Package ‘vartors’

August 11, 2014

Type Package

Title Transform Definition of Variables to R Scripts

Version 0.2.6

Date 2014-08-10

Maintainer Joris Muller <joris.muller@etu.unistra.fr>

Description Generates R scripts useful to perform repetitive
tasks on variables of different classes from a simple database. First it
helps to create a tabular file describing the variables. Then the package
could process this tabulate file to create a script in a .R or .Rmd format.
This script will include code blocks for each variable according to the
variable description. It could help to import, adapt to R classes and
perform descriptive analysis on each variable according to its type. This R
script could be used as it is or it could be modified if necessary to
perform additional analysis. The user could write his own R script template
to produce a customized script.

Depends R (>=3.0.2)

Imports methods

Suggests testthat,roxygen2,utils,knitr

License GPL-3

URL https://github.com/jomuller/vartors

BugReports https://github.com/jomuller/vartors/issues/new
LazyData true

Encoding UTF-8

NeedsCompilation no

BuildVignettes true

VignetteBuilder knitr

https://github.com/jomuller/vartors
https://github.com/jomuller/vartors/issues/new

2 bad_database

R topics documented:

bad_database e 2
c,ScriptOutput-method oL 3
Create_SCTIPL . .« . v v v v v it e e e e e e e e e e e e e e e 5
DatabaseDef-class. e 6
descvars_skeleton L. e e e e 7
example_df 8
excel_skeleton L e e e 9
export_template e e e e e e e 9
import_template e e e e e 10
import_vardef L 11
list_templates e 12
sample_descvar 13
ScriptOutput-class 13
ScriptTemplate 14
ScriptTemplate-class 15
vardef L e 15
VariableDef-class e 16
variables_description_bad_database Lo oL 17
variable_definition_table 17
VATTOTS & o v v v e o e 18
write_file e e e e 20
Index 22
bad_database Bad database to test vartors
Description

A small dataset randomly generated to simulate an hypothetical survey and test vartors.

Format

A data. frame with 100 rows and 10 variables

Details

Include multiple definitions for NA’s and not meaningful variables. It’s a typical example of
database we have to process. This database is close to example_df but more realistic because
includes more typing errors. It is used in the vignette tutorial. This dataset was generated with
the function simulate_dataframe from the package dfexplore, wrote in a csv file, altered to add
errors and imported in R with read.csv.

The columns are :

subject An integer. Unique number of the subject.

initial A factor. Initials of the subject. Recognised as a factor by read. csv instead of a character
vector.

birth A factor. Birthdate. Recognized as a factor by read. csv instead of a date.

sex A factor with levels male female

¢,ScriptOutput-method 3

study_level A factor with levels primary < secondary < superior but recognized as a simple
factor instead of a oredered factor.

heigh A factor. Recognized as a factor by read. csv instead of a numeric because there are multi-
ple definitions for NA

weight A factor. Recognized as a factor by read.csv instead of a numeric because there are
multiple definitions for NA

siblings A factor. Recognized as a factor by read.csv instead of a an integer because there are
multiple definitions for NA

Q1 An integer. Question 1. Without further description, we can’t guess what’s the meaning of this
variable.

Q2 An integer. Question 2. Without further description, we can’t guess what’s the meaning of this
variable.

See Also

variables_description_bad_database is an example of variable description table for this database.

Examples

See the class of each variable
str(bad_database)

Create a variable description table skeleton
descvar_baddb <- descvars_skeleton(bad_database)

Edit the variable description table
Not run:
variables_description_bad_database <- edit(descvar_baddb)

End(Not run)

Watch the variable description table after editing
variables_description_bad_database

Use it to create a script to import bad_database

myscript <- create_script(variables_description_bad_database)
Not run:

Show the script

myscript

Write the script in a file
write_file(myscript, "my_import_script.R")

End(Not run)

c,ScriptOutput-method Concatenate ScriptOutput objects together.

Description

Concatenate ScriptOutput objects together.

4 ¢,ScriptOutput-method

Usage
S4 method for signature 'ScriptOutput'’
c(x, ..., recursive = FALSE)

Arguments
X The first ScriptOutput object.

Others ScriptOutput object to be concatened.

recursive logical. If recursive = TRUE, the function recursively descends through lists
(and pairlists) combining all their elements into a vector.

