CONTRIBUTED RESEARCH ARTICLE

walkr: MCMC Sampling from Convex
Polytopes

by Andy Yao, David Kane

Abstract Consider the intersection of two spaces: the complete solution space to Ax = b and the N-
Simplex, described by 2 x; = 1and x; > 0. The intersection of these two spaces is a convex polytope.

The R package walkr samples from this intersection using two Monte-Carlo Markov Chain (MCMC)
methods: hit-and-run and Dikin walk. walkr also provide tools to examine sample quality.

Introduction

Consider all possible vectors x that satisfy the matrix equation Ax = b, where Ais M x N, xis N x 1,
and b is M x 1. The problem is only interesting when there are more rows than columns (M < N).
If M = N, then there is a single solution, and if M > N, there then are, in general, no solutions. If
the rows of A are linearly dependent, the rows can be reduced until they are linearly independent
without affect the solution space. Therefore, we can assume that the rows are linearly independent
going forward.

Geometrically, every row in Ax = b describes a hyperplane in RN. Therefore, Ax = b represents the
intersection of M unbounded hyperplanes in RY. We bound the sample space by also requiring vector
x to be in the N-simplex. The N-simplex:

X1+ X2+ x3+ ... +xXN = 1
% >0, Vie{l2.,N)

The N-simplex is a N — 1 dimensional object living in N dimensional space. For example, the 3D
simplex is a 2 dimensional triangle in 3D space (Figure 1).

Figure 1: The 3D simplex is a 2 dimensional triangle in 3 dimensional space. The vertices of the
simplex are (1,0,0), (0,1,0), and (0,0,1).

The intersection of the complete solution of Ax = b and the N-simplex is a non-negative convex
polytope. Sampling from such a convex polytope is a difficult problem, and the common approach
is to run Monte-Carlo Markov Chains (MCMC) in the polytope (citation to some math book). walkr
includes two MCMC algorithms: hit-and-run and Dikin walk. Hit-and-run is guarantees uniform
sampling asympotically, but mixes increasingly slowly for higher dimensions of A (cite hitandrun
here). Dikin walk generates a “nearly” uniform sample — favoring points away from the edges of the
polytope — but exhibits much faster mixing (Kannan and Narayanan).

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

MCMC methods generally involve the creation of multiple random walks from different starting
points, each of which is an indepedent “chain”. To check for the quality of the samples, one step would
be to check for signs that the chains have mixed well enough with each other. walkr allows the user to
examine the quality of the samples

3 Dimensional Example
Consider one linear constraint in three dimensions.

x1+x3 =05

We can express this in terms of the matrix equation Ax = b:

X1
A=[1 0 1], b=05 x=|x
X3

Figure 2 shows the intersection of the 3D simplex with Ax = b.

Figure 2: The orange triangle is the 3D-simplex. The blue plane is the hyperplane x; + x3 = 0.5. The
red line is their intersection, which is the space we're interested in sampling from. The end points are
(0,0.5,0.5) and (0.5,0.5,0)

4 Dimensional Example

Just as the 3D simplex is a 2D surface living in 3D space, the 4D simplex (i.e. x; + xo +x3+ x4 =1, x; >
0) can be viewed as a 3D object, as in Figure 3. Specifically, the 4D simplex is the following tetradhedron
when viewed from 3D space, with verticies (1,0,0,0), (0,1,0,0), (0,0,1,0), and (0,0,0,1).

The R Journal Vol. XX/YY, AAAA 2077 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

(1,0,0,0)

(1,0,0,0) (0,1,0,0)

0,0,1,0)

Figure 3: The 4D simplex exists in 4D space, but can be viewed as a 3D object. Specifically, the 4D
simplex is a tetrahedron, with all four sides equilateral triangles.

Now imagine the intersection of the 4D simplex with one hyperplane in 4D (1 equation, or 1 row in
Ax = b). For a specific A and b, we demonstrate the intersection in Figure (below). The resulting
shape is a trapezoid in 4D space.

