
R-package “spcadjust”

A short introduction

Version 0.1-1

Axel Gandy and Jan Terje Kvaløy

June 26, 2015

This packages is still in relatively early stages of development.

This document describes briefly how to use the R-package which implements the algorithm for “Guaranteed
Conditional Performance of Control Charts via Bootstrap Methods.” based on Gandy and Kvaløy [2013].

Some information on how to install the package is in Appendix A. Information on how to access help can be
found in Appendix B. The package is loaded by

library(spcadjust)

1 Some simple standard usage

1.1 CUSUM charts with normality assumption

The following is a simple application for CUSUM charts, assuming that all observations are normally distributed.
Based on n past in-control observations X−n, . . . , X−1, the in-control mean is estimated by µ̂ = 1

n

∑−1
i=−nXi

and the in-control variance by σ̂2 = 1
n−1

∑−1
i=−n(Xi− µ̂)2. Based on new observations X1, X2, . . . , the CUSUM

chart is then defined by

S0 = 0, St = max(0,
St−1 +Xt − µ̂−∆/2

σ̂
).

The following defines the control chart.

chart <- new("SPCCUSUMNormal",Delta=1);

Then we generate a data set of past observations and compute the resulting estimates for running the chart.

X <- rnorm(250)

xihat <- xiofdata(chart,X)

str(xihat)

List of 3

$ mu: num 0.0749

$ sd: num 0.977

$ m : int 250

Next, we run the chart with new observations (that happen to be in-control).

1

plot(runchart(chart, newdata=rnorm(100),xi=xihat),ylab=expression(S[t]),xlab="t",type="b")

●●●

●

●●

●●

●

●

●

●●

●

●●●●●●
●

●●●●●●●●

●

●
●

●

●

●

●●
●

●●

●

●●

●

●

●●●●

●

●●●
●

●●●●●
●

●

●

●●

●

●●

●

●

●

●●●●●●

●

●●●

●

●

●●

●

●

●

●

●●●●●●●●

●

●●●

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

t

S
t

In the next example, the chart is run with data that is out-of-control from time 51 onwards.

plot(runchart(chart, newdata=rnorm(100,mean=c(rep(0,50),rep(1,50))),xi=xihat),ylab=expression(S[t]),xlab="t",type="b")

●●
●●

●●●●●●
●

●
●●

●●
●●

●●●●●●●●
●

●●●●
●●●●

●
●●●●●●

●●
●●●●●●

●
●●●●

●
●●

●●
●

●●

●●●●
●

●●●
●

●

●●●●
●

●
●●●

●
●

●
●●●●

●●●
●

●
●●

●●
●

●

0 20 40 60 80 100

0
10

20
30

t

S
t

The following computes confidence intervals for various properties of the chart. This is based on parametric
resampling assuming normality of the observations. You should increase the number of bootstrap replications
(the argument nrep) for real applications.

The first computes the threshold with a method that with roughly 90% probability results in an average run
length of at least 100. The second computes a threshold such that with probability 90% this gives a false alarm
probability of 5%.

2

SPCproperty(data=X,nrep=50,

property=new("calARLCUSUM",chart=chart,target=100))

90 % CI: A threshold of 3.284 gives an in-control ARL of at least

100.

Unadjusted result: 2.79

Based on 50 bootstrap repetitions.

SPCproperty(data=X,nrep=50,

property=new("calhitprobCUSUM",chart=chart,target=0.05,nsteps=1000))

90 % CI: A threshold of 9.63 gives an in-control false alarm

probability of at most 0.05 within 1000 steps.

Unadjusted result: 7.853

Based on 50 bootstrap repetitions.

The next two examples compute confidence intervals for ARL and hitting probabilities for certain thresholds.

SPCproperty(dat=X,nrep=50,

property=new("ARLCUSUM",chart=chart,threshold=3),

covprob=c(0.8,0.9))

80 % CI: A threshold of 3 gives an in-control ARL of at least

103.6.

90 % CI: A threshold of 3 gives an in-control ARL of at least

80.71.

Unadjusted result: 125.7

Based on 50 bootstrap repetitions.

SPCproperty(dat=X,nrep=50,

property=new("hitprobCUSUM",chart=chart,threshold=5,nsteps=100),

covprob=c(0.8,0.9))

80 % CI: A threshold of 5 gives an in-control false alarm

probability of at most 0.1424 within 100 steps.

90 % CI: A threshold of 5 gives an in-control false alarm

probability of at most 0.1721 within 100 steps.

Unadjusted result: 0.08784

Based on 50 bootstrap repetitions.

