
Best Orthogonalized Subset Selection (BOSS)

Sen Tian

2021-03-06

Installation
We maintain a Github page for the package and keep the most updated version there. To install, simply run
the following commands in the console:
library(devtools)
install_github(repo="sentian/BOSSreg", subdir="r-package")

A stable version can be installed from CRAN using
install.packages(repo="BOSSreg", repos = "http://cran.us.r-project.org")

Introduction
BOSS is a least squares-based subset selection method. It is based on takes the following steps:

• order the predictors based on their partial correlations with the response;

• perform best subset regression upon the orthogonal basis of the ordered predictors;

• transform the coefficients back to the original space;

• choose the optimal solution using the selection rule AICc-hdf.

The hdf is a heuristic degrees of freedom for BOSS that can be plugged into a selection rule such as AICc-hdf,
which can then be used as a selection rule for BOSS. AICc-hdf is defined as

AICc-hdf = n log
(
RSS
n

)
+ n

n+ hdf
n− hdf − 2 .

More details can be referred to Tian, Hurvich, and Simonoff (2021).

This vignette is structured as follows. We start by simulating a dataset. We then introduce the components,
functionalities and basic usage of the package. This is followed by a discussion contrasting BOSS and
forward stepwise regression (FS). Finally, we study real data examples and compare BOSS with some popular
regularization methods. Note that this vignette is based on R-3.6.1. Slightly different results may be
obtained using pre-3.6.0 versions of R since the default underlying random number generator has been
changed in version 3.6.0.

Simulated datasets
The model generating mechanism is y = Xβ + ε. We consider a sparse model where only a few predictors
matter, with a high signal-to-noise ratio. The detailed parameters are given as follows:
n = 200 # Number of observations
p = 14 # Number of predictors
p0 = 6 # Number of active predictors (beta_j=0)
rho = 0.9 # Correlation between predictors

1

nrep = 1000 # Number of replications of y to be generated
SNR = 7 # Signal-to-noise ratio
seed = 65 # The seed for reproducibility

We make the predictors with βj 6= 0 pairwisely correlated with opposite effects. We generate 1000 replicated
datasets where the response y is generated with fixed X. The columns of X and y are constructed to have
zero mean, so we can exclude the intercept term from model fitting.
library(MASS)
Function to generate the data
Columns of X have mean 0 and norm 1, y has mean 0
simu.data <- function(n, p, p0, rho, nrep, SNR, seed){

True beta
beta = rep(0,p)
beta = c(rep(c(1,-1),p0/2), rep(0,p-p0))
names(beta) = paste0('X', seq(1,p))
Covariance matrix
covmatrix = matrix(0,nrow=p,ncol=p)
diag(covmatrix) = 1
for(i in 1:(p0/2)){

covmatrix[2*i-1,2*i] = covmatrix[2*i,2*i-1] = rho
}
Generate the predictors given the correlation structure
set.seed(seed)
x = mvrnorm(n,mu=rep(0,p),Sigma=covmatrix)
x = scale(x,center=TRUE,scale=FALSE)
colnorm = apply(x,2,function(m){sqrt(sum(mˆ2))})
x = scale(x,center=FALSE,scale=colnorm) # standardization
Sigma calculated based on SNR
sd = sqrt(t(beta/colnorm)%*%covmatrix%*%(beta/colnorm) / SNR)
mu = x%*%beta
Generate replications of y by fixing X
y = matrix(rep(mu,each=nrep),ncol=nrep,byrow=TRUE) +
scale(matrix(rnorm(n*nrep,mean=0,sd=sd),nrow=n,ncol=nrep),center=TRUE,scale=FALSE)

return(list(x=x, y=y, beta=beta, sigma=sd))
}
dataset = simu.data(n, p, p0, rho, nrep, SNR, seed)
x = dataset$x
y = dataset$y
beta = dataset$beta
mu = x%*%beta
sigma = dataset$sigma

The first p0 = 6 predictors are active with βj 6= 0.
print(beta)
#> X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14
#> 1 -1 1 -1 1 -1 0 0 0 0 0 0 0 0

An illustration of the package
Fitting the model is simple.
library(BOSSreg)
Choose a single replication as illustration

2

rep = seed
Fit the model
boss_model = boss(x, y[,rep], intercept = FALSE)

The ‘boss’ object contains estimated coefficient vectors for the entire solution paths of both BOSS and FS.
betahat_boss = boss_model$beta_boss
betahat_fs = boss_model$beta_fs
print(dim(betahat_boss))
#> [1] 14 15

By default, it also provides the hdf for BOSS and multiple information criteria.
The heuristic degrees of freedom
plot(0:p, boss_model$hdf, main='hdf', ylab='', xlab='subset size', type='b')
abline(0, 1, lty=2)
AICc-hdf (scaled by 1/n, and up to a constant)
plot(0:p, boss_modelIC_bossaicc, main='AICc-hdf', ylab='', xlab='subset size', type='b')

0 2 4 6 8 12

0
5

15

hdf

subset size

0 2 4 6 8 12

−
7.