A=[2 2 2 37], b=l

0.7,03,0,0)

0,0,1,0)

(0,0.6,0,04) ©,0,0.6,04)

©,0,0,1)

Figure 4: The 4D simplex is the tetrahedron. The hyperplane cuts through the tetrahedron, forming
a trapezoid as the intersection (in red). This trapezoid is our sample space, as it is the intersection
of the hyperplane with the 4D simplex. The vertices of the trapezoid are (0.7,0.3,0,0), (0.7,0,0.3,0),
(0,0.6,0,0.4), and (0,0, 0.6,0.4)

In higher dimensions, the same logic applies. Each row in Ax = b is a hyperplane living in RN (given
N variables). Thus, geometrically, our sampling space is: the intersection of hyperplanes with the
N-simplex.

From x-space to a-space

Our sample space is a bounded, non-negative convex polytope. In the literature, convex polytopes
are commonly described by a generic Ax < b. In this section, we present a 3 step procedure which
transforms the intersection of Ax = b and the N-simplex into the Ax < b form (note: the A and b in
Ax < bis not the same as those which we began with in Ax = b. We use A and b in both occasions
because it is standard notation for describing both a matrix equation and a convex polytope.)

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

Step 1: Combining Simplex Equality with Ax = b
Recall that Ain Ax =bis M x N:

N columns

AMxN = [] }Mrows

Add an extra row in Ax = b which captures the equality part of the simplex constraint (x1 + xp + ... +
xn = 1). Call this new matrix A”:

Step 2: Solving for the Null Space — Transforming to x-space
Second, we find all possible x’s that satisfy A’x = b’. To do so, we must first compute the null space of

A’ and then add on any particular solution that satisfy A’x = b'. See Leon’s Linear Algebra textbook
for a review of these basic results (Leon (2014)).

The Null Space of A’ can be represented by N — (M + 1) basis vectors, since we have N variables and
M + 1 constraints in A’. Every basis vector, v;, has N components:

basis vectors = {01, Vo, U3, e , UN(MH)}

Once we have the basis vectors, we could express the set of all x’s that satisfy A’x = b’ in terms of
coefficients «;. The intuition would be that the basis vectors form a coordinate system in the complete
solution space, and that the coefficients «;’s represent linear combinations of basis vectors to cover the
whole space. The complete solution to A’x = b’ could be expressed as the set:

{x = Uparticular T 0101 + 0202 + 2303 + ... + AN (M 41)ON— (M+1) | a; € IR}

Step 3: Including the Simplex Inequalities

We add the inequality constraints from the N-simplex. We require every element of vector x to be
>0:

X = Uparticular T 0101 + 0202 + 303 + . + AN (M4 1)IN-(M+1) =

We express all coefficients «; as a vector «a:

a1
a2

XN—(M+1)

We can also express the set of basis vectors as columns of matrix V:

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

V=1[o1 v . ON_(m41)]

Therefore, the inequality now becomes:

Uparticular +Va >

Va > ~Uparticular

—Va < Uparticular

Here is the generic Ax < b representation of a convex polytope (note again that the A and bin Ax < b
are different from those in Ax = b). We have performed a transformation from x-space to a-space. In
fact, walkr internally performs this transformation, samples &, then maps it back to x-space.

We have performed a transformation, going from describing the polytope in terms of the intersection
of Ax = b and the N-simplex to the general Ax < b form. This is necessary because the following
sample algorithms we are going to present rely on the fact that the polytope is described in the Ax < b
form.

Algorithms

Important: Before moving to sampling algorithms, we clear up on some nomenclature. First, as
established above, the sampling space is a convex polytope. We shall refer to this convex polytope as K.
Moreover, because it is very standard notation in the math and sampling literature to describe a convex
polytope as Ax < b, we describe K with Ax < b. However, we keep in mind that the A, x, and b are not
the same as those in the original problem statement of Ax = b and N-simplex. Instead, as described in
the section above, we are actually sampling coefficients a’s, and then eventually transforming it back
to x-space. Again, Ax < b describe the polytope in terms of transformed coordinates «.

