
Package ‘RFAE’
January 17, 2026

Title Autoencoding Random Forests

Version 0.1.0

Maintainer Binh Duc Vu <vuducbinh2210@gmail.com>

Description Autoencoding Random Forests ('RFAE') provide a method to
autoencode mixed-type tabular data using Random Forests ('RF'), which
involves projecting the data to a latent feature space of user-chosen
dimensionality (usually a lower dimension), and then decoding the latent
representations back into the input space. The encoding stage is useful for
feature engineering and data visualisation tasks, akin to how principal
component analysis ('PCA') is used, and the decoding stage is useful
for compression and denoising tasks. At its core, 'RFAE' is a
post-processing pipeline on a trained random forest model. This means
that it can accept any trained RF of 'ranger' object type: 'RF', 'URF' or
'ARF'. Because of this, it inherits Random Forests' robust performance and
capacity to seamlessly handle mixed-type tabular data. For more details, see
Vu et al. (2025) <doi:10.48550/arXiv.2505.21441>.

License GPL (>= 3)

URL https://github.com/bips-hb/RFAE

BugReports https://github.com/bips-hb/RFAE/issues

Depends R (>= 4.4.0)

Imports caret, data.table, foreach, Matrix, methods, mgcv, ranger,
RANN, RSpectra, stats, tibble

Suggests arf, ggplot2, knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.3.3

Config/testthat/edition 3

NeedsCompilation no

Author Binh Duc Vu [aut, cre] (ORCID: <https://orcid.org/0009-0001-4552-5367>),
Jan Kapar [aut] (ORCID: <https://orcid.org/0009-0000-6408-2840>),
Marvin N. Wright [aut] (ORCID: <https://orcid.org/0000-0002-8542-6291>),
David S. Watson [aut] (ORCID: <https://orcid.org/0000-0001-9632-2159>)

1

https://doi.org/10.48550/arXiv.2505.21441
https://github.com/bips-hb/RFAE
https://github.com/bips-hb/RFAE/issues
https://orcid.org/0009-0001-4552-5367
https://orcid.org/0009-0000-6408-2840
https://orcid.org/0000-0002-8542-6291
https://orcid.org/0000-0001-9632-2159

2 decode_knn

Repository CRAN

Date/Publication 2026-01-17 11:20:07 UTC

Contents
decode_knn . 2
encode . 3
post_x . 5
predict.encode . 5
prep_x . 6
reconstruction_error . 7

Index 9

decode_knn Decode RF Embeddings

Description

Maps the low-dimensional KPCA embedding of a random forest back to the input space via iterative
k-nearest neighbors.

Usage

decode_knn(rf, emap, z, x_tilde = NULL, k = 5, parallel = TRUE)

Arguments

rf Pre-trained random forest object of class ranger.

emap Spectral embedding learned via eigenmap.

z Matrix of embedded data to map back to the input space.

x_tilde Supplied training data, if none supplied then the RF is used to generate synthetic
training data according to the eForest scheme. Default is NULL.

k Number of nearest neighbors to evaluate.

parallel Compute in parallel? Must register backend beforehand, e.g. via doParallel.

Details

decode_knn decodes the embedded data back to the original input space using a k-nearest neigh-
bors (kNN) (Cover & Hart, 1967) approach. For a given embedding vector, decoding works by
first finding the k nearest embeddings within the training set. Then, x_tilde is either supplied or
generated from the RF (if generated, using the ’eForest’ scheme (Feng & Zhou, 2018)), which pro-
vides a proxy for the training samples associated with these embeddings, to avoid needing to retain
training data. Finally, data is reconstructed by weighted averaging for numerical features, and the
most likely value for categorical features.

encode 3

Value

Decoded dataset.

References

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Infor-
mation Theory, 13(1), 21–27.

Feng, J., & Zhou, Z. H. (2018, April). Autoencoder by forest. In Proceedings of the AAAI confer-
ence on artificial intelligence (Vol. 32 , No. 1).

Examples

Set seed
set.seed(1)

Split training and test
trn <- sample(1:nrow(iris), 100)
tst <- setdiff(1:nrow(iris), trn)

Train RF, learn the encodings and project test points.
rf <- ranger::ranger(Species ~ ., data = iris[trn,], num.trees=50)
emap <- encode(rf, iris[trn,], k=2)
emb <- predict(emap, rf, iris[tst,])

Decode test samples back to the input space
out <- decode_knn(rf, emap, emb, k=5)$x_hat

encode Encoding with Diffusion Maps

Description

Computes the diffusion map of a random forest kernel, including a spectral decomposition and
associated weights.

Usage

encode(rf, x, k = 5L, stepsize = 1L, parallel = TRUE)

Arguments

rf Pre-trained random forest object of class ranger.

x Training data for estimating embedding weights.

k Dimensionality of the spectral embedding.

stepsize Number of steps of a random walk for the diffusion process. See Details.

parallel Compute in parallel? Must register backend beforehand, e.g. via doParallel.

4 encode

Details

encode learns a low-dimensional embedding of the data implied by the adjacency matrix of the rf.
Random forests can be understood as an adaptive nearest neighbors algorithm, where proximity
between samples is determined by how often they are routed to the same leaves. We compute
the spectral decomposition of the model adjacencies over the training data X, and take the leading
k eigenvectors and eigenvalues. The function returns the resulting diffusion map, eigenvectors,
eigenvalues, and leaf sizes.

