
stm: R Package for Structural Topic Models

Margaret E. Roberts

Harvard
Brandon M. Stewart

Harvard
Dustin Tingley

Harvard

Abstract

This vignette demonstrates how to use the Structural Topic Model, stm, R package.
The Structural Topic Model (STM) allows researchers to estimate a topic model which
includes document-level meta-data. The stm package provides a range of features from
model selection to extensive plotting and visualization options.

Keywords: structural topic model, text analysis, LDA, stm, R.

1. Introduction

1.1. Method Overview

In this vignette we demonstrate how to use the Structural Topic Model, stm, R package.1

Building off of the tradition of generative topic models, such as the Latent Dirichlet Alloca-

tion (Blei, Ng, and Jordan 2003) and Correlated Topic Model (Blei and Lafferty 2007), the

Structural Topic Model’s key innovation is that it permits users to incorporate metadata,

defined as information about each document, into the topic model.

The goal of the Structural Topic Model is to enable the discovery of topics and the estimation

of their relationship to document metadata. Outputs of the model can be used to conduct

hypothesis testing about these relationships. This vignette illustrates use of the various

components of the package. The design of the package is such that users have a broad array

of options to analyze the data and present findings utilizing a range of plotting tools.

2. Estimation

Like other topic models the STM is a generative model. That means we define a data gener-

1We thank Jetson Leder-Luis, Christopher Lucas, and Alex Storer for various assistance in the construction

of this package. Additional details and development version at structuraltopicmodel.com

2 Structural Topic Models

ating process for each document and then use the data to find the most likely values for the

parameters within the model. The generative process for each document (indexed by d) can

be summarized as:

1. Draw the document-level attention to each topic from a logistic-normal GLM based on

document covariates Xd.

~θd|Xdγ,Σ ∼ LogisticNormal(µ = Xdγ,Σ)

2. Form the document-specific distribution over words representing each topic (k) using

the baseline word distribution (m), the topic specific deviation κk, the covariate group

deviation κg and the interaction between the two κi.

βd,k ∝ exp(m+ κk + κgd + κi=(kgd))

3. For each word in the document, (n ∈ 1, . . . , Nd):

• Draw word’s topic assignment based on the document-specific distribution over

topics.

zd,n|~θd ∼ Multinomial(~θ)

• Conditional on the topic chosen, draw an observed word from that topic.

wd,n|zd,n, βd, k = z ∼ Multinomial(βd,k=z)

Regularizing prior distributions are used for γ, κ and (optionally) Σ which help enhance

interpretation and prevent overfitting. To fit the model, we use a semi-collapsed variational

Expectation-Maximization algorithm. Figure 1 provides a graphical representation of the

model. Further details are provided in additional manuscripts (Roberts, Stewart, Tingley,

and Airoldi 2013; Roberts, Stewart, and Airoldi 2014a; Roberts, Stewart, Tingley, Lucas,

Leder-Luis, Gadarian, Albertson, and Rand 2014b; Lucas, Nielsen, Roberts, Stewart, Storer,

and Tingley 2013).2 In this vignette, we provide only brief interpretations of results, and

instead direct readers to the companion papers for complete applications.

3. Using the Structural Topic Model

In this section we demonstrate the basics of using the package.3 Use of the STM typically

2Available here, here, and here.
3The stm package depends on a variety of other packages, including MatrixStats (Bengtsson 2014), slam

http://scholar.harvard.edu/files/dtingley/files/topicmodelsopenendedexperiments.pdf
http://scholar.harvard.edu/files/bstewart/files/stmnips2013.pdf
http://scholar.harvard.edu/files/dtingley/files/comparativepoliticstext.pdf

Margaret E. Roberts, Brandon M. Stewart, Dustin Tingley 3

Generative Model

Estimation

EM Step 1:

EM Step 2:

Convergence

For Docs
similar to D1

Word Topic

Word Topic

+

+

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

? ? ? ?

.4 .4 .1 .1

.1 .2 .4 .3

.4 .4 .1 .1

.1 .2 .4 .3

.4 .2 .2 .2

Pr(w1):

? ? ? ?

.1 .1 .6 .2

"party …

government…

country"

z}|{ z}|{

Doc 1

D1

D1

D2

D2

T1

T1

T2

T2

T2

T2

T3 T4

T1 T3 T4

T3 T4T1

T2 T3 T4T1

T3

T4

T1

T2

T3

T4

T1

T2

T3

T4

T1

T2

T3

T4

T1

T2

T3

T4

T1

T2

T3

T4

w1 w2 w3 w4

w1 w2 w3 w4

θ1

θ1

w1

w2

w3

w4

w1

w2

w3

w4

T1

T2

T3

T4

T1

T2

T3

T4

X = 0

X = 0

X = 0

X = 0

X = 1

X = 1

X = 1

X = 1

D1(X = 1)

D2(X = 0)
θd βx

Figure 1: Heuristic description of generative process and estimation of STM.

proceeds in three key steps:

1. Tools for reading in and processing text data

(textProcessor, readCorpus, prepDocuments)

2. Fitting the Structural Topic Model (stm, selectModel, manyTopics)

(Hornik, Meyer, and Buchta 2014), lda (Chang 2012), stringr (Wickham 2012), SnowballC (Bouchet-Valat

2013), tm (Meyer, Hornik, and Feinerer 2008), igraph (Csardi and Nepusz 2006), huge (Zhao, Liu, Roeder,

Lafferty, and Wasserman 2013), and glmnet (Friedman, Hastie, and Tibshirani 2010).

4 Structural Topic Models

3. Plotting and inspecting results (plotModels,plot.STM,labelTopics, estimateEffect,

plot.estimateEffect,findThoughts, plotQuote)

Next we walk through each of these steps to show users how to use the above functions. All

of the functions come with help files, and examples, that can be accessed by typing ? and

then the function’s name.