Details

This is a ¢ method specific for ScriptOutput objects. All ScriptOutput objects must use the
same language (.R or .Rmd). The header and the footer of the first object will be used for all. It is
used in vartors by create_script to create a script for more than one variable.

Author(s)

Joris Muller

See Also

The c function and the ScriptOutput class.

Examples

Create a script output from a description table
myscript <- create_script(variables_description_bad_database)

But you forget a variable.

Create it as a VariableDef object

forgoten_var <- vardef(varlabel = "A forgotten variable”, rname = "forget”, type = "integer")
forgoten_var

Create a script for it
forgoten_script <- create_script(forgoten_var)
forgoten_script

Add it to the initial script
my_complete_script <- c(myscript, forgoten_script)

Watch the result
Not run:

my_complete_script

Write the script in a file
write_file(my_complete_script, "my_import_script.R")

End(Not run)

create_script 5

create_script Create a script

Description

Create a script according to the definition of the variables and a template .

Usage

create_script(var_desc, template, rawdata_name = "raw_data",
cleandata_name = "clean_data"”, header = TRUE, footer = TRUE, ...)

S4 method for signature 'VariableDef,ScriptTemplate'
create_script(var_desc, template,
rawdata_name = "raw_data”, cleandata_name = "clean_data”,
header = FALSE, footer = FALSE, columns_names = var_desc$rname)

S4 method for signature 'VariableDef,character’
create_script(var_desc, template,
rawdata_name = "raw_data", cleandata_name = "clean_data")

S4 method for signature 'VariableDef, ANY'
create_script(var_desc, rawdata_name = "raw_data”,
cleandata_name = "clean_data", header = FALSE, footer = FALSE)

S4 method for signature 'DatabaseDef,ANY'

create_script(var_desc, template,
rawdata_name = "raw_data"”, cleandata_name = "clean_data”, header = TRUE,
footer = TRUE)

S4 method for signature 'data.frame,ANY'

create_script(var_desc, template,
rawdata_name = "raw_data"”, cleandata_name = "clean_data”, header = TRUE,
footer = TRUE)

Arguments
var_desc An object which describes the variable. Could be a single VariableDef, a whole
DatabaseDef or a simple data. frame. In this last case, import_vardef func-
tion will be called to transform it to a DatabaseDef.
template Optional. An object which describes the template. Either a ScriptTemplate

object or a path to the template file. In this last case, import_template function
will be called to transform this filepath to a ScriptTemplate. If missing, the
default template is used.

rawdata_name Name used to replace rep_rawdata in the template
cleandata_name Name used to replace rep_cleandata in the template
header If TRUE produce the header bloc

footer If TRUE produce the footer bloc

columns_names rnames of the columns

others arguments for specifics methods

6 DatabaseDef-class

Details

create_script is the central function of the vartors package. It will collate the two input objects
created by the user (a VariableDef object or DatabaseDef object and a ScriptTemplate object)
and will produce the final product : the script skeleton represented by an ScriptOutput object.

Value

A ScriptOutput object. This object could be written in a file with the write_file function.

Methods (by class)

e var_desc = VariableDef,template = ScriptTemplate:
e var_desc = VariableDef,template = character:

ANY:

ANY:

e var_desc = VariableDef,template

e var_desc = DatabaseDef, template

e var_desc = data.frame,template = ANY:

Author(s)

Joris Muller

See Also

import_template, import_vardef and the general documentation of vartors.

Examples

Import a data.frame containing the description of the variables
Show the description of the variable
sample_descvar

Create the script skeleton simply with create_script()
script_skeleton <- create_script(sample_descvar)

watch the result

script_skeleton

DatabaseDef-class Class DatabaseDef

Description
The DatabaseDef class is used to store properly the definition of several variables. It is created by
import_vardef.

Slots

DatabaseDef A list containing VariableDef objects.

descvars_skeleton 7

Note

For the moment, this class is only a convenient way to store a list of VariableDef-class objects.
This class will be extended in a future version of vartors to add the pathfile, a global description
and others informations about the database.

Author(s)

Joris Muller

See Also

DatabaseDef objects are created by import_vardef function for the moment. It store 1ink[=VariableDef-class]{Vari
objects in a list. To create a single definition of variable, use vardef.

