
Using the sparseHessianFD package

Michael Braun

SMU Cox School of Management

Southern Methodist University

Dallas, TX 75275

November 5, 2013

The sparseHessianFD package is a tool to compute Hessians efficiently when the

Hessian is sparse (that is, a large proportion of the cross-partial derivatives are zero).

The user needs to supply the objective function, its gradient, and the sparsity pattern

of the Hessian. The non-zero elements of the Hessian are computed through finite

differencing of the gradients in a way that exploits the sparsity pattern. The Hessian

is stored in a compressed format; specifically, an object of class dgCMatrix, as defined

in the Matrix package(Bates and Maechler 2013). This allows sparse matrix algo-

rithms to run more quickly, with a smaller memory footprint, than their dense-matrix

counterparts. For example, the trustOptim package (Braun 2013b) includes an im-

plementation of a trust region nonlinear optimizer that is designed to take advantage

of the fact that a Hessian is sparse. The sparseMVN package (Braun 2013a) samples

from, and computes the log density of, a multivariate normal distribution with a sparse

covariance or precision matrix.

For dense Hessians, a standard way of approximating the Hessian involves taking the

differences between the gradient at point x ∈ Rp and the gradient with a single element

of x perturbed by a small amount ε. If ∇ f (x) is the gradient of f (x), then the

ithcolumn of the Hessian is equal to (∇(x + εei) − ∇ f (x))/ε, where ei is a vector

of zeros, with a 1 in the ith element. This “forward differencing” method involves

computing a gradient p + 1 times. More accurate approximations require even more

evaluations of the gradient; central differencing requires 2p evaluations. This method

1

also requires the storage of p2 elements, even if most of the elements of the Hessian are

zero.

The sparseHessianFD package uses a graph coloring algorithm to partition the p
variables into groups (“colors” in the graph theory literature), such that perturbing xi

will not affect the jth element of the gradient for any j that is in the same group as i.
This will happen when the cross-partial derivative with respect to xi and xj is zero, or,

equivalently, that element (i, j) of the Hessian is zero. This means that we can perturb

all of the x’s in the same group in a single computation of the gradient. When the

number of groups is small, we can estimate the Hessian much more quickly. Note that

for a fully dense Hessian, the number of groups is equal to p, and there is no advantage

to using this algorithm. Also, the number of groups depends crucially on exactly which

elements of the Hessian are non-zero; sparsity does not guarantee that this method can

be used. However, for many common sparsity patterns, the computational savings is

dramatic.

As an example, suppose that we have, in a hierarchical model, N units, k heteroge-

neous parameters per unit, and r population-level parameters. Since the cross-partial

derivative between an element in βi and an element in β j is zero, any element of βi and

β j can be in the same group, but since the cross partials for elements with a single βi

are not zero, these elements cannot be in the same group. Furthermore, if we assume

that any βi could be correlated with the r population-level parameters, and that the

r population-level parameters may be correlated amongst themselves, we can estimate

the Hessian (with forward differences) with no more than k + r + 1 gradient evalua-

tions. Note that this number does not grow with N. Thus, computing the Hessian for

a log posterior density of a hierarchical model with, say, 100 heterogeneous units, is no

more expensive than for a dataset with a million heterogeneous units, and the amount

of storage required for the sparse Hessian grows only linearly in N.

Curtis et al. (1974) introduce the idea of reducing the number of evaluations to estimate

sparse Jacobians, and Powell and Toint (1979) describe how to partition variables into

appropriate groups, and how to recover Hessian information through back-substitution.

Coleman and Moré (1983) show that the task of grouping the variables amounts to a

classic graph-coloring problem. Gebremedhin et al. (2005) summarize more recent

advances in this area. The actual computational “engine” for sparseHessianFD is

ACM TOMS Algorithm 636 (Coleman et al. 1985). The original Fortran code is in

2

the file inst/include/misc/FDHS-DSSM.f. The file src/FDHS-DSSM.c is a translation

of the originalFortran code into C. The copyright to both of these files is retained by

the Association of Computational Machinery under terms that are included in the

LICENSE file in the package source code. My contribution to the package is only the

interface with R, and not the computational algorithm itself.

1 Using the package

Using sparseHessianFD involves constructing an object of class sparseHessianObj.

The class sparseHessianObj contains only one slot: an external pointer to an instance

of a C++ class that does all of the computation. This object stores all of the information

needs to compute the objective function, gradient and Hessian for any argument vector

x. The easiest way to compute this object is to use the new.sparse.hessian.obj

function. Its signature is:

obj <- new.sparse.hessian.obj(x, fn, gr, hs, fd.method=0,

eps=sqrt(.machine$double.eps), ...)

The function fn returns f (x), the value of the objective function to be minimized, gr

that returns the gradient. Both functions can take additonal named arguments which

are passed through the ... argument in get.new.sparse.hessian. The argument

hs is a list that represents the sparsity pattern of the Hessian. The hs list contains

two integer vectors,iRow and jCol, that contain the row and column indices of the

non-zero elements of the lower triangle of the Hessian. The length of each of these

vectors is equal to the number of non-zeros in the lower triangle of the Hessian. Do not

include any elements from the upper triangle. Entries must be in order, first by column,

and then by row within each column. Indexing starts at 1. The package includes a

convenience function, Matrix.to.Coord, that converts a matrix with the appropriate

sparsity pattern to a list that can be used as the hs argument.