5
−

6.
5

AICc−hdf

subset size

The optimal estimated coefficient vector and fitted mean vector can be obtained as follows.
The default is chosen by AICc
betahat_aicc = coef(boss_model)
muhat_aicc = predict(boss_model, newx=x)
Use Cp rather than AICc
betahat_cp = coef(boss_model, ic='cp')
muhat_cp = predict(boss_model, newx=x)

In addition to information criteria, K-fold cross-validation (CV) with multiple replications can be used as a
selection rule, with 10-fold CV with one replication the default choice.
The default is 10-fold CV with 1 replication
set.seed(seed)
boss_cv_model = cv.boss(x, y[,rep], intercept=FALSE)
Coefficient vector selected by minimizing CV error
betahat_cv = coef(boss_cv_model)
Fitted values
muhat_cv = predict(boss_cv_model, newx=x)

Calling ‘cv.boss’ runs CV for FS as well.

3

Coefficient vector for FS selected by CV
betahat_fs_cv = coef(boss_cv_model, method='fs')
Fitted values
muhat_fs_cv = predict(boss_cv_model, newx=x, method='fs')

Here is a comparison of the coefficient vectors selected using different selection rules. The first three columns
are for BOSS while the last column is for FS.
tmp = cbind(betahat_aicc, betahat_cp, betahat_cv, betahat_fs_cv)
dimnames(tmp) = list(dimnames(tmp)[[1]], c('B0SS AICc', 'BOSS Cp', 'BOSS CV', 'FS CV'))
print(tmp)
#> 14 x 4 sparse Matrix of class "dgCMatrix"
#> B0SS AICc BOSS Cp BOSS CV FS CV
#> X1 1.10223490 1.10223490 1.10223490 1.10284826
#> X2 -1.08347551 -1.08347551 -1.08347551 -1.08515601
#> X3 0.98945399 0.98945399 0.98945399 0.99385748
#> X4 -0.98187488 -0.98187488 -0.98187488 -0.98686091
#> X5 0.98030660 0.98030660 0.98030660 0.98393430
#> X6 -0.94454349 -0.94454349 -0.94454349 -0.94536470
#> X7
#> X8 . . . -0.02397828
#> X9 -0.01841478 -0.01841478 -0.01841478 -0.01863818
#> X10
#> X11
#> X12
#> X13
#> X14

Comparing the solutions of BOSS and FS at every subset size
We see that FS gives a denser solution than BOSS in this case. Under the specific design of the true model, the
true active predictors (X1, · · · , X6) are pairwisely correlated with opposite effects. Predictors (e.g. (X1, X2))
together lead to a high R2 but each single one of them contributes little. As a result, FS can have trouble
stepping in the true active predictors in the early stages. For example, as indicated below, the inactive
predictor X9 joins in the first step. On the contrary, BOSS takes the same order of predictors as FS, and
performs best subset regression on their orthogonal basis, providing the chance to re-evaluate (or re-order)
the predictors.
X9 joins first
print(boss_model$steps_x)
#> X9 X4 X3 X5 X6 X1 X2 X8 X13 X12 X10 X14 X11 X7
#> 9 4 3 5 6 1 2 8 13 12 10 14 11 7

Let’s set aside the selection rule for now, and compare the solutions of the two methods at every subset size.
The subset size is the number of predictors k for FS, and it is the number of We calculate the average RMSE
at each subset size based on 1000 replications. The RMSE is defined as

RMSE =
√

1
n
‖µ̂−Xβ‖2

2.

Function to calculate RMSE
calc.rmse <- function(muhat){
sqrt(Matrix::colSums(sweep(muhat, 1, mu)ˆ2) / n)

}
rmse_solutionpath = list(BOSS=list(), FS=list())

4

for(rep in 1:nrep){
boss_model = boss(x, y[,rep], intercept=FALSE)
RMSE along the solution path
rmse_solutionpath[['BOSS']][[rep]] = calc.rmse(x %*% boss_model$beta_boss)
rmse_solutionpath[['FS']][[rep]] = calc.rmse(x %*% boss_model$beta_fs)

}
saveRDS(rmse_solutionpath, 'vignettes/rmse_solutionpath.rds')