Examples

Create a DatabaseDef from a definition of variable table
suppressWarnings(
a_DatabaseDef_object <- import_vardef (sample_descvar)

)

Show the list of the definition of variable
a_DatabaseDef_object

Check the class
class(a_DatabaseDef_object)

descvars_skeleton Skeleton of a definition of variables table

Description

Create a definition of variables table skeleton in a data.frame from a database. Basically, this
function gets the header of the database, puts it in the column "originalname", gets the type and
put them in "type", adds column "spreadsheet column letter" and all the others columns to have a
definition of variables table.

Usage

descvars_skeleton(database, factor_detect = 6)

Arguments

database A data.frame with the data imported for example with read. csv or read. xs1x.

factor_detect An integer. If the number of unique value in a variable is below this threshold,
then it will be considered as a factor
Value

Return a data.frame. This data.frame could be used as a skeleton of descvar, for example ex-
porting it in a file with write.csv or write.x1lsx

8 example_df

Author(s)

Joris Muller

Examples

Import a database
data(example_df)
head(example_df)

Create a skeleton of DatabaseDef from this database
descvars_sk <- descvars_skeleton(example_df)
descvars_sk[,1:10]

This skeleton could be written on the disk in csv

to be completed later in a spreadsheet sofware

Not run:

write.csv(descvars_sk, file="Variables_description.csv")

End(Not run)

or in Excel

Not run:

libary(openxslx)

write.xlsx(descvars_sk, file="Variables_description.xlsx")

End(Not run)

example_df Sample data.frame to test vartors

Description

A small data set randomly generated to simulate 100 observation on an hypothetical survey with 10
columns. Include NA’s.

The variables are :

* subject A numeric. Unique number of the subject.

e initial A character. Initials of the subject.

* birth Birthdate

* sex A factor with levels male female

e study_level An ordered factor with levels primary < secondary < superior
* heigh A numeric

* weight A numeric

¢ siblings A numeric

* Q1 A numeric : question 1

* Q2 A numeric : question 2

Format

A data frame with 100 rows and 10 variables

excel_skeleton 9

See Also

bad_database, a version closer to a real-life database.

excel_skeleton Write an Excel VariableDef skeleton

Description

Write an Excel VariableDef skeleton

Usage
excel_skeleton(filepath = "variables_description.xlsx")
Arguments
filepath path to the file to create
export_template Export a built-in script template
Description

Export to a file a built-in script template. This way it’s possible to adapt it to user’s needs. Basically,
it’s a wrapper for the file. copy function.

Usage

export_template(builtin = "template_en.R", to = "./template_en.R")
Arguments

builtin name of the built-in template. See details.

to path where the file have to be written
Details

Actually, built-in templates are : anothertemplate.R, simpletemplate.R, template_en.R, template_fr.R,
template_fr.Rmd

Value

Return the path where the file template was written. If there is an error, return FALSE.

Author(s)

Joris Muller

10 import_template

See Also

import_template

Examples

export the default built-in template
Not run:
export_template(”template_to_edit.R", "en.R")

End(Not run)

import_template Import a script template

Description

Import a script template and transform it as an ScriptTemplate-class object.

Usage

n n

import_template(path, builtin, language = "R", idiom = "en"”,
encoding = "UTF-8")

Arguments
path Path to the template file
builtin The name of a built-in template. See details for available built-in template.
Override language and idiom parameters if given.
language The name of one language of the built-in template, could be en or fr. If a path
or a built-in is provided, this argument is ignored.
idiom The idiom of the built-in template, could be en or fr. If a path or a built-in is
provided, this argument is ignored.
encoding Encoding of the script template. Should be "ASCII", "latin-1" or "UTF-8" (de-
fault value)
Details

Actually, built-in templates are : anothertemplate.R, simpletemplate.R, template_en.R, template_fr.R,
template_fr.Rmd

Value

Return a ScriptTemplate object.

Author(s)

Joris Muller

See Also

ScriptTemplate-class, script_template

import_vardef

Examples

import the default built-in template
import_template()

import a specific built-in template
import_template(builtin = "anothertemplate.R")

11

import_vardef Import definition of variables

Description

Import definition of several variables and create a DatabaseDef object.

Usage

import_vardef (vardf, col_replacement)

S4 method for signature 'data.frame'
import_vardef (vardf, col_replacement)

Arguments

vardf A data. frame that represents a definition of variables table.

col_replacement
Replacement for the columns

Details
The col_replacement parameter by default are : c(rname = "rname”, varlabel = "varlabel”,
It is possible to overwrite by passing c(key = "value") in the colnames parameter.