Picking Starting Point

MCMC random walks need a starting point, xp, in the convex polytope. walkr generates such starting
points using linear programming. Specifically, the 1sei function of the limSolve package (cite it) finds
x which:

minimizes |Cx — d|?

subjectto Ax <b, thisis our polytope K

We randomly generate C and d, obtaining points that minize the random objective function. Because
we are performing a minimization, the points that are obtained this way often fall onto the boundaries
of our polytope K. Therefore, we repeat the process 30 times in walkr and then take an average of
those points. This averaged point ought to be still in the polytope K because our polytope is convex.
This procedure generates one starting point x.

Often times in MCMC random walks, it is beneficial to have multiple starting points at different
locations in K. We call each random walk at a starting point a single chain. For example, if we have
5 different starting points, each running its own random walk, we would have 5 chains. Once we
have multiple chains, we could examine whether the chains have all converged to the same stationary
distribution. The correlation between different chains is also of interest. Ideally, we hope to see a low
correlation which reflects that the chains are mixing well with each other.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

Hit-and-run

We point out that the Ax < b described below is the transformed polytope in a-space (discussed in
section above). The A, x, and b are different from those in the original Ax = b and N-Simplex. Once
we sampled points, we perform the transformation which maps the points back into the original

x-space.

1. Set starting point xg as current point

2. Randomly generate a direction d. 1f we are in N dimensions, then d will be a vector of N
components. Specifically, 4 is a uniformly generated unit vector on the N dimensional unit-

sphere

3. Find the chord S through x; along the directions d and —d. We find end points s1 and s; of the
chord by going through the rows of Axy < b one by one, setting the inequality to equality (so
we hit the surface). Then, parametrize the chord along xo by s1 + f(s, — s1), where t € [0,1]

4. Pick a random point x; along the chord S by generating ¢ from Uniform[0,1]

5. Set x1 as current point

6. Repeat algorithm until number of desired points sampled

/ / '
/ \ / \
/ \ [
// * Xy \ / \ﬁl
/
/ N/ \
/ \ / \
(a) Step 1 (b) Step 2
/ \ / \
81
o \\ . \\\
/ .'s“ R
/’ $2 /’ ‘
/ \ / \
(c) Step 3 (d) Step 4

(e) Step 5

Figure 5: The hit-and-run algorithm begins with an interior point xy (Step 1). A random direction is
selected (Step 2), and the chord along that direction is calculated (Step 3). Then, we pick a random
point along that chord and move there as our new point (Step 4). The algorithm is repeated to sample

many points (Step 5)

The R Journal Vol. XX/YY, AAAA 2027

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

walkr uses the har function from the hitandrun package on CRAN (van Valkenhoef and Tervonen) to
implement hit-and-run.

The hit-and-run algorithm asymptotically generates an uniform sample in the convex polytope. The
cost of each step for hit-and-run is also relatively inexpensive. However, as the dimensions of the
polytope increases, the mixing of hit-and-run becomes increasingly slower.

Dikin Walk

Dikin walk is another method of MCMC random walks. In higher dimensions, the Dikin walk mixes
much stronger than hit-and-run does. This desirable mixing effect is due to the fact that Dikin walk
favors points that are far away from the edges of the polytope, thereby sampling a “nearly uniform”
sample (Kannan and Narayanan).

Definitions

Recall, our sampling space is a convex polytope. We call this convex polytope K, which can be
described in the form Ax < b. We point out that this Ax < b is the transformed polytope in a-space
(discussed in transformation section above). The A, x, and b are different from those in the original
Ax = b and N-Simplex.

For the definitions below, let a; represent a row in A, x;, b; represent the ith element of x and b. Also
recall that A isa M x N matrix.

