Reading raw data and plotting
library(spant)
fname <- system.file("extdata", "philips_spar_sdat_WS.SDAT", package = "spant")
# import raw data
mrs_data <- read_mrs(fname, format = "spar_sdat")
# output basic data structure
print(mrs_data)
## MRS data parameters
## -------------------------------
## Trans. freq (MHz) : 127.786142
## FID data points : 1024
## X,Y,Z dimensions : 1x1x1
## Dynamics : 1
## Coils : 1
## Voxel resolution (mm) : NAxNAxNA
## Sampling frequency (Hz) : 2000
## Contains referece data : FALSE
## Spectral domain : FALSE
## Reference freq. (PPM) : 4.65
# plot data in the frequency domain
plot(mrs_data, xlim = c(5, 0.5))

Basis simulation
# get the data acquistion paramters
acq_paras <- get_acq_paras(mrs_proc)
# simulate a typical basis set for short TE brain analysis
basis <- sim_basis_1h_brain_press(acq_paras)
# output basis info
print(basis)
## Basis set parameters
## -------------------------------
## Trans. freq (MHz) : 127.786142
## Data points : 1024
## Sampling frequency (Hz) : 2000
## Elements : 27
##
## Names
## -------------------------------
## -CrCH2,Ala,Asp,Cr,GABA,Glc,Gln,
## GSH,Glu,GPC,Ins,Lac,Lip09,
## Lip13a,Lip13b,Lip20,MM09,MM12,
## MM14,MM17,MM20,NAA,NAAG,PCh,
## PCr,sIns,Tau
# plot basis signals
stackplot(basis, xlim = c(4, 0.5))

Fitting
# perform VARPRO fitting to processed data
fit_res <- fit_mrs(mrs_proc, basis)
##
|
| | 0%
|
|=================================================================| 100%
# plot the fit estimate, residual and baseline
plot(fit_res)