Value

Return a DatabaseDef object.

Methods (by class)

e data.frame:

See Also

To create a definition of variables table from a database, use /1ink{descvars_skeleton}.

desc

12 list_templates

Examples

create a simple definition of variables table in a data.frame
testdf <- read.table(header = TRUE, stringsAsFactors=FALSE,

text="

rname varlabel description type flevell namel flevel2 name2 flevel3 name3
id Identification 'Unique ID' integer NA NA NA NA NA NA

age 'Age of patient' NA integer NA NA NA NA NA NA

city 'City" 'City where live actually' factor 1 Strasbourg 2 Paris 3 London
weight 'Weight' 'Weight at the beginning of the study' numeric NA NA NA NA NA NA
)

create the DatabaseDef object
import_vardef (testdf)

When the headers are not standard, it's possible to pass a
replacement dictionnary

names(testdf) <- c("variable"”, "etiquette”, "description”,
"type”, "codel”, "modalitel”, "code2"”, "modalite2",
"code3”, "modalite3")
head(testdf)
import_vardef (testdf,
col_replacement = c("rname” = "variable”,
"varlabel” = "etiquette”,
"flevel” = "code",
"flabel” = "modalite")
)
list_templates List available vartors templates in a folder
Description

List the file in the specified directory and check if these files are vartors templates. To detect, a
file as vartors templates, the file must have one of the supported extension (*.R‘ or *.Rmd" for the
moment) and have the tag <vartors template> in the first lines.

Usage

list_templates(dirpath)

Arguments
dirpath path to the directory. If missing, the directory of the vartors package with built-
in templates.
Value

Return a character vector with the names of the files which are vartors templates.

Author(s)

Joris Muller

sample_descvar 13

See Also

Script templates could be imported with import_template. This function use is_vartors_template
to check if a file is a vartors template.

is_vartors_template

Examples

Get the list of built-in template
list_templates()

sample_descvar Sample definition of variables table

Description
A dataset containing definition of various variable with some errors. It’s generated from a .CSV
* rname Short name of the variable to be use in R
* varlabel Long name of the variable used in graphs and tables
¢ description Description of the variable
* type Type of variable
* unit Unit of the variable or date format

* level One level of a qualitative variable

* name One name of a level of a qualitative variable

Format

A .csv with 6 rows and 13 variables

See Also

The documentation about definition of variables tables. To import it, use import_vardef.

ScriptOutput-class Class ScriptOutput

Description

Class to store the script output

Slots

output body of the script
language Language of the script. Is "R", "Rmd" or "Rnw"
header Header of the script

footer Footer of the script

14 ScriptTemplate

Author(s)

Joris Muller

See Also

The constructor method is create_script. ScriptOutput objects have also a write method to
create easily a file

ScriptTemplate Script template

Description

Script templates are a powerful concept in the vartors package. They are script skeletons which
will be used to produce usable script thanks to definition of variables.

Details

Script templates should be written in different languages known by R :

R The classical R language, using file extension .R

R markdown Used to mix markdown syntax with R code. Use file extension .Rmd. Process these
files with knitr

R sweave Used to mix LaTeX syntax with R code. Process these files with knitr too. No test
where done with this format for the moment, because R markdown does almost everything in
an easier way.

To be valid, a script template must contain <vartors template> in a comment somewhere in his
5 first lines.

To understand how to read and write a script template, there are two main concepts : blocs and
remplacements words

blocs: Blocs are code lines between an opener delimiter and a closer delimiter. Openers are
lines starting with #< and closers with #>. These delimiters must have a name recognized by
import_template (actually, should be header, footer, integer, numeric, factor, ordered, date or
not_used). Only one name by delimiter is allowed. For example, to create a new bloc for factor
type, just write :

#< factor

factors must use hist to make nice plots
plot(rep_cleandata$rname)

#> factor

This will add theses lines to the bloc of lines for the factor type

remplacement words: These words will be replaced when create_script will be used. They
have a prefix rep_. For example, rep_rname will be replaced by the name of the variable in R
from the definition of variables. Actually, usable replacement names are rep_rname, rep_type,
rep_description and others ones...

ScriptTemplate-class 15

See Also

The main methods are import_template and export_template. They are always used in create_script.
To be usable in vartors, a script template must be transformed in a ScriptTemplate object by
create_script.