Let K be the weighted adjacency matrix of code x implied by rf. This defines a weighted, undi-
rected graph over the training data, which we can also interpret as the transitions of a Markov
process ’between’ data points. Spectral analysis produces the decomposition K = V λV −1, where
we can take leading nonconstant eigenvectors. The diffusion map Z =

√
nV λt (Coifman & Lafon,

2006) represents the long-run connectivity structure of the graph after t time steps of a Markov
process, with some nice optimization properties (von Luxburg, 2007). We can embed new data into
this space using the Nyström formula (Bengio et al., 2004).

Value

A list with eight elements: (1) Z: a k-dimensional nonlinear embedding of x implied by rf. (2)
A: the normalized adjacency matrix (3) v: the leading k eigenvectors; (4) lambda: the leading k
eigenvalues; (5) stepsize: the number of steps in the random walk. (6) leafIDs: a matrix with
nrow(x) rows and rf$num.trees columns, representing the terminal nodes of each training sample
in each tree; (7) the number of samples in each leaf; (8) metadata about the rf.

References

Bengio, Y., Delalleau, O., Le Roux, N., Paiement, J., Vincent, P., & Ouimet, M. (2004). Learning
eigenfunctions links spectral embedding and kernel PCA. Neural Computation, 16(10): 2197-2219.

Coifman, R. R., & Lafon, S. (2006). Diffusion maps. Applied and Computational Harmonic Anal-
ysis, 21(1), 5–30.

von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4), 395–416.

See Also

adversarial_rf

Examples

Train ARF
arf <- arf::adversarial_rf(iris)

Embed the data
emap <- encode(arf, iris)

post_x 5

post_x Post-process data

Description

This function prepares output data.

Usage

post_x(x, meta, round = TRUE)

Arguments

x Input data.frame.

meta Metadata.

round Round continuous variables to their respective maximum precision in the real
data set?

Value

A data.frame which follows the structure and ordering of the input dataset.

predict.encode Predict Spectral Embeddings

Description

Projects test data into the forest embedding space using a pre-trained encoding map.

Usage

S3 method for class 'encode'
predict(object, rf, x, parallel = TRUE, ...)

Arguments

object Spectral embedding for the rf learned via eigenmap.

rf Pre-trained random forest object of class ranger.

x Data to be embedded.

parallel Compute in parallel? Must register backend beforehand, e.g. via doParallel.

... Additional arguments passed to methods.

6 prep_x

Details

This function uses the weights learned via eigenmap to project new data into the low-dimensional
embedding space using the Nyström formula. For details, see Bengio et al. (2004).

Value

A matrix of embeddings, with nrow(x) rows and k columns, the latter argument used to learn the
eigenmap.

References

Bengio, Y., Delalleau, O., Le Roux, N., Paiement, J., Vincent, P., & Ouimet, M. (2004). Learning
eigenfunctions links spectral embedding and kernel PCA. Neural Computation, 16(10): 2197-2219.

See Also

adversarial_rf

Examples

Set seed
set.seed(1)

Split training and test
trn <- sample(1:nrow(iris), 100)
tst <- setdiff(1:nrow(iris), trn)

Train RF. You can also use RF variants, such as the Adversarial Random
Forests (ARF).
rf <- ranger::ranger(Species ~ ., data = iris[trn,], num.trees=50)

Learn the encodings, which are found using diffusion maps.
emap <- encode(rf, iris[trn,], k=2)

Embed test points
emb <- predict(emap, rf, iris[tst,])

prep_x Preprocess input data

Description

This function prepares input data.

Usage

prep_x(x, to_numeric = NULL, to_factor = NULL, default = 5)

reconstruction_error 7

Arguments

x Input data.frame.

to_numeric List of variables to force as numeric.

to_factor List of variables to force as factor.

default Threshold to classify a variable as numeric (more than default unique values) or
factor (less or equal to unique values).

Value

Preprocessed data.frame.

reconstruction_error Mixed-type Reconstruction Error

Description

Computes the reconstruction error of a decoded dataset compared to the original.

Usage

reconstruction_error(Xhat, X)

Arguments

Xhat Reconstructed dataset

X Ground truth dataset

Details

In standard AEs, reconstruction error is generally estimated via L2 loss. This is not sensible with a
mix of continuous and categorical data, so we devise a measure that evaluates distortion on contin-
uous variables as 1−R2, and categorical variables as prediction error.

Value

A list containing column-wise reconstruction error, and the average reconstruction error for cate-
gorical and numeric variables. Values lie between 0-1, where 0 represents perfect reconstruction,
and 1 represents no reconstruction.

8 reconstruction_error

Examples

Set seed
set.seed(1)

Split training and test
trn <- sample(1:nrow(iris), 100)
tst <- setdiff(1:nrow(iris), trn)

Train RF, learn the encodings and project test points.
rf <- ranger::ranger(Species ~ ., data = iris[trn,], num.trees=50)
emap <- encode(rf, iris[trn,], k=2)
emb <- predict(emap, rf, iris[tst,])

Decode test samples back to the input space
out <- decode_knn(rf, emap, emb, k=5)$x_hat

Compute the reconstruction error
error <- reconstruction_error(out, iris[tst,])

Index

adversarial_rf, 4, 6

decode_knn, 2

encode, 3

post_x, 5
predict.encode, 5
prep_x, 6

reconstruction_error, 7

9

	decode_knn
	encode
	post_x
	predict.encode
	prep_x
	reconstruction_error
	Index