3.1. Reading in textual data

The first step is to load data into R. The stm package represents a text corpus in three parts: a

documents list containing word indices and their associated counts4, a vocab character vector

containing the words associated with the word indices and a metadata matrix containing

document covariates. In this section, we describe utility functions for reading text data into

R or converting from a variety of common formats. Note that particular care must be taken

to ensure that documents and their vocabularies are properly aligned with the metadata.

Reading in data from a “spreadsheet”

For purposes of example within the vignette, we will use a collection of blogposts about

American politics that were written in 2008, from the CMU 2008 Political Blog Corpus

(Eisenstein and Xing 2010).5 The blogposts were gathered from six different blogs, American

Thinker, Digby, Hot Air, Michelle Malkin, Think Progress, and Talking Points Memo. Each

blog has its own particular political bent. The day within 2008 when each blog was written

was also recorded. Thus for each blogpost, there is metadata on the day written and the

political ideology of the blog in which it was written.

A common way that researchers store textual data alongside covariates related to the text

is by having all the data within one spreadsheet, with each row a separate observation and

one of the column variables the “textual” data field. The stm packages comes with a special

function, textProcessor, that conveniently reads in data stored in this format and processes

the data to ready it for analysis in the stm package. For example, users would first read in

4A full description of the sparse list format can be found in the help file for stm.
5The set of blogs is available at http://sailing.cs.cmu.edu/socialmedia/blog2008.html and documen-

tation on the blogs is available at http://www.sailing.cs.cmu.edu/socialmedia/blog2008.pdf. You can

find the cleaned version of the data we used for this vignette here: http://goo.gl/tsprNO.

http://sailing.cs.cmu.edu/socialmedia/blog2008.html
http://www.sailing.cs.cmu.edu/socialmedia/blog2008.pdf
http://goo.gl/tsprNO

Margaret E. Roberts, Brandon M. Stewart, Dustin Tingley 5

a csv file using native R functions, or load a pre-prepared dataframe as we do below. Next,

they would pass this object through the textProcessor function. This function uses a range

of features from the tm package, such as stemming and stop word removal.

> #read in your data that is in a spreadsheet form .csv file here)

> data <- read.csv("poliblogs2008.csv")

> #stemming/stopword removal, etc.

> processed <- textProcessor(data$documents, metadata=data)

> #structure and index for usage in the stm model. Verify no-missingness.

> out <- prepDocuments(processed$documents, processed$vocab, processed$meta)

> #output will have object meta, documents, and vocab

> docs <- out$documents

> vocab <- out$vocab

> meta <-out$meta

>

After reading in the data we suggest using the utility function prepDocuments() to process

the loaded data to make sure it is in the right format. In particular, the prepDocuments()

function properly associates metadata with textual data, re-indexes this relationship when

textual data fields are blank, or become blank following pre-processing (such as with stop

word removal). Please see the help file for this function for more details. It also removes

infrequent terms, or too frequent terms, depending on user-set parameters. Importantly,

prepDocuments() also will re-index all metadata/document relationships if any changes occur

due to processing. After reading in and processing the textual data, it is important to inspect

features of the documents and the associated vocabulary list. If users encounter problems

with estimation, they should always inspect features such as these, and if using metadata,

make sure the metadata has the same number of rows as there are documents. Furthermore,

the model does not permit estimation when there are variables used in the model that have

missing values. From here, researchers would be ready to estimate a structural topic model.

Reading in data from other text processing programs

Sometimes researchers will encounter data that is not in a spreadsheet format. The readCorpus

6 Structural Topic Models

function includes functionality for loading data from a wide variety of formats. Readers are

included for standard R matrix class along with the sparse matrices from the packages slam

and Matrix. Document term matrices created by the popular package tm are inherit from

the slam sparse matrix format and thus are included as a special case.

A program that is helpful for setting up and processing textual data, alongside document

metadata, is txtorg (Lucas et al. 2013). When using txtorg, three separate files are generated.

A metadata file, a vocabulary file, and a file with the original documents. The default export

format for txtorg is the ldac sparse matrix format popularized by David Blei’s implementation

of LDA. The readCorpus() function can read in data of this type using the ”ldac” option.

3.2. Estimating the STM

Once data is properly imported there will be documents, vocabulary and metadata that can

be used for an analysis. In this subsection we illustrate how to estimate the STM.6

Ways to use metadata

The key innovation of the STM is a general approach to incorporating metadata into the topic

modeling framework. We consider two way that metadata can enter the topic model: topical

prevalence and topical content. Metadata covariates for topical prevalence allow the observed

metadata to affect the frequency with which a topic is discussed. Covariates in topical content

allow the observed metadata to affect the word rate use within a given topic, that is, how a

particular topic is discussed. Estimation for both topical prevalence and content proceeds via

the workhorse stm function.

Estimation with topical prevalence parameter

In this example, we use the ratings variable (blog ideology) as a covariate in the topic

prevalence portion of the model with the CMU Poliblog data described above. Each docu-

ment is modeled as a mixture of multiple topics. Topical prevalence captures how much each

topic contributes to a document. Because different documents come from different sources,

it is natural then to want to allow this prevalence to vary with metadata that we have about

6We note that all the examples here have a very small number of maximum iterations of the EM algorithm

to reduce run time, and so no substantive conclusions should be drawn.

www.txtorg.org

Margaret E. Roberts, Brandon M. Stewart, Dustin Tingley 7

document sources.

In this example we simply let prevalence be a function of the“ratings”variable, which is coded

as either “Liberal” or “Conservative” and the variable “day”which is a integer measure of days

running from the first to the last day of 2008. Here a five topic STM is estimated. The output

from the model, poliblogPrevFit, could then be passed through the various functions we

discuss below (e.g., plot.STM) for inspecting the results.