ScriptTemplate-class Class ScriptTemplate

Description

The ScriptTemplate class is used to store properly the script template. It consists of various blocs,
each for each type (numeric, factor...)

Slots

language A length-one character vector. The extension of the language used in the template.
Should be R, Rmd or Rnw

original_script The original script

blocs A list. Each element of the list is a character vector with the lines for a type.

Author(s)

Joris Muller

See Also

The main function to construct a ScriptTemplate object is import_template. The constructor is
script_template. More information about template in the dedicated documentation.

vardef Create a VariableDef object

Description

Constructor of the VariableDef class. A VariableDef object stores all the data needed to process
a variable in the package.

Usage

vardef(varlabel, description, rname, type = "not_used”, comment, unit,
levels = NULL, names = NULL)

VariableDeft-class

Arguments
varlabel A character. Used to label properly the plots and tables in output.
description A character. A description of the variable
rname A character. It’s the name of the variable used in R.
comment A character.
type A character. Must be one of the following : numeric, integer, factor, ordered,
character, date or not_used.
unit A character. Could be used for the format of a date (by default aa/mm/yyyy).
levels A character vector. Describe the levels used for a vector.
names A character vector of the same size than number of levels or empty.
Author(s)

Joris Muller

See Also

VariableDef-class and DatabaseDef-class

VariableDef-class Class VariableDef

Description

The VariableDef class is used to store properly the definition of the variable.

Slots

varlabel A length-one character vector. Should be with a max of 40 letters. All characters are
allowed. Will be used to varlabel properly the plots and tables in output.

description A length-one character vector. Description of the variable.

rname A length-one character vector. Should be with a max of 16 letters. It’s the name of the
variable used in R. It could only use [a-z], [0-9] and "_" and must start with [a-z].

comment A length-one character vector with a max of 1000 letters. It’s a commentary that will
appear when describing each variable and give some advices to the statistician to how to
analyze this variable.

type A length-one character vector. Must be one of the following : numeric, integer, factor, or-
dered, character, date or not_used. It’s used to dispatch the script blocs regarding the type of
the variable.

unit A length-one character vector of max size 20. Should be the unit of a variable which will be
showed in some graphs or the format of a date (by default %d/%m/%Y).

levels A character vector. Only used if type is factor or ordered. Describe the levels used. The
same levels must be in the database, otherwise NA will be generated.

labels A character vector of the same size than levels or empty. If empty, the labels will be the
levels.

variables_description_bad_database 17
Author(s)

Joris Muller

See Also

The constructor is vardef. For several variables, see DatabaseDef-class

variables_description_bad_database
Sample definition of variables table

Description

A dataset containing definition of various variable linked to the database "bad_database". It’s gen-
erated from a .CSV

* column The column name in the spreadsheet (A, B, C...)

* rname Short name of the variable to be use in R

* varlabel Long name of the variable used in graphs and tables
* description Description of the variable

* type Type of variable

* unit Unit of the variable or date format

* flevel One level of a qualitative variable. One for each level.

» fname One name of a level of a qualitative variable. One for each label.

Format

A data.frame with 6 rows and 18 variables

See Also

The documentation about definition of variables tables. To import it, use import_vardef.

variable_definition_table
Definition of variables table

18 vartors

Description

The definition of variables table is a way to describe each variable from a database in a table where
each line represent a variable, and each column one of its characteristic. The idea is to be explicit
about each variable by describing these characteristics :

varlabel An explicit name of the variable, but short enough to be displayed on figures and tables.
Example : Date of birth or Creatinine Clearance

description An explicit description of the variable, if the varlabel is not explicit enough. It helps
the statistician to understand the meaning of the variable. Example : The Creatinine Clearance
measured at the entry of the patient in the hospital

comment An commentary to help the statistician. Example : This quantitative variable can’t have
value superior to 20.

unit The unit of the variable, when applicable. For dates, put the format like in R. Example : for
the Creatinine Clearance, ml/min, for the Date of birth, %d%m%Y

flevel A level of a factor or ordered variable. Each level must be placed in a separated column.
Then there are as much flevel as levels of the variable

flabel A label of a factor or ordered variable. Each level must be placed in a separated column.
Then there are as much flevel as levels of the variable

type Class of the variable. Could be numeric, integer, factor, ordered, date, character or not_used

rname The name of the variable in R. If not given, the varlabel will be used and transformed to
a compatible name

See Also

To create a definition of variables table skeleton from a existing data.frame, use the descvars_skeleton
function. To read a definition of variables table from a data.frame to a DatabaseDef object, use the
import_vardef. Variable definition table could be used directly as a data. frame by create_script.