Log Barrier Function ¢:

¢(x) =} —log(b; — aj x)

The log-barrier function of Ax < b measures how extreme or “close-to-the-boundary” a point x € K is,
because the negative log function tends to infinity as its argument tends to zero. The value of ¢ gets
larger and larger as alTx gets closer and closer to b;.

Hessian of Log Barrier H,:

Hy = V2p(x) = = ATD?A , where:

Note: Hy isa N x N linear operator. D is a M x M diagonal matrix.

The Hessian matrix(Hy = V2¢(x)) contains all the second derivatives of the function ¢(x) with respect
to vector x. In the land of optimization, the Hessian contains information on how the landscape is
shaped, and also on extreme values of the landscape. To develop a better understanding of our
intuition for the Hessian, we can think of it as a generalized notion of the second derivative. The
second derivative of —log(z) is le, which also tends to infinity as z tends to zero.

Dikin Ellipsoid DY

Define D”,

%,» the Dikin Ellipsoid centered at xo with radius r as:

Dy = {y | (y—x0)THx(y—x0) <17

The Dikin Ellipsoid with radius = 1 is the unit ball centered at x(with respect to the "Hessian norm"
as the notion of length. The "Hessian norm" we could think as a Azl—z on the Zl—z graph. For xy’s that
are far away from the boundary, given an allowed AZ% (captured in r), the range of allowed values of
Y — xq is very large. This corresponds to having a large Dikin ellipsoid. Alternatively, if x(is near the

boundary, then given an allowed AZ%, only a small range of y — xg is acceptable.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

To rephrase, the Dikin Ellipsoid is the collection of all points whose difference with the current
point(y — xp) is within the unit threshhold of r = 1. When the center xg of the Dikin Ellipsoid is
far from the boundary of the polytope, the ellipsoid is larger. As the center point xy approaches the
boundary of the polytope, the ellipsoid becomes smaller and smaller. Therefore, the ellipsoid is able to
reshape itself as it surveys through the polytope K, biasing away from the corners of the region.

Algorithm

L

Begin with a point xg € K. This starting point must be in the polytope.

Construct Dy,, the Dikin Ellipsoid centered at x(

Pick a random point y from Dy,

If xo & Dy, then reject y. This is counter-intuitive because normally we would think that y must
be contained in the Dikin ellipsoid of x(to be accepted. However, this step actually says that if
the current point xg is not in the Dikin Ellipsoid of the potential point y, then we reject the point
.

If xy € Dy, then accept y with probability min(1, 4/ %) (the big picture is that the ratio of
X0

the determinants are equal to the ratio of volumes of the ellipsoids centered at xg and y. Thus,

the geometric argument would be that this way the Dikin walk can avoid extreme corners of

the region)

repeat until obtained number of desired points

Using walkr

The walkr package has one main function walkr which samples points. walkr has the following
parameters:

A is the right hand side of the matrix equation Ax = b

b is the left hand side of the matrix equation Ax = b

method is the method of sampling — can be either "hit-and-"run"” or "dikin"

thin is the thinning parameter. Every thin-th point is stored into the final sample
burn is the burning parameter. The first burn points are deleted from the final sample

chains is the number of chains we want to sample. Every chain is an element of the list which
walkr eventually returns

ret.format is the return format of the sampled points. If "1ist"”, then a list of chains is returned,
with each chain as a matrix of points. If "matrix”, then a single matrix of points is returned. A
column is a sampled point.