BOSS clearly provides a better solution path than FS in steps less than 8.
Average RMSE over replications
rmse_avg = lapply(rmse_solutionpath, function(xx){colMeans(do.call(rbind, xx))})
plot(0:p, rmse_avg$FS, col='blue', pch=1, main='Average RMSE along the solution path',

ylab='RMSE', xlab='Subset size')
points(0:p, rmse_avg$BOSS, col='red', pch=3)
legend('topright', legend = c('FS', 'BOSS'), col=c('blue', 'red'), pch=c(1,3))

0 2 4 6 8 10 12 14

0.
01

0.
03

0.
05

Average RMSE along the solution path

Subset size

R
M

S
E

FS
BOSS

Next, we bring back the selection rules and compare their performances. The selection rule for BOSS is
AICc-hdf and is 10-fold CV for FS. BOSS shows a better predictive performance, and it provides sparser
solutions than FS does.
rmse = nvar = list(BOSS=c(), FS=c())
set.seed(seed)
for(rep in 1:nrep){
boss_cv_model = cv.boss(x, y[,rep], intercept=FALSE)
RMSE for the optimal subset selected via a selection rule
rmse[['BOSS']][rep] = calc.rmse(predict(boss_cv_model$boss, newx = x)) # AICc
rmse[['FS']][rep] = calc.rmse(predict(boss_cv_model, newx = x, method = 'fs')) # CV
Number of variables
nvar[['BOSS']][rep] = sum(coef(boss_cv_model$boss)!=0)
nvar[['FS']][rep] = sum(coef(boss_cv_model, method='fs')!=0)

}
saveRDS(list(rmse=rmse, nvar=nvar), '/vignettes/boss_fs.rds')

5

Dataset n, p Metrics BOSS FS LASSO SparseNet
RMSE 3.372 3.370 3.363 3.370

predictors 12.004 12.012 12.012 12.000boston 506, 13
running time (s) 0.032 0.272 0.004 0.264

RMSE 233.853 237.335 234.064 235.242
predictors 11.152 10.586 14.205 12.783hitters 263, 19

running time (s) 0.016 0.101 0.005 0.359
RMSE 1565.476 1570.892 1564.807 1566.278

predictors 17.991 16.116 16.008 15.407college 777, 17
running time (s) 0.108 0.937 0.006 0.482

RMSE 2.628 2.628 2.643 2.629
predictors 3.000 3.000 5.008 3.010auto 392, 6

running time (s) 0.012 0.091 0.005 0.175

Make the plots
boxplot(rmse, outline=FALSE, main='RMSE')
boxplot(nvar, outline=FALSE, main='Number of predictors')

BOSS FS

0.
00

1
0.

00
5

RMSE

BOSS FS

6
8

10
12

Number of predictors

Real data examples
We compare the performance of BOSS with FS and some popular regularization methods on several real
datasets. We consider four datasets from the StatLib library, ‘boston housing,’ ‘hitters,’ ‘auto’ and ‘college.’
An intercept term is included in all of the procedures. We present the results in this section and provide the
code in the Appendix at the end of this document.

The selection rule is AICc for BOSS and LASSO, and 10-fold CV for FS and SparseNet, respectively. We
use the R packages glmnet and sparsenet to fit LASSO and SparseNet, respectively. We see that BOSS has
the minimum RMSE for the ‘hitters’ and ‘auto’ datasets, while LASSO has the minimum RMSE for the
‘boston housing’ and ‘college’ datasets. Due to an efficient implementation of the cyclic coordinate descent,
the ‘glmnet’ algorithm provides an extremely fast LASSO solution. BOSS is also relatively computationally
efficient, and is much faster than the remaining methods.

References
Tian, Sen, Clifford M. Hurvich, and Jeffrey S. Simonoff. 2021. “On the Use of Information Criteria for Subset

Selection in Least Squares Regression.” https://arxiv.org/abs/1911.10191.

6

http://lib.stat.cmu.edu/datasets/
https://arxiv.org/abs/1911.10191

Appendix: Code for the real data examples
The following code is used to pre-process the datasets. We remove all of the entries with ‘NA’ values. We
recast binary categorical variables into {0, 1} and remove categorical variables with more than two categories.
library(ISLR)
dataset = list()
Boston Housing data
tmp = Boston
tmp = na.omit(tmp)
tmp$chas = as.factor(tmp$chas)
dataset$boston$x = data.matrix(tmp[,!names(tmp) %in% 'medv'])
dataset$boston$y = tmp$medv

MLB hitters salary
tmp = Hitters
tmp = na.omit(tmp)
tmp[,c('League', 'Division', 'NewLeague')] =
lapply(tmp[,c('League', 'Division', 'NewLeague')], as.factor)

dataset$hitters$x = data.matrix(tmp[,!(names(tmp) %in% c('Salary'))])
dataset$hitters$y = tmp$Salary