A built-in example of a complete definition of variables table is the variables_description_bad_database
that describes the bad_database.

vartors Transform Definition of Variables to R Scripts

Description

vartors is an R package that produces R script using definition of variables described by user. It
could help to import, adapt to R classes and perform descriptive analysis on each variable according
to its type.

Details

Documentation:

This page explain the main concepts in vartors. See also the vignettes. There is one with a
tutorial :

vignette(topic = "usage", package = "vartors")
and one with the complete workflow
vignette(topic = "workflow”, package = "vartors")

vartors 19

Motivation:

The package vartors was created to speed-up the error-prone and important cleaning data phase
in context of the statistical consultations. These methodology consultations are an important part
of our daily work. The idea is to help physicians of our hospital to process their data and make
accurate analysis. In our workflow, the physician must come with a database (mainly an Excel or
.csv file), a description of the variables and a good question. For the moment, we spend too much
time to clean up data and not enough to analyze it. That’s where vartors may help.

Workflow:

We will describe here in a compact way the workflow. For more details, see the documentation of
each function and the vignettes.

The global workflow is :
1. Create a definition of variables table. The descvars_skeleton function could help you to
initiate this. Fill all the characteristics of each variable, especially the fype.

2. Import this definition of variables table in R if it was created in a spreadsheet program, for
example with read. csv, read. table or read. x1sx, to have it in data. frame.

3. Use create_script to create a script according to the definition of each variable.

4. Write this script in a file with write_file

5. Adapt your new script to special cases, test it line by line, and produce a report, for example
with knitr

It’s possible to use various built-ins script templates in . R or . Rmd with the function import_template.
The user could also create his own script templates by exporting a built-in one with export_template.
It’s a flexible way to allow each user to adapt and perform analysis on each variable as he want.

Note

For bugreports, features request, use the github issue tracking at https://github.com/jomuller/
vartors/issues.

Special thanks to :

* The GMRC (Groupe Méthode en Recherche Clinique) team of Service de Santé Public, Hopi-
taux Universitaires de Strasbourg :
— Dr Erik-André Sauleau to supervise me during this work
— Mickael Schaeffer for all these advices, bugtracking and coding-mate in another package
— Pr Nicolas Meyer to accept me to work on this package and all his advices
— Dr Francgois Lefebvre, Dr Francois Séverac, Maél Barthoulot, Pierre Collard Dutilleul for
advices and bugtracking.

* Pr Bruno Falissard Master 2 courses and his contagious enthusiasm about R

* My classmates in the Master 2 Méthodologie et Statistiques en Recherche Biomédicale for
nice debates and ideas.

* Christophe Genollini for his free manuals: Petit Manuel de S4, Construire un Package and R,
Bonnes pratiques

» Hadley Wickham for his on-line book Advanced R and his helpful packages roxygen2, dev-
tools, testthat and ggplot2 used in this package.

* The R Core Team and particularly Uwe Ligges for his reviews and his tips.

* The peoples implicated in the free softwares and websites used to create this package : R,
RStudio, Git, GitHub, StackOverflow.

https://github.com/jomuller/vartors/issues
https://github.com/jomuller/vartors/issues
http://cran.r-project.org/doc/contrib/Genolini-PetitManuelDeS4.pdf
http://cran.r-project.org/doc/contrib/Genolini-ConstruireUnPackage.pdf
http://cran.r-project.org/doc/contrib/Genolini-RBonnesPratiques.pdf
http://cran.r-project.org/doc/contrib/Genolini-RBonnesPratiques.pdf
http://adv-r.had.co.nz/

20 write_file

Author(s)

Joris Muller

See Also

The mains methods are create_script, import_template and import_vardef. The main work
to the user is to fill a definition of variables table.

Examples

Import a data.frame containing the description of the variables
Show the description of the variable
sample_descvar

Create the script skeleton simply with create_script()
script_skeleton <- create_script(sample_descvar)

watch the result

script_skeleton

Could be written in a file with the write() method

Not run:

write_file(script_skeleton)

End(Not run)
It's possible to create a simple script for a single variable

a_variable_definition <- vardef(varlabel = "Creatinine Clearance”, rname ="creat”, type="numeric”)
create_script(a_variable_definition)

write_file Write file method

Description

Write a file for the specified object

Usage
write_file(object, filepath, append = FALSE,
encoding = getOption("encoding”), ...)