Coleman et al. (1985) provides two approaches for computing a sparse Hessian: indirect

(fd.method=0) and direct (fd.method=1). We refer the reader to that source for

an explanation of the difference. In short, the indirect method should be somewhat

faster that the direct method, with comparable accuracy. The argument eps is the

perturbation amount used in the finite differencing algorithm. Again, see Coleman

3

et al. (1985) for more details.

The algorithms in this package work best when the gradient is computed directly

(i.e., derived analytically or symbolically), or otherwise computed exactly (say, by

way of algorithmic differentiation). In general, we never recommend finite-differenced

gradients. Finite differencing takes a long time to run, and is subject to numerical

error, especially near the optimum when elements of the gradient are close to zero.

Using sparseHessianFD with finite-differenced gradients means that the Hessian is

“doubly differenced,” and the resulting lack of numerical precision makes those Hessians

nearly worthless.

Once the sparseHessianObj object is constructed at an initial value of x, we can then

compute the function, gradient or Hessian for any other value of x. The sparseHes-

sianFD includes the following methods:

get.fn(x, obj)

get.gr(x, obj)

get.hessian(x, obj)

get.fngr(x, obj)

These functions return fn(x), gr(x), the Hessian of fn(x), and a list with both fn(x)

and gr(x), respectively. The Hessian is an object of class dgCMatrix. 1 These functions

do not pass additional arguments to the original functions, since that information is

stored in obj.

Alternatively, we can access the function, gradient, and Hessian functions directly from

the object with:

obj$fn(x)

obj$gr(x)

obj$hessian(x)

obj$fngr(x)

1Even though the Hessian is symmetric, the dgCMatrix stores the entire matrix, and not just the
lower triangle. This is because of a current limitation in the RcppEigen package. As RcppEigen
functionality expands, we hope to return Hessians as dsCMatrix objects. This would effectively halve
the storage requirements for the Hessian.

4

2 Sparsity pattern of the Hessian

In the following code, we construct a block diagonal matrix, and then use the Ma-

trix.to.Coord function to generate a list of the row and column indices of the non-zero

elements of the lower triangle.

require(Matrix)

M <- kronecker(Diagonal(4),Matrix(1,2,2))

print(M)

8 x 8 sparse Matrix of class "dgTMatrix"

[1,] 1 1

[2,] 1 1

[3,] . . 1 1

[4,] . . 1 1

[5,] 1 1 . .

[6,] 1 1 . .

[7,] 1 1

[8,] 1 1

H <- Matrix.to.Coord(M)

print(H)

$iRow

[1] 1 2 2 3 4 4 5 6 6 7 8 8

$jCol

[1] 1 1 2 3 3 4 5 5 6 7 7 8

To check that the indices do, in fact, represent the sparsity pattern of the lower tri-

angular Hessian, you can convert the list back to a pattern Matrix using the Co-

ord.to.Matrix function.

M2 <- Coord.to.Pattern.Matrix(H, 8,8)

print(M2)

8 x 8 sparse Matrix of class "ngCMatrix"

[1,] |

[2,] | |

[3,] . . |

[4,] . . | |

[5,] | . . .

[6,] | | . .

5

[7,] | .

[8,] | |

Notice that M2 is only lower-triangular. Even though M was symmetric, H contains

only the indices of the non-zero elements in the lower triangle. To recover the pattern

of the symmetric matrix, use the Coord.to.Sym.Pattern.Matrix function.

M3 <- Coord.to.Sym.Pattern.Matrix(H,8)

print(M3)

8 x 8 sparse Matrix of class "nsTMatrix"

[1,] | |

[2,] | |

[3,] . . | |

[4,] . . | |

[5,] | | . .

[6,] | | . .

[7,] | |

[8,] | |

3 An example

As an example,let’s compute the Hessian of the log posterior density of a hierarchical

model. Suppose we have a dataset of N households, each with T opportunities to

purchase a particular product. Let yi be the number of times household i purchases

the product, out of the T purchase opportunities. Furthermore, let pi be the probability

of purchase; pi is the same for all T opportunities, so we can treat yi as a binomial

random variable. The purchase probability pi is heterogeneous, and depends on both

k continuous covariates xi, and a heterogeneous coefficient vector βi, such that

pi =
exp(x′i βi)

1 + exp(x′i βi)
, i = 1 . . . N (1)

The coefficients can be thought of as sensitivities to the covariates, and they are dis-

tributed across the population of households following a multivariate normal distribu-

tion with mean µ and covariance Σ. We assume that we know Σ, but we do not know

µ. Instead, we place a multivariate normal prior on µ, with mean 0 and covariance Ω0,

6

which is determined in advance. Thus, each βi, and µ are k−dimensional vectors, and

the total number of unknown variables in the model is (N + 1)k.