Simple 3D Simplex

To sample from the 3D simplex, the user can simply specify the simplex equation in Ax = b, as walkr
will remove linearly dependent rows internally.

library(walkr)

Loading required package: ggplot2

A <- matrix(1, ncol = 3)
b <-1
sampled_points <- walkr(A = A, b = b, points = 1000,

method = "hit-and-run”, chains = 5, ret.format = "list")

Now, sampled_points contain 1000 points from the 3D simplex. We can visualize the MCMC random
walks by calling the explore_walkr function, which launches a shiny interface from shinystan.

explore_walkr(sampled_points)

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

(e) Step 4 (f) Step 5

Figure 6: The Dikin Walk begins by constructing the Dikin Ellipsoid at the starting point xq (Step 1).
An uniformly random point y is generated in the Dikin Ellipsoid centered at xo (Step 2). If point xq
is not in the Dikin Ellipsoid centered at y, then reject y (Step 3 Case I). If point xg is contained in the

det(H,
deett(<H,;;))) (Step 3 Case II). Once

we’ve successfully accepted y, we set i as our new point, x; (Step 4). Algorithm repeats (Step 5)

Dikin Ellipsoid centered at y, then accept y with probability min(1,

Higher Dimensions with Constraints

Sampling from higher dimensions follows the same syntax. The user just has to specify an A and b.
Note that walkr automatically intersects Ax = b with the N-Simplex, so that the user does not have to
include the simplex equation in Ax = b.

set.seed(314)

A <- matrix(sample(c(0,1,2), 40, replace = TRUE), ncol = 20)

b <- ¢(0.5, 0.3)

sampled_points <- walkr(A = A, b = b, points = 1000, chains = 5,
method = "hit-and-run”, ret.format = "matrix")

Warning in walkr(A = A, b = b, points = 1000, chains = 5, method = "hit-and-run”,

there are parameters with rhat > 1.1, you may want to run your chains for longer

As we could see from the warning message above, walkr internally warns the user if the chains
have not mixed "well-enough" or have not converged to a stationary distribution according to the
Gelman-Rubin Diagnostics (Gelman and Rubin (1992)). It is suggested that if any of the parameter’s

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

10

R value is above 1.1, then the chains should run longer, or equivalently, we could increase the thin

parameter.
set.seed(314)

sampled_points <- walkr(A = A,

sampled_points <- walkr(A = A,

method

method "dikin", ret.format =

= b, points = 1000, chains = 5, thin = 100,
"hit-and-run”, ret.format = "matrix")
= b, points = 1000, chains = 5, thin = 10,

"matrix")

As we could see from the code chunk above, Dikin walk only required thin to be 10, whereas hit-and-
run needed a thin parameter of 100. This is a sign that Dikin mixes faster than hit-and-run does. As
dimensions ramp up to the hundreds, this rapid mixing behavior of Dikin compared to hit-and-run is

even more obvious.

Dikin versus Hitandrun

hit-and-run Dikin Walk

Uniform Sampling Yes, needs O(N?) points, where N is | No, concentrates in the interior

the dimension of the polytope

Mixing O(%) *, slows down substantially | O(MN), where A is M x N; much

as dimension of polytope increases | stronger mixing.
and polytope becomes "skinnier"

Cost of One Step O(MN) O(MN?), in practice, one step of
Dikin is much more costly than hit-
and-run

Rejection Sampling No Yes (see probability formula and x ¢
Dy), but rejection rate not high

*R is the radius of the smallest ball that contains the polytope K. r is the radius of the largest ball
that is contained within the polytope K. Thus, § increases as the polytope is "skinnier"(Kannan and

Narayanan).

As we can in the two trace-plots below, the mixing for Dikin is much better than hit-and-run given the

same set of parameters

set.seed(314)
N <- 50

A <- matrix(sample(c(9,3), N, replace = T), nrow = 1)
A <- rbind(A, matrix(sample(c(@,3), N, replace = T), nrow = 1))

b <- c(0.7, 0.3)

answer_hitandrun <- walkr(A = A, b = b, points = 500, method = "hit-and-run”,
thin = 10, burn = @, chains = 1)

answer_dikin <- walkr(A = A, b =
= 10, burn

thin

I o |1

@, chains = 1)

plot(y = answer_hitandrun[50,], x = 1:500,

xlab = "random walk”, ylab

"value”, type = 'l',

main = "Hit-and-run Mixing"
’

ylim = c(@, 0.2))

