
The websockets Package

Bryan W. Lewis
blewis@illposed.net

October 21, 2011

1 Introduction

HTML 5 websockets define an efficient socket-like communication protocol for the web. The
websockets package is a native websocket implementation for R that supports most of the draft
IETF protocols in use today by web browsers. The websockets package is especially well-suited to
interaction between R and web scripting languages like Javascript. Multiple simultaneous websocket
server and client connections are supported.

The websockets package has few dependencies and, written mostly in R, is easily portable.
It lets Javascript and other scripts embedded in web pages directly interact with R, bypassing
traditional middleware layers like .NET, Java, and web servers normally used for such interaction.
In some cases, websockets can be much more efficient than traditional Ajax schemes for interacting
with clients over web protocls.

2 Running an R websockets server, step by step

The websockets package includes a server function that can initiate and respond to websocket
and HTTP events over a network connection (websockets are an extension of standard HTTP). All
R/Websocket server applications share the following basic recpie:

1. Load the library.

2. Initialize a websocket server with create_server.

3. Set callback functions that will respond to desired events.

4. Service the server’s socket interface with service, often in an event loop.

The websockets Package

5. Shutdown the server and delete the server environment when done.

We outline the steps with examples below.

2.1 Load the library

library("websockets")

The library depends on the caTools, bitops and a recent version of the digest package. It suggests
that the RJSONIO library be installed, as it is quite useful to have available when interacting with
Javascript.

2.2 Initialize a websocket server with create_server

The R/Websocket service is initialized by a call to the create_server function. (The initialization
method called createContext from older versions of the package is still supported.) The function
takes two arguments, a network port to listen on, and an optional function closure to service
standard HTTP requests (described in greater detail below). The create_server function returns
an environment that stores data associated with the newly created server. “Callback” functions
may be assigned that respond to websocket events. Here is an example that creates a websocket
server on the default port of 7681:
server = create_server()

The websocket server will respond directly to any websocket client request. For convenience,
the server may optionally also service basic HTML reuests. For example, the basic package demo
available from demo(’websockets’) serves clients the file basic.html located in the package in-
stallation path. However, serving HTML web pages is not the primary function of the websockets
library–see the Rook package for a comprehensive R web service.

2.3 Set callback functions to respond to events

Clients may connect to the websocket service immediately after the server is initialized. The server
may write data to or close client connections at any time. However, one must define functions to
respond to incoming client events.

A server supports the following incoming events:

established: Occurs when a websocket client connection is successfully negotiated.

closed: Occurs when a client websocket connection has been closed.

receive: Occurs when data is received from a connection.

2

http://cran.r-project.org/web/packages/Rook/

The websockets Package

R functions may be defined to handle some, all, or none of the above event types. Such functions
are termed “callbacks.”

The set_callback function may be used to define a callback function in the server environment
returned by create_server. (It simply assigns the functions in that environment.)

The receive callback function must take precisely three parameters that are filled in by the
library with values corresponding to an event that invokes the callback. The required parame-
ters are: DATA: A vector of type raw that holds any incoming data associated with the event.
(It may be of length zero if the event does not have any data to report.); WS: The websocket
client associated with the event, represented as an R list; HEADER: Header data returned by newer
protocol versions, or NULL for protocol version 00. The complete frame header is returned
as described in the IETF Draft ttp://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-17
http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-17.

The closed and receive function must each take one argument, a WS websocket client associated
with the event, represented as an R list.

The following example established function sends a text message to each newly-established
connection:
f = function(WS) {

websocket_write("Hello there!", WS)
}
set_callback("established", f, server)

Here is an example receive callback that receives data from a client connection and simply
echoes it back:
g = function(DATA, WS, ...) {

websocket_write(DATA, WS)
}
setCallback("receive", g, server)

2.4 Accept requests from web clients

Javascript and other web script clients can very easily interact with the R websockets library
directly from most browsers. The listing below presents a very basic example client web page that
includes Javascript code to open a connection to a local websocket server running on port 7681.
See the demo scripts in the the package installation path for more complete examples.
<html><body>
<script>
socket = new WebSocket("ws://localhost:7681", "chat");
try {

3

The websockets Package

socket.onmessage = function got_packet(msg) {
document.getElementById("output").textContent = msg.data;

}
catch(ex) {document.getElementById("output").textContent = "Error: " + ex;}
</script>
<div id="output"> SOCKET DATA APPEARS HERE </div>
</body></html>

Note: The websockets package presently ignores the sub-protocol (“chat” in the above
example).