The log posterior density, ignoring any normalization constants, is

log π(β1:N, µ|Y, X, Σ0, Ω0) =
N

∑
i=1

pyi
i (1− pi)

T−yi − 1
2

(βi − µ)′ Σ−1 (βi − µ)− 1
2

µ′Ω−1
0 µ

(2)

Since the βi are drawn iid from a multivariate normal,
∂2 log π

∂βiβ j
= 0 for all i 6= j. We

also know that all of the βi are correlated with µ. Therefore, the Hessian will be sparse

with a “block-arrow” structure. For example, if N = 6 and k = 2, then p = 14 and the

Hessian will have the pattern as illustrated in Figure 1.

[1,] | | | |

[2,] | | | |

[3,] . . | | | |

[4,] . . | | | |

[5,] | | | |

[6,] | | | |

[7,] | | | |

[8,] | | | |

[9,] | | . . | |

[10,] | | . . | |

[11,] | | | |

[12,] | | | |

[13,] | | | | | | | | | | | | | |

[14,] | | | | | | | | | | | | | |

Figure 1: Sparsity pattern for hierarchical binary choice example.

There are 196 elements in this symmetric matrix, but only 169 are non-zero, and only 76

values are unique. Although the reduction in RAM from using a sparse matrix structure

for the Hessian may be modest, consider what would happen if N = 1000 instead. In

that case, there are 2,002 variables in the problem, and more than 4 million elements

in the Hessian. However, only 12,004 of those elements are non-zero. If we work with

only the lower triangle of the Hessian (e.g., through a Cholesky decomposition), we

only need to work with only 7,003 values.

7

The file inst/examples/example.R demonstrates how to estimate the Hessian for this

model. The function, gradient, and “true” Hessian are computed using functions in

the file inst/examples/ex_funcs.R). In example.R, we first simulate some data. The

hess.struct function returns the list than can be used for the hs argument in the

get.new.sparse.hessian function.

We then create obj using the defaults for fd.method and eps. Finally, we compute

the function, gradient and Hessian using the two different methods on obj.

The get.hess function (defined in ex_funcs.R) returns the exact Hessian, derived ana-

lytically. This Hessian is the same as the one that is computed by way of get.hessian.

4 Discussion points

For some functions, deriving and coding a gradient analytically is straightforward (ei-

ther by hand, or using a symbolic computation tool like Mathematica). For many

others, like log posterior densities, analytic Hessians can be messy to derive and code.

Even then, storing and working with a p × p matrix is expensive when p is large.

The sparseHessianFD package is useful when the Hessian is sparse and the sparsity

pattern is known in advance, even when p is massively large. The speed at which

sparseHessianFD computes the Hessian depends on the sparsity pattern. For block

diagonal Hessians, as in the example above, computation time will grow with the size

of each heterogeneous parameter, and the number of population-level parameters, but

not with the number of heterogeneous units. As N grows, the number of non-zero

elements in the Hessian grows linearly, and the number of gradient differences that

need to be computed is constant.

We should note that finite differencing is not the current“state of the art” for estimating

sparse Hessians. Algorithmic differentiation (AD) packages can be faster and more

exact (and of course they can compute the gradient as well). A critical requirement

of an AD package when we need to differentiate scalar-valued functions with large p
is that it support “reverse-mode” differentiation. For C++, CppAD and Adol-C are

popular choices, and others may be available for Matlab and Python. AD Model

Builder is a scripting language for AD that can be called from R using the R2admb

package (Bolker and Skaug 2012).

8

References

Douglas Bates and Martin Maechler. Matrix: Sparse and Dense Matrix Classes and

Methods, 2013. URL http://CRAN.R-project.org/package=Matrix. R package

version 1.1-0.

Ben Bolker and Hans Skaug. R2admb: ADMB to R interface functions, 2012. URL

http://CRAN.R-project.org/package=R2admb. R package version 0.7.5.3.

Michael Braun. sparseMVN: an R package for MVN sampling with

sparse covariance and precision matrices., 2013a. URL http://CRAN.R-

project.org/package=sparseMVN.

Michael Braun. trustOptim: an R package from optimization using trust regions, 2013b.

URL http://CRAN.R-project.org/package=trustOptim.

Thomas F Coleman and Jorge J Moré. Estimation of Sparse Jacobian Matrices and

Graph Coloring Problems. SIAM Journal on Numerical Analysis, 20(1):187–209,

February 1983.

Thomas F Coleman, Burton S Garbow, and Jorge J Moré. Software for Estimating

Sparse Hessian Matrices. ACM Transactions on Mathematical Software, 11(4):363–

377, December 1985.

A R Curtis, M J D Powell, and J K Reid. On the Estimation of Sparse Jacobian

Matrices. Journal of the Institute of Mathematics and its Applications, 13:117–119,

1974.

Assefaw Hadish Gebremedhin, Fredrik Manne, and Alex Pothen. What Color is your

Jacobian? Graph Coloring for Computing Derivatives. SIAM Review, 47(4):629–705,

2005.

M J D Powell and Ph. L. Toint. On the Estimation of Sparse Hessian Matrices. SIAM

Journal on Numerical Analysis, 16(6):1060–1074, December 1979.

9