If a user wishes to specify additional prevalence covariates, she would do so using the standard

formula notation common in R which we discuss at greater length below. A feature of the

stm() function is that “prevalence” can be expressed as a formula which can include multiple

covariates and factorial or continuous covariates. For example, by using the formula setup we

can enter other covariates additively. Additionally users can include more flexible functional

forms of continuous covariates, including standard transforms like log() etc., as well as ns()

or bs() from the splines package. The stm package also includes a convenience function s()

which selects a fairly flexible b-spline basis. In the current example we allow for the variable

“date” to be estimated with a spline. As we show later in the vignette, interactions between

covariates can also be added using the standard notation for R formulas. In summary, for

the below example, we enter in the variables additively, but allowing for the day variable, an

integer variable measuring which day the blog was posted, to have a non-linear relationship

in the topic estimation stage.

> poliblogPrevFit <- stm(out$documents,out$vocab,K=20,

+ prevalence =~ rating+ s(day), max.em.its=75,

+ data=out$meta,seed=5926696)

>

The model is set to run for a maximum of 75 EM iterations (max.em.its()) using a seed

we selected (seed). Typically, convergence of the model will be monitored by the change in

the approximate bound between EM iterations. Once the bound has a small enough change

between iterations, the model is considered converged. To reduce compiling time, in this

vignette we do not run the models and instead load a workspace with the models already

estimated.

> load(url("http://goo.gl/91KbfS"))

8 Structural Topic Models

3.3. Model Selection and Search

Model selection for a fixed number of number of topics

As with all mixed-membership topic models the posterior is intractable and non-convex,

resulting in a multimodal estimation problem which can be sensitive to initialization. Hence

users may wish to estimate a many models, each from randomly generated starting values, and

then evaluate each model according to some separate standard. The function selectModel

automates this process to facilitate finding a model with good properties.

Users specify the number of “runs”, which in the example below is set to 10. selectModel

first first casts a net where “run” (below 10) models are run for two EM steps, and then

models with low likelihoods are discarded. Next the default returns the 20% of models with

the highest likelihoods which are then run until convergence or the EM iteration maximum is

reached. Notice how that options for the stm() function can be passed, such as max.em.its.

If users would like to select a larger number of models to be run completely, this can also be

set with an option specified in the help file for this function.

> poliblogSelect <- selectModel(out$documents,out$vocab,K=20,

+ prevalence =~ rating+s(day), max.em.its=75,

+ data=meta,runs=20,seed=8458159)

>

In order to select a model for further investigation, users must choose from one of the candidate

models output from selectModel(). To do this plotModel() can be used to plot the average

semantic coherence and exclusivity scores for each model (represented by topic numbers)

as well as the semantic coherence and exclusivity for each topic.7 Each of these criteria

are calculated for each topic within a model run. The plotModel() function calculates the

average across all topics for each run of the model and plots these by labeling the model

run with a numeral. Often times users will select a model with desirable properties in both

dimensions (i.e., models with average scores towards the upper right side of the plot). As

shown in Figure 2, the plotModel() function also plots each topic’s values which helps give

a sense of the variation in these parameters.8

7See Roberts et al. (2014a,b) for a discussion of these criteria.
8For a given model, the user can plot the semantic coherence and exclusivity scores with the topicQuality

Margaret E. Roberts, Brandon M. Stewart, Dustin Tingley 9

> plotModels(poliblogSelect)

−100 −80 −60 −40

9.
0

9.
2

9.
4

9.
6

9.
8

10
.0

Semantic Coherence

E
xc

lu
si

vi
ty

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1
2
3
4 1

2
3

4

Figure 2: Plot of selectModel results. Numerals represent the average for each model, and

dots represent topic specific scores.

Next the user would want to select one of these models to work with. For example, the third

model could be extracted from the object that is outputted by selectModel.

> poliblogPrevFit<-poliblogSelect$runout[[3]] #choose the third model

Model search across numbers of topics

STM assumes a fixed user-specified numebr of topics. A data driven approach to selecting

the number of topics can be achieved by estimating using stm or the selectModel tool across

function.

10 Structural Topic Models

multiple different numbers of topics. For example, estimating a STMmodel for 7 and 10 topics.

The utility function manyTopics() allows the user to specify a range of topic numbers that

they would like to run selectModel on. manyTopics() will then iterate and run selectModel

for each different number of topics. Unlike selectModel(), this function automatically selects

one run of the model. To do this, it discards runs that are strictly dominated by other model

runs on both exclusivity and semantic coherence. For all remain Please consult the help file

for information on this function. Especially note that the process of extracting results differs

from selectModel because results are stored in a list environment.

> storage<-manyTopics(out$documents,out$vocab,K=c(7,10),

+ prevalence =~ rating+s(day),data=meta, runs=10)

> #This chooses the output, a single run of STM that was selected,

> #from the runs of the 3 topic model

> t<-storage$out[[1]]

> #This chooses the output, a single run of STM that was selected,

> #from the runs of the 4 topic model

> t<-storage$out[[2]]

3.4. Interpreting the STM: Plotting and inspecting results

After choosing a model based on ex-ante criteria, the task of interpretation comes next which

is especially crucial for any unsupervised procedure. There are many ways to investigate the

output, ranging from inspecting the words associated with topics to the relationship between

metadata and topics. To investigate the output of the model the stm package provides a

number of options.

1. Displaying words associated with topics (labelTopics,plot.STM(,type="labels"),

,plot.STM(,type="perspectives")) or documents highly associated with particular

topics (findThoughts,plotQuote)

2. Plotting relationships between metadata and topics/topical content (estimateEffect,

plot.estimateEffect)

3. Corpus level summaries (plot.topicCorr,plot.STM(,type="summary"))

Margaret E. Roberts, Brandon M. Stewart, Dustin Tingley 11

Exploring Topics

We next describe two ways that users can explore the topics that have been estimated. The

first way is to look at collections of words that are associated with topics. The second way is

to read actual documents that are estimated to be highly associated with each topic. Both of

these ways should be used.