2.5 Service the socket interface with service

Incoming websocket events are queued. The service function processes events on a first-come,
first-served basis. The service function processes each event by invoking the appropriate callback
function. It returns after a configurable time out if there are no events to service. Events may be
processed indefinitely by evaluating the service function in a loop, for example:
while(TRUE)
{

service(server)
}

The service function timeout value prevents the R session from spinning and consuming lots of
CPU time. See the service help page for more information.

2.6 Sending data to clients

The websocket_write and websocket_broadcast functions are used to send data to connected
clients. The websocket_broadcast function emulates a true broadcast by sending data in a loop
to all connected websocket clients associated with the specified server.

The websocket_write function may be used at any time to send data to a specific websocket
client. Each websocket server environment returned by the create_server function maintains a list
of connected client sockets in the variable client_sockets. Each client socket is in turn represented
by an R list. The following example assumes that the server environment has been initialized and
contains at least one connected client:
websocket_write("Hello", server$client_sockets[[1]])

Note the use of the double bracket indexing operator to select a single list element
from the client_sockets list.

4

The websockets Package

2.7 Close the server when done

Servers should be closed when done as follows:
websocket_close(server)

2.8 HTTP convenience functions

The websockets package includes two convenience function closures for servicing basic HTTP re-
quests to non-websocket clients: static_file_service and static_text_service. The functions
take either a file name or text string that contains an HTML web page, respectively, and issue a well-
formed HTTP 200 response to the requesting client. They are intended to be used in the webpage
argument to the create_server function. These functions may be used to furnish web browser
clients with an HTML page that contains Javascript code to establish a websocket connection to R.

The following example defines a basic web page:
content='<html><body>

<script>
socket = new WebSocket("ws://localhost:7681", "chat");
try {

socket.onmessage = function got_packet(msg) {
document.getElementById("output").textContent = msg.data;

}
catch(ex) {document.getElementById("output").textContent = "Error: " + ex;}
</script>
<div id="output"> SOCKET DATA APPEARS HERE </div>
</body></html>

'

server = create_server(webpage=static_text_service(content))

The web page text will be issued to any client making an HTTP GET request. To serve content
from files instead, use the static_file_service function. Additionally, the static_file_service
function checks to see if the file has been updated and always uses a fresh version.

Note that both convenience functions mostly ignore the GET RESOURCE and all other GET
request parameters. The always only return the specified HTML content. POST requests are
always ignored by the websocket server. Users are free to define their own function closures to use
instead, which may be more full-featured. Use the existing functions as a guide. If you really need
a full-featured HTTP service, we reccommend using the Rook package instead.

5

http://cran.r-project.org/web/packages/Rook

The websockets Package

3 R as a websocket client

The websockets package includes functions that let R act as a websocket client. It supports protocol
versions 00 and newer protocols up to at least version 08 (version 00 and 08 are most widely used
by web browsers at the time of this writing).

The websocket function returns an environment similar to the create_server function, with a
single list element in the client_sockets object corresponding to the client. Set callback functions
on the new client context to handle websocket events just as outlined above for websocket servers.
And use thewebsocket_write function exactly as outlined about to write data through the client
connection to the connected server.

The following example connects to a publicly available websocket echo server (using the 00
protocol).
> library(websockets)
> client = websocket("ws://echo.websocket.org", port=80)
> set_callback("receive", function(DATA, WS, HEADER) cat(rawToChar(DATA)), client

)

> websocket_write("Testing, testing", client)
[1] 1

> service(client)
Testing, testing

>websocket_close(client)

See the websocket man page for more information.

4 Tips and miscellaneous notes

We present a few more advanced and other miscellaneous notes in this section.

4.1 Binary data

Binary data is supported by IETF websocket protocol versions greater than 00. The websockets
package supports the older 00 protocol with ASCII-only data, as well as binary data transfers with
newer clients. At the date of this writing, the only commonly available web browser supporting the
new protocols is Google Chrome (> browser version 14), which uses the IETF version draft-ietf-
hybi-thewebsocketprotocol-08.

6

The websockets Package

JSON is probably a good non-binary choice to use when interacting with Javascript and the
data size is not too large. The suggested RJSONIO package helps map many native R objects to
JSON and vice versa, greatly facilitating interaction between R and Javascript. But, JSON data is
transferred as characters, which may incur performance and in some cases numeric issues.

7

	Introduction
	Running an R websockets server, step by step
	Load the library
	Initialize a websocket server with create_server
	Set callback functions to respond to events
	Accept requests from web clients
	Service the socket interface with service
	Sending data to clients
	Close the server when done
	HTTP convenience functions

	R as a websocket client
	Tips and miscellaneous notes
	Binary data