The R Journal Vol. XX/YY, AAAA 20ZZ

, points = 500, method = "dikin",

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

11

Hit—and-run Mixing

value
0.00 0.10 0.20
|

I I I I I I
0 100 200 300 400 500

random walk

plot(y = answer_dikin[50,], x = 1:500,
xlab = "random walk”, ylab = "value”, type = 'l',
main = "Dikin Mixing",
ylim = c(@, 0.2))

Dikin Mixing

value
0.00 0.10 0.20
|

I I I I I I
0 100 200 300 400 500

random walk

Conclusion

walkr uses MCMC random walks to sample x from the intersection of two spaces. The first space is
the complete solution space to the underdetermined matrix equation Ax = b, where Aisa M x N
matrix, with M < N. The second space is the N-Simplex, described by equation x; +xp + ... + xy =1
and inequalities x; > 0 for alli € 1,2, ..., N. This intersection is a convex polytope.

In order to sample from this convex polytope, we perform an affine transformation which transforms
from x-space to a-space, in which the a’s are coefficients of basis vectors. Through this transformation,
we are able to re-express our sampling space as a generic Ax < b convex polytope, which allows us to
perform our sampling algorithms. Once the sampling is completed, walkr maps the points back to the
original coordinate system and returns them to the user. This is all done internally by walkr, as the
user only need to specifcy the original A and b in Ax = b.

walkr implements two MCMC sampling algorithm — hit-and-run and Dikin walk. The package
also provides MCMC convergence diagnostics of the random walk’s mixing, as well as a link to the
shinystan package which enables visualization. Hit-and-run is a widely used MCMC algorithm that

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

12

guarantees uniform convergence asymptotically and has a relatively low computation cost for one
step. However, as the dimension of our convex polytope increases, hit-and-run mixes increasingly
slower. Dikin walk is an alternative MCMC algorithm that samples nearly uniformly, favoring points
away from the edges of the polytope. While Dikin walk is only nearly uniform, it exhibits much
stronger mixing in high dimensions than hit-and-run does.

Authors

Andy Yao

Mathematics and Physics
Williams College
Williamstown, MA, USA
andy.yaol7@gmail.com

David Kane

Managing Director

Hutchin Hill Capital

101 Federal Street, Boston, USA
dave.kane@gmail.com

Bibliography

A. Gelman and D. B. Rubin. Inference from iterative simulation using multiple sequences. Statis-
tical Science, 7(4):457-511, 1992. URL https://projecteuclid.org/download/pdf_1/euclid.ss/
1177011136. [p9]

R. Kannan and H. Narayanan. Random Walks on Polytopes and an Affine Interior Point Method for
Linear Programming. Mathematics of Operations Research. [p1, 7, 10]

S.]. Leon. Linear Algebra with Applications. Pearson, 2014. [p4]

G. van Valkenhoef and T. Tervonen. hitandrun: "Hit and Run” and "Shake and Bake"” for Sampling
Uniformly from Convex Shapes. CRAN. [p7]

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

mailto:andy.yao17@gmail.com
mailto:dave.kane@gmail.com
https://projecteuclid.org/download/pdf_1/euclid.ss/1177011136
https://projecteuclid.org/download/pdf_1/euclid.ss/1177011136

	walkr: MCMC Sampling from Convex Polytopes
	Introduction
	3 Dimensional Example
	4 Dimensional Example
	From x-space to -space
	Step 1: Combining Simplex Equality with Ax=b
	Step 2: Solving for the Null Space – Transforming to -space
	Step 3: Including the Simplex Inequalities

	Algorithms
	Picking Starting Point

	Hit-and-run
	Dikin Walk
	Definitions
	Algorithm

	Using walkr
	Simple 3D Simplex
	Higher Dimensions with Constraints

	Dikin versus Hitandrun
	Conclusion
	Authors