To explore the words associated with each topic we can use the labelTopics() function. This

will print to the monitor words associated with each topic. The function by default prints

several different types of word profiles, including highest probability words and FREX words.9

In order to translate these results to a format that can easily be used within a paper, the

plot.stm(,type="labels") function will print topic words to a graphic device. Notice that

in this case, the labels option is specified as the plot.STM function has several functionalities

that we describe below (the options for ”perspectives” and ”summary”).

> labelTopics(poliblogPrevFit, c(1, 7, 10))

Topic 1 Top Words:

Highest Prob: black, wright, school, ayer, church, white, american

FREX: wright, church, ayer, black, school, abort, student

Lift: reverend, jeremiah, church, wright, ayer, cathol, rev

Score: wright, ayer, church, black, school, abort, jeremiah

Topic 7 Top Words:

Highest Prob: palin, biden, sarah, romney, joe, governor, huckabe

FREX: palin, sarah, romney, huckabe, biden, alaska, mitt

Lift: palin, sarah, huckabe, rudi, romney, giuliani, mitt

Score: palin, romney, sarah, biden, huckabe, alaska, mitt

Topic 10 Top Words:

Highest Prob: bush, presid, said, hous, administr, report, white

FREX: bush, presid, secretari, cheney, administr, rove, meet

Lift: thinkfast, cheney, dana, rove, bush, dick, inaugur

9For more information on FREX and high probability rankings, see Roberts et al. (2013, 2014a,b); Lucas

et al. (2013). For more information on score, see the LDA R package, http://cran.r-project.org/web/

packages/lda/lda.pdf. For more information on lift, see Taddy (2013).

http://cran.r-project.org/web/packages/lda/lda.pdf
http://cran.r-project.org/web/packages/lda/lda.pdf

12 Structural Topic Models

Score: bush, presid, administr, cheney, said, hous, rove

To read documents that are highly associated with topics the findThoughts function can

be used. This function will print to the user the documents highly associated with each

topic.10 Reading example documents is helpful in understanding the content of a topic and

interpreting its meaning.

In this example, for expositional purposes, we restrict the length of the documents to just

plot the first 250 characters. We see that Topic 1 describes the discussion of Jeremiah Wright

that occurred around the most recent election. Topic 7 discusses Sarah Palin and other vice

presidential candidates, with some discussion of other conservative presidential candidates

such as Huckabee or Romney. Topic 10 discusses the Bush administration.

To print example documents to a graphics device plotQuote can be used. The results are

displayed in Figure 3).

> thoughts1<-findThoughts(poliblogPrevFit, texts=shortdoc, n=2, topics=1)$docs[[1]]

> thoughts7 <- findThoughts(poliblogPrevFit, texts=shortdoc, n=2, topics=7)$docs[[1]]

> thoughts10 <- findThoughts(poliblogPrevFit, texts=shortdoc, n=2, topics=10)$docs[[1]]

Plotting Topic/Metadata relationships

We also provide a rich suite of plotting functions that lets users explore the relationship

between their metadata and topical prevalence or content.

Estimation Before plotting, we have to run estimateEffect in order to simulate a set of

parameters which can then be plotted. These parameters include the expected proportion of a

document that belongs to a topic as a function of a covariate, or a first difference type estimate,

where topic prevalence for a particular topic is contrasted for two groups (e.g., liberal versus

conservative). estimateEffect uses the method of composition to calculate uncertainty in

the parameters fitted by the linear model of the topic proportions on the covariates. In the

below example this is run on topics 1 and 2. estimateEffect should be run and saved before

plotting because it can be time intensive to calculate uncertainty estimates and/or because

10The theta parameter in the stm object output has the posterior probability that this function uses.

Margaret E. Roberts, Brandon M. Stewart, Dustin Tingley 13

> par(mfrow = c(2, 2),mar=c(.5,.5,1,.5))

> plotQuote(thoughts1, width=40, main="Topic 1")

> plotQuote(thoughts7, width=40, main="Topic 7")

> plotQuote(thoughts10, width=40, main="Topic 10")

Topic 1

On Thursday, the reconquista militants,
illegal alien lobbyists and lawyers,

multicultural mau−mau−ers, and assorted
anti−border goons will turn out across
the country for another May Day open

borders spasm. Los Angeles police are
undergoing crowd c

It looks as though Trinity United
Church of Christ signed up for

President Bush's Faith−based Community
Initiatives Program. From the HHS

website:Under its Minority Community
Health Coalition Demonstration Grant

Program for HIV/AIDS, HHS' Office of M

Topic 7

Here it is: The bio video of Sarah
Palin that was supposed to air at the

Republican convention last night before
her speech. You should watch it. The
video, which was leaked (surprisingly)
to Fox News, gives us a glimpse into

how the Republicans were

The Sarah Palin Digest: What We Know
About McCain's Running Mate Very little
was known nationally about Alaska Gov.
Sarah Palin (R) until Sen. John McCain

(R−AZ) selected her as his running mate
on Aug. 29. Tonight, Palin will be

speaking in

Topic 10

Flashback: Seven years ago today, Bush
received Bin Laden Determined to Strike
in U.S. memo. Today marks seven years
since the day President Bush received a

President's Daily Brief entitled Bin
Laden Determined to Strike in U.S.

Karl Rove orchestrating the Bush Legacy
project. President Bush's interview

with ABC's Charlie Gibson this week was
the first of several planned exit

interviews. According to White House
press secretary Dana Perino, Bush

Figure 3: Example documents highly associated with topic 1, 7, and 10.

users might wish to plot different quantities of interest using the same simulated parameters.11

The output can then be plotted. In this example we use a string variable and it is required

that for this function we that we first convert it into a factor variable.

11The help file for this function describes several different ways for uncertainty estimate calculation, some

of which are much faster than others.

14 Structural Topic Models

> meta$rating<-as.factor(meta$rating)

> prep <- estimateEffect(1:20 ~ rating+s(day),poliblogPrevFit,

+ meta=meta, uncertainty = "Global")

The syntax of the estimateEffect function is designed so users specify the set of topics

they wish for estimation to be done on, and then a formula for metadata of interest. Af-

ter the necessary method of composition simulations are done particular estimate strategies

and standard plot design features can be used by calling the plot.estimateEffect function.