S4 method for signature 'ScriptOutput’
write_file(object, filepath = "dmscript”,

append = FALSE, encoding = getOption("encoding”), ...)
Arguments
object Object to be written as a ScriptOutput object.
filepath Where to write the file. No need to add the extension, it will be put following
the language of ScriptOutput. If an extension is given, then it will be used
append Append Append the file. FALSE by default.
encoding Character encoding to use. Use the default encoding if not specified.

other options for specific methods

write_file 21

Details

If the object is a ScriptOutput object, it will write a script skeleton file .

Value

Return invisibly the file path of the new file

Methods (by class)

e ScriptOutput:

Note

Will be extended to others vartors objects in future releases. I don’t use the write function because
it is not a S3 or a S4 method and it’s hard to promote in a good way.

Author(s)

Joris Muller

See Also

ScriptOutput-class

Examples

Import a data.frame containing the description of the variables
Show the description of the variable
sample_descvar

Create the script skeleton simply with create_script()
script_skeleton <- create_script(sample_descvar)

watch the result

script_skeleton

Could be written in a file with the write() method

Not run:

write_file(script_skeleton)

End(Not run)

Index

*prk:classes DatabaseDef-class, 6, 16
DatabaseDef-class, 6 dedicated documentation, /5
ScriptOutput-class, 13 definition of the variables, 5
ScriptTemplate-class, 15 definition of variables, I8
VariableDef-class, 16 definition of variables table, 7, 11, 19

*Topic datasets 20
bad_database, 2 definition of variables tables, /3, 17
example_df, 8 descvars_skeleton, 7, 18, 19
sample_descvar, 13
variables_description_bad_database, example_df, 2, 8

17 excel_skeleton, 9
+Topic documentation export_template, 9, 15, 19

ScriptTemplate, 14

variable_definition_table, 17
*Topic main

create_script, 5

import_template, 10 import_template, 5, 6, 10, 10, 13-15, 19, 20

vartors, 18 import_vardef, 5-7, 11, 13, 17, 18, 20

wrlte_flle,ZO import_vardef,data.frame-method
«Topic template (import_vardef), 11

gxport_template,9 is_vartors_template, 13
import_template, 10

ScriptTemplate, 14
ScriptTemplate-class, 15

file.copy, 9

general documentation of vartors, 6

list_templates, 12

read.csv, 2, 19

bad_database, 2, 9, 18 read.table, /9
c, 4 sample_descvar, 13
¢ (c,ScriptOutput-method), 3 script (ScriptTemplate), 14
¢,ScriptOutput-method, 3 Script templates, 13
create_script, 4,5, 14, 15, 18-20 script templates, 719
create_script,data.frame,ANY-method script_template, 10, 15
(create_script), 5 ScriptOutput, 4, 6, 20, 21
create_script,DatabaseDef,ANY-method ScriptOutput-class, 13
(create_script), 5 ScriptTemplate, 5, 6, 14, 15
create_script,VariableDef,ANY-method ScriptTemplate-class, 15
(create_script), 5 skeleton (ScriptTemplate), 14
create_script,VariableDef,character-method
(create_script), 5 template, 5

create_script,VariableDef,ScriptTemplate-methbemplate (ScriptTemplate), 14
(create_script), 5
vardef, 7, 15, 17
data.frame, 5, 19 variable_definition_table, 17
DatabaseDef, 5, 6, 11 VariableDef, 5, 6, 15

22

INDEX

VariableDef-class, 16, 16

variables_description_bad_database, 3,
17,18

vartors, 18

vartors-package (vartors), 18

write, 2/

write_file, 6, 19, 20

write_file,ScriptOutput-method
(write_file), 20

23

	bad_database
	c,ScriptOutput-method
	create_script
	DatabaseDef-class
	descvars_skeleton
	example_df
	excel_skeleton
	export_template
	import_template
	import_vardef
	list_templates
	sample_descvar
	ScriptOutput-class
	ScriptTemplate
	ScriptTemplate-class
	vardef
	VariableDef-class
	variables_description_bad_database
	variable_definition_table
	vartors
	write_file
	Index