Finally to plot the chart with the threshold that guarantees a certain ARL.

cal <- SPCproperty(data=X,nrep=50,

property=new("calARLCUSUM",chart=chart,target=100))

newX <- rnorm(100)

S <- runchart(chart, newdata=newX,xi=xihat)

plot(S,ylab=expression(S[t]),xlab="t",type="b",ylim=range(S,cal@res+1,cal@raw))

lines(c(0,100),rep(cal@res,2),col="red")

lines(c(0,100),rep(cal@raw,2),col="blue")

legend("topleft",c("Adjusted Threshold","Unadjusted Threshold"),col=c("red","blue"),lty=1)

3

1.2 CUSUM chart using nonparametric resampling

The following example now calibrates using nonparametric resampling (resampling the observations with re-
placement), which would be robust against model misspecifications.

chartnp <- new("SPCCUSUMNonparCenterScale",Delta=1)

SPCproperty(data=X,

nrep=100,property=new("calARLCUSUM",chart=chartnp,target=100))

90 % CI: A threshold of 3.251 gives an in-control ARL of at least

100.

Unadjusted result: 2.678

Based on 100 bootstrap repetitions.

1.3 Shewhart charts with normality assumptions

Based on n past in-control observations X−n, . . . , X−1, the in-control mean is estimated by µ̂ = 1
n

∑−1
i=−nXi

and the in-control variance by σ̂2 = 1
n−1

∑−1
i=−n(Xi − µ̂)2. Based on new observations X1, X2, . . . , a two-sided

chart is then defined by

St =
Xt − µ̂
σ̂

.

and signals when |St| > c for some threshold c.

chartShew <- new("SPCShewNormalCenterScale",twosided=TRUE)

Generate some new data and estimate the parameters to run the chart.

X <- rnorm(250)

xihat <- xiofdata(chartShew,X)

Plotting the chart based on the new data.

plot(runchart(chartShew, newdata=X,xi=xihat),ylab=expression(S[t]),xlab="t")

4

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

0 50 100 150 200 250

−
3

−
1

0
1

2
3

t

S
t

Computing various properties of the chart, adjusted for estimation error.

SPCproperty(data=X,nrep=100,

property=new("calARLShew",chart=chartShew,target=741))

90 % CI: A threshold of 3.439 gives an in-control ARL of at least

741.

Unadjusted result: 3.205

Based on 100 bootstrap repetitions.

SPCproperty(data=X,nrep=100,

property=new("ARLShew",chart=chartShew,threshold=3))

90 % CI: A threshold of 3 gives an in-control ARL of at least

222.8.

Unadjusted result: 370.4

Based on 100 bootstrap repetitions.

SPCproperty(data=X,nrep=100,

property=new("hitprobShew",chart=chartShew,nsteps=100,threshold=3))

90 % CI: A threshold of 3 gives an in-control false alarm

probability of at most 0.3566 within 100 steps.

Unadjusted result: 0.2369

Based on 100 bootstrap repetitions.

SPCproperty(data=X,nrep=100,

property=new("calhitprobShew",chart=chartShew,target=0.01,nsteps=100))

90 % CI: A threshold of 4.113 gives an in-control false alarm

probability of at most 0.01 within 100 steps.

Unadjusted result: 3.889

Based on 100 bootstrap repetitions.

To plot a chart with adjusted thresholds added.

5

cal <- SPCproperty(data=X,nrep=100,

property=new("calARLShew",chart=chartShew,target=741))

S <- runchart(chartShew, newdata=newX,xi=xihat)

plot(S,ylab=expression(S[t]),xlab="t",type="b",ylim=range(S,cal@res+2,cal@raw,-cal@res-1,-cal@raw))

lines(c(0,100),rep(cal@res,2),col="red")

lines(c(0,100),rep(cal@raw,2),col="blue")

lines(c(0,100),-rep(cal@res,2),col="red")

lines(c(0,100),-rep(cal@raw,2),col="blue")

legend("topleft",c("Adjusted Threshold","Unadjusted Threshold"),col=c("red","blue"),lty=1)

●
●●

●

●

●

●

●

●

●

●

●
●●

●

●●●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●●

●●

●
●●

●

●

●
●●

●
●●

●

●

●

●

●

●●
●

●

●

●●
●

●

●

●

●
●

●●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●●

●

●
●

●

●●

0 20 40 60 80 100

−
4

−
2

0
2

4

t

S
t

Adjusted Threshold
Unadjusted Threshold

2 Linear regression example

Suppose one observes past data (Y−n, X−n), . . . , (Y−1, X−1), where Yi is a response of interest and Xi is a
corresponding vector of covariates. The parameter β of the linear model EY = Xβ is estimated via the
function lm (which does least squares estimation) and gives an estimator β̂. The corresponding risk adjusted
CUSUM chart to detect a shift of ∆ > 0 in the mean of the response for new observations (Y1, X1), . . . , (Yn, Xn)
is then defined by