First, users must specify the variable that they wish to use for calculating an effect. If there

were multiple variables specified in estimateEffect, then all other variables are held at their

sample median. Second users must specify the type of uncertainty calculation. The default is

“global”, which will incorporate estimation uncertainty of the topic proportions into the uncer-

tainty estimates using the method of composition. If users do not propagate the full amount

of uncertainty, e.g., to speed up computational time, they can choose uncertainty="None"

which will result in narrower confidence intervals because it will not include the additional

estimation uncertainty.

Plotting Users must also select the type of quantity that is to be plotted. When the covari-

ate of interest is binary, or users are interested in a particular contrast, the method=”difference”

option will plot the change in topic proportion shifting from one value to the other. Figure 4

gives an example. For factor variables, users may which to plot the marginal topic proportion

for each of the levels (”pointestimate”).

We see Topic 1 is strongly used by conservatives compared to liberals, while Topic 7 is close

to the middle but still conservative-leaning. Topic 10, the discussion of Bush, was largely

associated with liberal writers, which is in line with the observed trend of conservatives

distancing from Bush after his presidency.

Notice how the function makes use of standard labeling options available in the native plot()

function. This allows the user to customize labels and other features of their plots. We note

that in the package we leverage generics for the plot functions. As such, one can simply use

plot instead of writing out the full extension (e.g., in Figure 4 one could use plot() instead

of plot.estimateEffect). For expositional purposes in this vignette, we include the entire

extension.

Margaret E. Roberts, Brandon M. Stewart, Dustin Tingley 15

> plot.estimateEffect(prep, covariate = "rating", topics = c(1, 7, 10),

+ model=poliblogPrevFit, method="difference",

+ cov.value1="Liberal",cov.value2="Conservative",

+ xlab="More Conservative ... More Liberal",

+ main="Effect of Liberal vs. Conservative",

+ xlim=c(-.1,.1), labeltype = "custom",

+ custom.labels = c('Jeremiah Wright', 'Sarah Palin', 'Bush Presidency'))

●

−0.10 −0.05 0.00 0.05 0.10

Effect of Liberal vs. Conservative

More Conservative ... More Liberal

●Bush Presidency

●Sarah Palin

●Jeremiah Wright

Figure 4: Graphical Display of Topical Prevalence Contrast.

When users have variables that they want to treat continuously, users can choose between

assuming a linear fit or using splines. In the previous example, we allowed for the day variable

to have a non-linear relationship in the topic estimation stage. We can then plot its effect

on topics. In Figure 5, we plot the relationship between time and the vice presidential topic,

16 Structural Topic Models

> plot.estimateEffect(prep, "day", method="continuous", topics=7, model=z,

+ printlegend=FALSE, xaxt="n", xlab="Time (2008)")

> monthseq <- seq(from=as.Date("2008-01-01"), to=as.Date("2008-12-01"), by="month")

> monthnames <- months(monthseq)

> axis(1, at=as.numeric(monthseq)-min(as.numeric(monthseq)), labels=monthnames)

●

0.
00

0.
05

0.
10

0.
15

Time (2008)

E
xp

ec
te

d
To

pi
c

P
ro

po
rt

io
n

January March May July September December

Figure 5: Graphical Display of Topical Content. Topic 7 prevalence is plotted as a smooth

function of day, holding rating at sample median.

topic 7. The topic peaks when Sarah Palin became John McCain’s running mate at the end

of August in 2008.

Topical Content

We can also plot the influence of covariates included in topical content. A topical content

Margaret E. Roberts, Brandon M. Stewart, Dustin Tingley 17

variable allows for the vocabulary used to talk about a particular topic to vary. First, the

STM must be fit with a variable specified in the content option. In the below example, ratings

serves this purpose. It is important to note that this is a completely new model, and so the

actual topics may differ in both content and numbering compared to the previous example

where no content covariate was used.

> poliblogContent <- stm(out$documents,out$vocab,K=20,

+ prevalence =~ rating+ s(day), content=~rating,

+ max.em.its=75, data=out$meta,seed=5593453)

>

Next, the results can be plotted using the plot.STM(,type="perspectives") function. This

functions shows which words within a topic are more associated with one covariate value ver-

sus another. In Figure 6, vocabulary differences by ratings is plotted for topic 10. Topic 10 is

related to Guantanamo. Its top words were“guantanamo, techniqu, interrog, cia, detaine, tor-

tur, detent.” However, Figure 6 lets us see how liberals and conservatives talk about this topic

differently. In particular, liberals emphasized“torture”whereas conservatives emphasized how

the detainees were “terrorists.”12

This function can also be used to plot the contrast in words across two topics. To show this

we go back to our original model that did not include a content covariate and we contrast

topic 9 (Iraq war) and 10 (Bush presidency). We plot the results in Figure 7.

Covariate Interactions

Another modification that is possible in this framework is to allow for interactions between

covariates. In this example, we re-estimated the STM to allow for an interaction between day

(entered linearly) and ratings. Then in estimateEffect() we include the same interaction.

This allows us in plot.estimateEffect to have this interaction plotted. We display the

results in Figure 8 for topic 1 (Jeremiah Wright). We observe that liberals never really talked

about this topic, whereas for conservatives this was initially high and then declined.13

12At this point you can only have a single variable as a content covariate, although that variable can have

any number of groups. It cannot be continuous. Note that the computational cost of this type of model rises

quickly with the number of groups and so it may be advisable to keep it small.
13Note that the ability to plot interactions is somewhat limited and only supports interactions with a binary

18 Structural Topic Models

> plot.STM(poliblogContent,type="perspectives", topics=10)

case

terrorist use
charg

murder

will

crime

carter

evid

prison

trial
claim

torturcia

interrog

detaine
intellig

said

legal

guantanamo

Liberal
(Topic 10)

Conservative
(Topic 10)

Figure 6: Graphical Display of Topical Perspectives.

