a multi response model
## Displayed:
## * Variance-covariance component summaries
## Use the '$' sign to access parameters
## =======================================================
## Multivariate Linear Mixed Model fit by REML
## ******************** sommer 2.3 *********************
## =======================================================
## Method:[1] "MNR"
## logLik AIC BIC
## MVM -589.47 1186.94 1208.063
## =======================================================
## Variance-Covariance components:
##
## Var-Covar(add)
## color Yield FruitAver Firmness
## color 0.77379 0.05767 0.10615 0.13693
## Yield 0.05767 0.14065 0.05644 -0.02426
## FruitAver 0.10615 0.05644 0.20929 -0.05616
## Firmness 0.13693 -0.02426 -0.05616 0.49266
##
## Var-Covar(Residual)
## color Yield FruitAver Firmness
## color 0.39916 0.03824 0.10787 -0.01527
## Yield 0.03824 0.88411 0.06308 0.04965
## FruitAver 0.10787 0.06308 0.83982 0.20656
## Firmness -0.01527 0.04965 0.20656 0.47107
## =======================================================
## Standard errors for variance components:
## VarComp VarCompSE Zratio
## u.1.color-color 0.77379 0.15483 4.9977
## u.1.color-Yield 0.05767 0.07745 0.7446
## u.1.color-FruitAver 0.10615 0.08481 1.2516
## u.1.color-Firmness 0.13693 0.09519 1.4385
## u.1.Yield-Yield 0.14065 0.07054 1.9940
## u.1.Yield-FruitAver 0.05644 0.05456 1.0345
## u.1.Yield-Firmness -0.02426 0.06598 -0.3677
## u.1.FruitAver-FruitAver 0.20929 0.08355 2.5049
## u.1.FruitAver-Firmness -0.05616 0.06882 -0.8160
## u.1.Firmness-Firmness 0.49266 0.11428 4.3111
## Residual.color-color 0.39916 0.04384 9.1057
## Residual.color-Yield 0.03824 0.04073 0.9390
## Residual.color-FruitAver 0.10787 0.04060 2.6567
## Residual.color-Firmness -0.01527 0.03192 -0.4784
## Residual.Yield-Yield 0.88411 0.07531 11.7399
## Residual.Yield-FruitAver 0.06308 0.05288 1.1929
## Residual.Yield-Firmness 0.04965 0.04201 1.1819
## Residual.FruitAver-FruitAver 0.83982 0.07293 11.5155
## Residual.FruitAver-Firmness 0.20656 0.04267 4.8412
## Residual.Firmness-Firmness 0.47107 0.04643 10.1460
## =======================================================
## Fixed effects:
## color Yield FruitAver Firmness
## Intercept -0.02072 -0.002936 0.02698 -0.01001
## =======================================================
## Groups and observations:
## Observ Groups
## add 363 363
## =======================================================
## Use the '$' sign to access parameters
Good luck with your analysis.
Covarrubias-Pazaran G. 2016. Genome assisted prediction of quantitative traits using the R package sommer. PLoS ONE 11(6):1-15.
Bernardo Rex. 2010. Breeding for quantitative traits in plants. Second edition. Stemma Press. 390 pp.
Gilmour et al. 1995. Average Information REML: An efficient algorithm for variance parameter estimation in linear mixed models. Biometrics 51(4):1440-1450.
Henderson C.R. 1975. Best Linear Unbiased Estimation and Prediction under a Selection Model. Biometrics vol. 31(2):423-447.
Kang et al. 2008. Efficient control of population structure in model organism association mapping. Genetics 178:1709-1723.
Lee et al. 2015. MTG2: An efficient algorithm for multivariate linear mixed model analysis based on genomic information. Cold Spring Harbor. doi: http://dx.doi.org/10.1101/027201.
Searle. 1993. Applying the EM algorithm to calculating ML and REML estimates of variance components. Paper invited for the 1993 American Statistical Association Meeting, San Francisco.
Yu et al. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Genetics 38:203-208.
Abdollahi Arpanahi R, Morota G, Valente BD, Kranis A, Rosa GJM, Gianola D. 2015. Assessment of bagging GBLUP for whole genome prediction of broiler chicken traits. Journal of Animal Breeding and Genetics 132:218-228.
Tunnicliffe W. 1989. On the use of marginal likelihood in time series model estimation. JRSS 51(1):15-27.