S0 = 0, St = max
(

0, St−1 + Yt −Xtβ̂ −∆/2
)
.

where ∆ would be the minimal mean-shift of interest.
First create some past data.

n <- 1000

Xlinreg <- data.frame(x1= rbinom(n,1,0.4), x2= runif(n,0,1), x3= rnorm(n))

Xlinreg$y <- 2 + Xlinreg$x1 + Xlinreg$x2 + Xlinreg$x3 + rnorm(n)

Defining a chart for a specific linear model and finding the threshold that would give an ARL of 100.

chartlinreg <- new("SPCCUSUMlm",Delta=1,formula="y~x1+x2+x3")

SPCproperty(data=Xlinreg,

6

nrep=100,

property=new("calARLCUSUM",chart=chartlinreg,target=100))

90 % CI: A threshold of 3.517 gives an in-control ARL of at least

100.

Unadjusted result: 3.179

Based on 100 bootstrap repetitions.

Same as before but for a different linear model.

chartlinreg <- new("SPCCUSUMlm",Delta=1,formula="y~x1")

SPCproperty(data=Xlinreg,

nrep=100,

property=new("calARLCUSUM",chart=chartlinreg,target=100))

90 % CI: A threshold of 6.068 gives an in-control ARL of at least

100.

Unadjusted result: 5.524

Based on 100 bootstrap repetitions.

Finally, running the chart with new data (that are out of control from observation 50) and plotting the
chart.

xihat <- xiofdata(chartlinreg,Xlinreg)

cal <- SPCproperty(data=Xlinreg,

nrep=100,

property=new("calARLCUSUM",chart=chartlinreg,target=100))

n <- 100

newXlinreg <- data.frame(x1= rbinom(n,1,0.4), x2= runif(n,0,1), x3=rnorm(n))

newXlinreg$y <- 2 + newXlinreg$x1 + newXlinreg$x2 + newXlinreg$x3 + rnorm(n)+c(rep(0,50),rep(1,50))

S <- runchart(chartlinreg, newdata=newXlinreg,xi=xihat)

plot(S,ylab=expression(S[t]),xlab="t",type="b",ylim=range(S,cal@res+1,cal@raw))

lines(c(0,100),rep(cal@res,2),col="red")

lines(c(0,100),rep(cal@raw,2),col="blue")

legend("topleft",c("Adjusted Threshold","Unadjusted Threshold"),col=c("red","blue"),lty=1)

7

●●
●

●

●●●●●●
●

●
●

●●●

●

●●
●

●
●

●●●
●

●●●●

●
●

●

●●
●

●
●

●

●●

●

●
●●

●
●

●
●●

●●●●
●

●●●●

●●

●●●

●●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●
●●

●●

●
●●●

●
●●

●●●

●●
●

●

●

0 20 40 60 80 100

0
5

10
15

20

t

S
t

Adjusted Threshold
Unadjusted Threshold

3 Logistic regression example

Suppose one observes past in-control data (Y−n, X−n), . . . , (Y−1, X−1), where Yi is a binary response variable
and Xi is a corresponding vector of covariates. Suppose that in control logit(P(Yi = 1|Xi)) = Xiξ. The function

glm can be used to obtain an estimate ξ̂.
For detecting a change to logit(P(Yi = 1|Xi)) = ∆ + Xiξ, a CUSUM chart can be defined based on the

cumulative sum of likelihood ratios of the in-control versus out-of-control model [Steiner et al., 2000] by

St = max(0, St−1 +Rt), S0 = 0,

where

exp(Rt) =
exp(∆ +Xtξ)

Yt/(1 + exp(∆ +Xtξ))

exp(Xtξ)Yt/(1 + exp(Xtξ))
= exp(Yt∆)

1 + exp(Xtξ)

1 + exp(∆ +Xtξ)
.

Create an example data set of past observations.

n <- 1000

Xlogreg <- data.frame(x1=rbinom(n,1,0.4), x2=runif(n,0,1), x3=rnorm(n))

xbeta <- -1+Xlogreg$x1*100+Xlogreg$x2+Xlogreg$x3

Xlogreg$y <- rbinom(n,1,exp(xbeta)/(1+exp(xbeta)))

Computing the threshold to give an in-control ARL of 100.

chartlogreg <- new("SPCCUSUMlogreg",Delta= 1, formula="y~x1+x2+x3")

SPCproperty(data=Xlogreg,

nrep=100,

property=new("calARLCUSUM",chart=chartlogreg,target=100))

90 % CI: A threshold of 2.017 gives an in-control ARL of at least

100.