> poliblogInteraction <- stm(out$documents,out$vocab,K=20,

+ prevalence =~ rating* day, max.em.its=75,

+ data=out$meta,seed=5926696)

More details are available in the help file for this function.14.

Corpus level plotting

Corpus level visualization can be done in several different ways. The first relates to the

effect modification covariate and does not support interactions with a spline.
14An additional option is the use of local local regression (loess). In this case, because multiple covariates

are not possible a separate function is required, plotTopicLoess, which contains a help file for interested users.

Margaret E. Roberts, Brandon M. Stewart, Dustin Tingley 19

> plot.STM(poliblogPrevFit,type="perspectives", topics=c(9, 10))

iraq

war

iran

iraqi
will

israel

troop

secur

foreign

state

american

nuclear

bush

presid
said

hous
administr

report
white

former

officimeet

say

today

Topic 10Topic 9

Figure 7: Graphical Display of Topical Contrast between Topics 9 and 10.

expected proportion of the corpus that belongs to each topic. This can be be plotted using

plot.stm(,type="summary"). An example from the political blogs data is given in Figure 9.

We see, for example, that the Sarah Palin/Vice President topic (7) is actually a relatively

minor proportion of the discourse. The most common topic, topic 3, is a general topic full of

words that bloggers commonly use, and therefore is not very interpretable. The words printed

are the top three words associated with the topic.

Users can also plot features of the corpus as a whole. First, the Structural Topic Model permits

correlations between topics. Positive correlations between topics indicate that both topics are

likely to be discussed within a document. These can be visualized using plot.topicCorr().

20 Structural Topic Models

> prep <- estimateEffect(c(1) ~ rating*day, poliblogInteraction,

+ metadata=meta, uncertainty="None")

> plot.estimateEffect(prep, covariate="day", model=poliblogInteraction,

+ method="continuous",xlab="Days",labeltype="custom",custom.labels=c("Liberals","Co

0 100 200 300

0.
01

5
0.

02
0

0.
02

5
0.

03
0

0.
03

5
0.

04
0

0.
04

5

Days

E
xp

ec
te

d
To

pi
c

P
ro

po
rt

io
n

Conservatives
Liberals

Figure 8: Graphical Display of Topical Content allowing for interaction between day of blog

post and liberal versus conservative interaction. Topic 1 prevalence is plotted as linear function

of day, holding the rating at either 0 (Liberal) or 1 (Conservative). Were other variables

included in the model, they would be held at their sample medians.

The user can specify a correlation threshold. If two topics are correlated above that thresh-

old, than those two topics are considered linked. After calculating the links between topics,

plot.topicCorr produces a layout of topic correlations using a force-directed layout algo-

rithm. plot.topicCorr has several options that are described in the help file. We can use

Margaret E. Roberts, Brandon M. Stewart, Dustin Tingley 21

> plot.STM(poliblogPrevFit,type="summary", xlim=c(0,.4))

0.0 0.1 0.2 0.3 0.4

Top Topics

Expected Topic Proportions

Topic 7: palin, biden, sarah
Topic 1: black, wright, school
Topic 5: senat, bill, democrat
Topic 8: oil, energi, global
Topic 18: clinton, hillari, will
Topic 6: poll, state, mccain
Topic 19: million, campaign, money
Topic 12: elect, democrat, republican
Topic 2: mccain, john, said
Topic 20: will, american, america
Topic 15: law, court, state
Topic 13: attack, militari, terrorist
Topic 10: bush, presid, said
Topic 14: tax, govern, econom
Topic 9: iraq, war, iran
Topic 16: obama, barack, campaign
Topic 17: peopl, polit, will
Topic 11: like, just, one
Topic 4: media, time, report

Topic 3: get, want, like

Figure 9: Graphical Display of Estimated Topic Proportions.

the correlation graph to observe the connection between such as topics 9 (Iraq War) and 10

(Bush).

> mod.out.corr<-topicCorr(poliblogPrevFit)

3.5. Post-estimation Permutation Checks

Any statistical procedure can be abused and the structural topic model is no different. One

concern that we have heard is that users will simply search out covariate topic relationships

that are the strongest. A related concern is the concern that by combining the measurement

model with the estimation of an effect, the user is ‘baking in’ the conclusion. In the appendix

22 Structural Topic Models

> plot.topicCorr(mod.out.corr)

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●Topic 1

Topic 2

Topic 3

Topic 4

Topic 5

Topic 6

Topic 7

Topic 8

Topic 9

Topic 10

Topic 11

Topic 12

Topic 13

Topic 14

Topic 15

Topic 16

Topic 17

Topic 18

Topic 19

Topic 20

Figure 10: Graphical Display of Topic Correlations.

of Roberts et al. (2014b) we address this concern using a permutation test approach. We

have built in a function for conducting tests of this type using binary prevalence covariates.15

The permutationTest function takes a formula containing a single binary covariate (and

optionally other controls) and runs a permutation test where, rather than using the true

assignment, the covariate is randomly drawn with probability equal to its empirical probability

in the data. After each shuffle of the covariate the same STM model is estimated at different

starting values using the same initialization procedure as the original model, and the effect of

the covariate across topics is calculated. Next the function records two quantities of interest

across this set of “runs” of the model. The first records the absolute maximum effect of

15Future work could extend this to other types of covariates.

Margaret E. Roberts, Brandon M. Stewart, Dustin Tingley 23

the permuted covariate across all topics. The second records the effect of the (permuted)

covariate on the topic in each additional stm run which is estimated to be the topic closest

to the topic of interest. The object returned from permutationTest can then be passed to

plot.STMpermute for plotting.

4. Changing Basic Estimation Defaults

In this section we overview how to change details of estimation that may be of interest to

advanced users.