College data
tmp = College
tmp$Private = as.factor(tmp$Private)
dataset$college$x = data.matrix(tmp[,!(names(tmp) %in% c('Outstate'))])
dataset$college$y = tmp$Outstate

Auto data
tmp = Auto
dataset$auto$x = data.matrix(tmp[,!(names(tmp) %in% c('mpg','name','origin'))])
dataset$auto$y = tmp$mpg

Code to calculate leave-one-out error, number of predictors and timing for each fitting procedure. Note that
the following code took roughly 20 minutes to run on a single core of a local machine with a 2.7 GHz i7
processer and 16 GB RAM.
library(glmnet)
library(sparsenet)
rmse <- function(y_hat, y){

sqrt(sum((y_hat - y)ˆ2 / length(y)))
}
rdresult <- function(x, y, nrep, seed){
p = dim(x)[2]

allmethods = c('lasso','sparsenet','boss','fs')
error = numvar = time = replicate(length(allmethods), rep(NA,nrep), simplify=F)
names(error) = names(numvar) = names(time) = allmethods

set.seed(seed)
for(i in 1:nrep){
index = 1:nrow(x)
index = index[-i]

x.train = x[index, , drop=FALSE]

7

y.train = y[index]
x.test = x[-index, , drop=FALSE]
x.test.withint = cbind(rep(1,nrow(x.test)), x.test)
y.test = y[-index]

BOSS
ptm = proc.time()
boss_model = boss(x.train, y.train, intercept = TRUE)
time_tmp = proc.time() - ptm
boss_pred = as.numeric(predict(boss_model, newx=x.test))
error$boss[i] = rmse(boss_pred, y.test)
numvar$boss[i] = sum(coef(boss_model)!=0)
time$boss[i] = time_tmp[3]

FS
ptm = proc.time()
boss_cv_model = cv.boss(x.train, y.train)
time_tmp = proc.time() - ptm
fs_pred = as.numeric(predict(boss_cv_model, newx=x.test, method='fs'))
error$fs[i] = rmse(fs_pred, y.test)
numvar$fs[i] = sum(coef(boss_cv_model, method='fs')!=0)
time$fs[i] = time_tmp[3]

LASSO
ptm = proc.time()
lasso_model = glmnet(x.train, y.train, intercept=TRUE)
lasso_aicc = as.numeric(calc.ic(predict(lasso_model, newx=x.train), y.train,

ic='aicc', df=lasso_model$df+1))
lasso_pred = predict(lasso_model, newx=x.test, s=lasso_model$lambda[which.min(lasso_aicc)])
time_tmp = proc.time() - ptm
error$lasso[i] = rmse(lasso_pred, y.test)
numvar$lasso[i] = sum(coef(lasso_model, s=lasso_model$lambda[which.min(lasso_aicc)])!=0)
time$lasso[i] = time_tmp[3]

SparseNet
ptm = proc.time()
sparsenet_cv_model = cv.sparsenet(x.train, y.train)
time_tmp = proc.time() - ptm
sparsenet_pred = predict(sparsenet_cv_model, newx=x.test, which='parms.min')
error$sparsenet[i] = rmse(sparsenet_pred, y.test)
numvar$sparsenet[i] = sum(coef(sparsenet_cv_model, which='parms.min')!=0)
time$sparsenet[i] = time_tmp[3]

}
return(list(error=error, numvar=numvar, time=time))

}
result = lapply(dataset, function(xx){rdresult(xxx, xxy, nrow(xx$x), seed)})
saveRDS(result, '/vignettes/realdata.rds')

This is the code to construct the table on page 6.
library(knitr)
library(kableExtra)
Function to extract the results
tmp_function <- function(method){

8

unlist(lapply(result, function(xx){
unlist(lapply(xx, function(yy){

round(mean(yy[[method]]), 3)
}))

}))
}
tmp = data.frame(Dataset = rep(names(result), each=3),
n_p = rep(unlist(lapply(dataset, function(xx){paste(dim(xx$x), collapse = ', ')})) , each=3),
Metrics = rep(c('RMSE', '# predictors', 'running time (s)'), length(result)),
BOSS = tmp_function('boss'),
FS = tmp_function('fs'),
LASSO = tmp_function('lasso'),
SparseNet = tmp_function('sparsenet'))

rownames(tmp) = NULL
colnames(tmp)[2] = 'n, p'
kable(tmp, align = "c") %>%
kable_styling(full_width = F) %>%
column_spec(1, bold = T) %>%
collapse_rows(columns = 1:2, valign = "middle")

9

	Installation
	Introduction
	Simulated datasets
	An illustration of the package
	Comparing the solutions of BOSS and FS at every subset size
	Real data examples
	References
	Appendix: Code for the real data examples