Unadjusted result: 1.781

Based on 100 bootstrap repetitions.

8

4 Methods needed for SPCproperty

The main function SPCproperty needs a definition of the chart as an S4 class that has the methods marked in
blue in the following diagram.

9

5 Class structure

The following slightly simplified UML diagram gives an overview over the main classes provided by the package.

<<abstract>>
SPCchart

xiofdata(data)
<<abstract>>
SPCCUSUM

runchart(newdata,xi)

SPCCUSUMNormal

Delta: numeric

updates(xi,data)
Pofdata(data)
xiofP(P)
resample(chart,P)
getcdfupdates(P,xi)

<<abstract>>
SPCCUSUMNonpar

Pofdata(data)
resample(chart,P)
getcdfupdates(P,xi)

SPCCUSUMNonparCenterScale

Delta: numeric

xiofP(P)
updates(xi,data)

SPCCUSUMlogreg

Delta: numeric

xiofP(P)
updates(xi,data)

SPCCUSUMlm

Delta: numeric

xiofP(P)
updates(xi,data)

<<abstract>>
SPCShew

twosided: logical

runchart(newdata, xi)

SPCShewNormalCenterScale

updates(xi,data)
Pofdata(data)
xiofP(P)
resample(chart,P)
getcdfupdates(P,xi)

SPCShewNonparCenterScale

updates(xi,data)
Pofdata(data)
xiofP(P)
resample(chart,P)
getcdfupdates(P,xi)

<<abstract>>
SPCproperty

chart: SPCchart
lowerconf: logical

<<abstract>>
SPCARL

threshold : numeric

SPCoutput(result)
qtrafo(x)

<<abstract>>
SPChitprob

threshold : numeric
nsteps: numeric

SPCoutput(result)
qtrafo(x)

<<abstract>>
SPCcalARL

taget: numeric

SPCoutput(result)
qtrafo(x)

<<abstract>>
SPCcalhitprob

taget: numeric
nsteps: numeric

SPCoutput(result)
qtrafo(x)

ARLCUSUM

SPCq(P,xi)

hitprobCUSUM

SPCq(P,xi)

calARLCUSUM

SPCq(P,xi)

calhitprobCUSUM

SPCq(P,xi)

ARLShew

SPCq(P,xi)

hitprobShew

SPCq(P,xi)

calARLShew

SPCq(P,xi)

calhitprobShew

SPCq(P,xi)

6 Extensions

The framework provided in this package can be easily extended to work with different charts and/or estimation
procedures. The following are some examples of extensions.

10

6.1 Modifying CUSUM to use robust estimation

The following defines a CUSUM chart using normality assumptions to estimate the in-control distribution using
Median and MAD. Only the method Pofdata needs to be redefined, the rest is as in SPCCUSUMNormal.

setClass("SPCCUSUMNormalROBUST", contains="SPCCUSUMNormal")

setMethod("Pofdata", "SPCCUSUMNormalROBUST",

function(chart,data){
list(mu= median(data), sd= mad(data), m=length(data))

})

Properties of this chart can then be computed as before:

X <- rnorm(100)

chartrobust <- new("SPCCUSUMNormalROBUST",Delta=1)

SPCproperty(data=X,nrep=50,

property=new("calARLCUSUM",chart=chartrobust,target=100))

90 % CI: A threshold of 4.489 gives an in-control ARL of at least

100.

Unadjusted result: 2.755

Based on 50 bootstrap repetitions.

6.2 Parametric exponential CUSUM chart

The following defines a class that defines a CUSUM chart for exponentially distributed data with parametric
resampling.

setClass("SPCCUSUMExponential",contains="SPCCUSUM",representation(Delta="numeric"))

setMethod("Pofdata", "SPCCUSUMExponential",

function(chart,data){
list(lambda=1/mean(data), n=length(data))

})
setMethod("xiofP", "SPCCUSUMExponential",

function(chart,P) P$lambda)

setMethod("resample", "SPCCUSUMExponential",

function(chart,P) rexp(P$n,rate=P$lambda))

setMethod("getcdfupdates", "SPCCUSUMExponential",

function(chart, P, xi) {
; function(x){ if(chart@Delta<1)

pmax(0,1-exp(-P$lambda*(x-log(chart@Delta))/(xi*(1-chart@Delta))))

else

pmin(1,exp(-P$lambda*(log(chart@Delta)-x)/(xi*(chart@Delta-1))))

}
})

setMethod("updates","SPCCUSUMExponential",

function(chart,xi,data) log(chart@Delta)-xi*(chart@Delta-1)*data

)

ExpCUSUMchart=new("SPCCUSUMExponential",Delta=1.25)

The following greates some past observations and then runs a chart for 100 steps with new observations.