4.1. Convergence Criteria

Estimation in the STM proceeds by variational EM. Convergence is controlled by relative

change in the variational objective. Denoting by ℓt the approximate variational object at

time t, convergence is declared when the quantity ℓt − ℓt−1/abs(ℓt−1) drops below tolerance.

The default tolerance is 1e-5 by default and can be changed using the emtol argument.

The argument max.em.its sets the maximum number of iterations. If this threshold is reached

before convergence is assessed a message will be printed to the screen. The default of 100

iterations is simply a general guideline.

Once a model has been fit, convergence can easily be assessed by plotting the variational

bound as in Figure 11.

Additionally convergence can be specified in terms of the number of iterations without change

in the most probable words. See the documentation for stm for more information.

4.2. Initialization

As with any EM based estimation strategy, starting values are required. In order to change

how starting values are chosen, the argument init.type has several different options including

LDA, DMR (Dirichlet Multinomial Regression Topic Model), and Random). LDA is the default and

uses a few passes of collapsed Gibbs sampling for the standard LDA model as an initializer.

This tends to provide a fairly good starting region. Random initializations often start with a

dramatic lower value of the objective function but also recover quite quickly.

24 Structural Topic Models

> plot(poliblogPrevFit$convergence$bound,type="l", ylab="Approximate Objective",

+ main="Convergence")

0 10 20 30 40

−
18

50
00

00
−

18
46

00
00

−
18

42
00

00
−

18
38

00
00

Convergence

Index

A
pp

ro
xi

m
at

e
O

bj
ec

tiv
e

Figure 11: Graphical Display of Convergence.

4.3. Reporting

The default is to have the status of iterations print to the screen. The verbose option turns

printing to the screen on and off.

During the E-step the algorithm prints one dot for every 1% of the corpus it completes and

announces completion along with timing information. Printing for the M-Step depends on

the algorithm being used. For models without content covariates M-step estimation should be

nearly instantaneous. For models with content covariates and the Jeffreys prior, the algorithm

prints one dot for each parameter vector update (thus for K=10 topics, and a 2-level covariate

Margaret E. Roberts, Brandon M. Stewart, Dustin Tingley 25

with interactions you will see 32 dots per M-step pass).

By default every 5th iteration will print a report of top topic and covariate words. The

reportevery option sets how often these reports are printed.

Finally the keepHistory option can be used to save the entire parameter history at each EM

iteration. This can be useful for diagnostic purposes but note that when the number of words

in the vocabulary, the number of documents or the number of topics is large, the history can

quickly overwhelm available active memory. Thus we recommend leaving the default of FALSE

in most cases.

4.4. SAGE

The Sparse Additive Generative (SAGE) model conceptualizes topics as sparse deviations

from a corpus-wide baseline (Eisenstein, Ahmed, and Xing 2011). While computationally

more expensive this can sometimes produce higher quality topics . Whereas LDA will tend

to assign rare words exclusively to one topic, the regularization of the SAGE model ensures

that words only load onto topics when they have sufficient counts to overwhelm the prior.

In general this means that SAGE topics will tend to have fewer words that distinguish them

from other topics, but those words are more likely to be meaningful. Importantly for our

purposes the SAGE framework makes it straightforward to add covariate effects into the

content portion of the model.

Covariate-Free SAGE While SAGE topics are enabled automatically when using a co-

variate in the content model they can also be used even without covariates. To activate SAGE

topics simply set the option LDAbeta=FALSE.

Covariate-Topic Interactions By default when a content covariate is included in the

model, we also include covariate-topic interactions. In our political blog corpus for example

this means that the probability of observing a word from a Conservative blog in Topic 1

is formed by combining the baseline probability, the Topic 1 component, the Conservative

component and the Topic 1 - Conservative interaction component.

Users can turn off interactions by specifying the option interactions=FALSE. This can be

helpful in settings where there isn’t sufficient data to make reasonably inferences about all

26 Structural Topic Models

the interaction parameters. It also reduces the computational intensity of the model.

5. Alternate Priors

In this section we overview options for altering the prior structure in the stm function. We

highlight the major alternatives and refer interested users to the documentation for additional

details.

5.1. Changing Estimation of Prevalence Covariate coefficients

The user can choose between two options: ”Pooled” is the default and estimates a model

where the coefficients on topic prevalence have a zero-mean Normal prior with variance given

a broad inverse-gamma hyperprior.

You can also choose gamma.prior="L1" which uses the glmnet package (Friedman et al. 2010)

to allow for grouped penalties between the L1 and L2 norm. In these settings we estimate

a regularization path and then select the optimal shrinkage parameter using a user-tunable

information criterion. By default selecting the L1 option will apply the L1 penalty selecting

the optimal shrinkage parameter using AIC. The defaults have been specifically tuned for the

STM but almost all the relevant arguments can be changed through the control argument.

Changing the gamma.enet parameter by specifying control=list(gamma.enet=.5) allows

the user to choose a mix between the L1 and L2 norms. When set to 1 (as by default) this

is the lasso penalty, when set to 0 its the ridge penalty. Any value in between is a mixture

called the elastic net.

Because the penalties are grouped, covariates will tend to influence all topics or none. Thus

this option is best employed in settings where the analyst has a large number of covariates

but expects most of them to have no effect.

5.2. Changing Covariance Matrix Prior

The sigma.prior argument is a value between 0 and 1 defaulting to 0. The update for the

covariance matrix is formed by taking the convex combination of the diagonalized covariance

and the MLE with weight given by the prior. Thus by default we are simply maximizing the

likelihood. When sigma.prior=1 this amounts to setting a diagonal covariance matrix. This

Margaret E. Roberts, Brandon M. Stewart, Dustin Tingley 27

argument can be useful in settings where topics are at risk of becoming too highly correlated.

However, in extensive testing we have come across very few cases where this was needed.

5.3. Changing the Content Covariate Prior

The kappa.prior option provides two sparsity promoting priors for the content covariates.

The default is kappa.prior="Jeffreys" and uses a scale mixture of Normals where the

precisions τ are given improper Jeffreys priors 1/τ .