11

X <- rexp(1000)

plot(runchart(ExpCUSUMchart, newdata=rexp(100),xi=xiofdata(ExpCUSUMchart,X)),

ylab=expression(S[t]),xlab="t",type="b")

●

●

●

●

●
●

●

●
●

●●

●
●

●●
●●●●

●

●

●

●

●●

●

●●●

●

●
●●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

S
t

The following computes various properties of the chart.

SPCproperty(data=X,

nrep=100,

property=new("hitprobCUSUM",chart=ExpCUSUMchart,

threshold=1,nsteps=100),covprob=c(0.5,0.9))

50 % CI: A threshold of 1 gives an in-control false alarm

probability of at most 0.9049 within 100 steps.

90 % CI: A threshold of 1 gives an in-control false alarm

probability of at most 0.9356 within 100 steps.

Unadjusted result: 0.8922

Based on 100 bootstrap repetitions.

SPCproperty(data=X,

nrep=100,

property=new("ARLCUSUM",chart=ExpCUSUMchart,

threshold=3),covprob=c(0.5,0.9))

50 % CI: A threshold of 3 gives an in-control ARL of at least

893.9.

90 % CI: A threshold of 3 gives an in-control ARL of at least

507.6.

Unadjusted result: 891.5

Based on 100 bootstrap repetitions.

SPCproperty(data=X,

nrep=100,

property=new("calARLCUSUM",chart=ExpCUSUMchart,

target=1000),covprob=c(0.5,0.9))

12

50 % CI: A threshold of 3.198 gives an in-control ARL of at least

1000.

90 % CI: A threshold of 3.667 gives an in-control ARL of at least

1000.

Unadjusted result: 3.163

Based on 100 bootstrap repetitions.

References

Axel Gandy and Jan Terje Kvaløy. Guaranteed conditional performance of control charts via bootstrap methods.
Scandinavian Journal of Statistics, 40:647–668, 2013. doi: 10.1002/sjos.12006.

Stefan H. Steiner, Richard J. Cook, Vern T. Farewell, and Tom Treasure. Monitoring surgical performance
using risk-adjusted cumulative sum charts. Biostat, 1(4):441–452, 2000. doi: 10.1093/biostatistics/1.4.441.
URL http://biostatistics.oxfordjournals.org/cgi/content/abstract/1/4/441.

A Installation

The installation is as for most R-packages that do not reside in CRAN. The general procedure is described in
the Section 6 on “Add-on packages” in the R Manual on Istallation and Administration:
http://cran.r-project.org/doc/manuals/R-admin.html.

The following is merely an adaptation of those procedures to our package.

A.1 Windows

Download the package “spcadjust 0.1-1.zip”. In the graphical evironment (Rgui) use the menue option :
Packets ... Install packet from local zip-file.

A.2 Linux/Unix

If you do not have write access to the package repository:

1. Download the package “simctest 0.1-1.tar.gz” and place it into your home directory.

2. If needed, create a local package directory via the following commands.

bash

mkdir ~/Rlibrary

echo ".libPaths(\"$HOME/Rlibrary\")" >$HOME/.Rprofile

3. Install the package

R CMD INSTALL simctest_???.tar.gz

where ??? needs to be replaced by 0.1-1.

B Accessing the help files

This document can be accessed via

vignette("spcadjust-intro")

Documentation of the most useful command can be obtained as follows:

13

http://biostatistics.oxfordjournals.org/cgi/content/abstract/1/4/441
http://cran.r-project.org/doc/manuals/R-admin.html

> ? SPCproperty

(Rudimentary) documentation of the S4-classes in this package can be obtained e.g. via

> class ? SPCCUSUMNormal

14

	Some simple standard usage
	CUSUM charts with normality assumption
	CUSUM chart using nonparametric resampling
	Shewhart charts with normality assumptions

	Linear regression example
	Logistic regression example
	Methods needed for SPCproperty
	Class structure
	Extensions
	Modifying CUSUM to use robust estimation
	Parametric exponential CUSUM chart

	Installation
	Windows
	Linux/Unix

	Accessing the help files