Specifying the option kappa.prior="L1" uses glmnet to impose a penalty between the L1

and L2 norm (as controlled by the control parameter kappa.enet). In general we strongly

recommend keeping close to the L1 norm as sparsity is important for estimation.

When choosing the L1 option, the user can also choose whether to fix the word probability

intercept to the empirical log probability or estimate it freely. It is fixed by default but can

be changed by setting the control option control=list(fixedintercept=FALSE).

There are over a dozen additional options documented in stm for altering additional compo-

nents of the prior, most of them focusing on the content covariate model.

6. Conclusion

The stm package provides a flexible integration of document metadata and topic modeling.

This vignette provides an overview of use and features. We encourage users to consult the

extensive help files for more details, as well as read the companion papers that illustrate the

application of this method.

28 Structural Topic Models

References

Bengtsson H (2014). matrixStats: Methods that apply to rows and columns of a matrix. R

package version 0.8.14, URL http://CRAN.R-project.org/package=matrixStats.

Blei DM, Lafferty JD (2007). “A correlated topic model of science.” The Annals of Applied

Statistics, pp. 17–35.

Blei DM, Ng A, Jordan M (2003). “Latent Dirichlet allocation.” Journal of Machine Learning

Research, 3, 993–1022.

Bouchet-Valat M (2013). SnowballC: Snowball stemmers based on the C libstemmer UTF-8

library. R package version 0.5, URL http://CRAN.R-project.org/package=SnowballC.

Chang J (2012). lda: Collapsed Gibbs sampling methods for topic models. R package version

1.3.2, URL http://CRAN.R-project.org/package=lda.

Csardi G, Nepusz T (2006). “The igraph software package for complex network research.”

InterJournal, Complex Systems, 1695. URL http://igraph.org.

Eisenstein J, Ahmed A, Xing E (2011). “Sparse additive generative models of text.” In

Proceedings of ICML, pp. 1041–1048.

Eisenstein J, Xing E (2010). “The CMU 2008 Political Blog Corpus.”

Friedman J, Hastie T, Tibshirani R (2010). “Regularization paths for generalized linear models

via coordinate descent.” Journal of statistical software, 33(1), 1.

Hornik K, Meyer D, Buchta C (2014). slam: Sparse Lightweight Arrays and Matrices. R

package version 0.1-31, URL http://CRAN.R-project.org/package=slam.

Lucas C, Nielsen R, Roberts M, Stewart B, Storer A, Tingley D (2013). “Computer assisted

text analysis for comparative politics.” Working Paper.

Meyer D, Hornik K, Feinerer I (2008). “Text mining infrastructure in R.” Journal of Statistical

Software, 25(5), 1–54.

Roberts ME, Stewart BM, Airoldi EM (2014a). “Structural Topic Models.”

http://CRAN.R-project.org/package=matrixStats
http://CRAN.R-project.org/package=SnowballC
http://CRAN.R-project.org/package=lda
http://igraph.org
http://CRAN.R-project.org/package=slam

Margaret E. Roberts, Brandon M. Stewart, Dustin Tingley 29

Roberts ME, Stewart BM, Tingley D, Airoldi EM (2013). “The Structural Topic Model and

Applied Social Science.”

Roberts ME, Stewart BM, Tingley D, Lucas C, Leder-Luis J, Gadarian S, Albertson B, Rand

D (2014b). “Structural topic models for open-ended survey responses.” American Journal

of Political Science.

Taddy M (2013). “Multinomial inverse regression for text analysis.” Journal of the American

Statistical Association, 108(503), 755–770.

Wickham H (2012). stringr: Make it easier to work with strings. R package version 0.6.2,

URL http://CRAN.R-project.org/package=stringr.

Zhao T, Liu H, Roeder K, Lafferty J, Wasserman L (2013). huge: High-dimensional

Undirected Graph Estimation. R package version 1.2.5, URL http://CRAN.R-project.

org/package=huge.

http://CRAN.R-project.org/package=stringr
http://CRAN.R-project.org/package=huge
http://CRAN.R-project.org/package=huge

30 Structural Topic Models

Affiliation:

Margaret E. Roberts

Department of Government

Harvard University

1737 Cambridge St, Cambridge, MA, USA

E-mail: roberts8@fas.harvard.edu

URL: http://scholar.harvard.edu/mroberts

Brandon M. Stewart

Department of Government

Harvard University

1737 Cambridge St, Cambridge, MA, USA

E-mail: bstewart@fas.harvard.edu

URL: http://scholar.harvard.edu/bstewart

Dustin Tingley

Department of Government

Harvard University

1737 Cambridge St, Cambridge, MA, USA

E-mail: dtingley@gov.harvard.edu

URL: http://scholar.harvard.edu/dtingley

mailto:roberts8@fas.harvard.edu
http://scholar.harvard.edu/mroberts
mailto:bstewart@fas.harvard.edu
http://scholar.harvard.edu/bstewart
mailto:dtingley@gov.harvard.edu
http://scholar.harvard.edu/dtingley

	Introduction
	Method Overview

	Estimation
	Using the Structural Topic Model
	Reading in textual data
	Reading in data from a ``spreadsheet''
	Reading in data from other text processing programs

	Estimating the STM
	Ways to use metadata
	Estimation with topical prevalence parameter

	Model Selection and Search
	Model selection for a fixed number of number of topics
	Model search across numbers of topics

	Interpreting the STM: Plotting and inspecting results
	Exploring Topics
	Plotting Topic/Metadata relationships
	Topical Content
	Covariate Interactions
	Corpus level plotting

	Post-estimation Permutation Checks

	Changing Basic Estimation Defaults
	Convergence Criteria
	Initialization
	Reporting
	SAGE

	Alternate Priors
	Changing Estimation of Prevalence Covariate coefficients
	Changing Covariance Matrix Prior
	Changing the Content Covariate Prior

	Conclusion
	References

