Package 'anipaths'

February 2, 2024

```
Type Package
Title Animation of Multiple Trajectories with Uncertainty
Version 0.10.3
Date 2024-2-1
Maintainer Henry Scharf <hscharf@arizona.edu>
Description Animation of observed trajectories using spline-based interpolation (see for example, Bu-
      derman, F. E., Hooten, M. B., Ivan, J. S. and Shenk, T. M. (2016), <doi:10.1111/2041-
      210X.12465> ``A functional model for characterizing long-distance movement be-
      haviour". Methods Ecol Evol). Intended to be used exploratory data analysis, and per-
      haps for preparation of presentations.
License GPL-3
RoxvgenNote 7.2.3
Depends R (>= 3.5.0)
Imports animation, RColorBrewer, sf, crawl, mgcv, grDevices, ggmap,
      dplyr, ellipse, ggplot2, igraph, lubridate, magrittr, mvtnorm,
      stringr, tidyr, tidyselect
Suggests knitr, rmarkdown, terra, testthat
VignetteBuilder knitr
LazyData true
Encoding UTF-8
NeedsCompilation no
Author Henry Scharf [aut, cre],
      Kristine Dinh [aut],
      Rosales Hugo [aut],
```

Rivera Angelica [aut]

Date/Publication 2024-02-02 09:30:06 UTC

Repository CRAN

R topics documented:

anim	ate_paths animate paths	
Index		17
	whales	10
	vultures	
	plot.paths_animation	
	paths_gam_interp	
	new_alpha	
	network_interp	
	googlemap_proj	
	get_googlemap_min_scale	
	gam_interp	10
	covariate_interp	9
	check_overwrite	9
	blur_point	
	animate_paths	2

Description

Animates telemetry data for the purposed of EDA using smoothing splines to interpolate the observed locations. The animations are particularly useful when examining multiple simultaneous trajectories. The output of the call to animate_paths() should bring up a browser window that shows the animation. Additionally, the images generated in images/ (or else the value set for imgdir) may be used with ffmpeg, latex, or other presentation software that can build animations directly from a sequence of images.

Usage

```
animate_paths(
 paths,
  coord = c("x", "y"),
 Time.name = "time",
 background = NULL,
  bg.axes = TRUE,
  bg.misc = NULL,
  bg.opts = NULL,
 blur.size = 8,
  covariate = NULL,
  covariate.colors = c("black", "white"),
  covariate.legend.loc = "bottomright",
  covariate.thresh = NULL,
  crawl.mu.color = "black",
  crawl.plot.type = "point.tail",
  date.col = "black",
```

```
delta.t = NULL,
  dev.opts = list(),
  dimmed = NULL,
  ID.name = NULL,
  interpolation_type = "gam",
  interval = 1/12,
  legend.loc = "topright",
 main = NULL,
 max_refit_attempts = 10,
 method = "html",
  n.frames = NULL,
  network = NULL,
  network.colors = NULL,
  network.thresh = 0.5,
  network.times = NULL,
  network.ring.trans = 1,
  network.ring.wt = 3,
  network.segment.trans = 0.5,
  network.segment.wt = 3,
  override = FALSE,
  par.opts = list(),
  paths.proj = "+proj=longlat",
  paths.tranform.crs = "+proj=aea",
  plot.date = TRUE,
  pt.alpha = 0.4,
 pt.cex = 1,
 pt.colors = NULL,
  pt.wd = 1,
  res = 1.5,
  return.paths = FALSE,
  s_{args} = NULL,
  simulation = FALSE,
  simulation.iter = 12,
  tail.alpha = 0.6,
  tail.colors = "gray87",
  tail.length = 5,
  tail.wd = 1,
  theme_map = NULL,
  times = NULL,
  uncertainty.level = NA,
  uncertainty.type = 1,
 whole.path = FALSE,
  xlim = NULL,
 ylim = NULL,
 verbose = FALSE,
)
```

Arguments

paths

Either a data. frame with longitudes/eastings, latitudes/northings, IDs, and times (see coord, ID. name, and Time. name), a SpatialPointsDataFrame with IDs and times, or a list of data.frames containing the longitudes, latitudes, and times for each individual (with names provided). If all paths are already synchronous, another option for passing the data is to define paths as a list of matrices, all with the same number of rows, and to specify the times separately via the next argument. This situation might arise when, for example, locations the user wishes to animated correspond to realizations/sampler from a discrete-time movement model. Covariates may be provided as named columns of the matrices in paths.

coord

A character vector of length 2 giving the names of the longitude/easting and latitude/northing columns in the paths data. frame (in that order). This is required if paths is not a SpatialPointsDataFrame.

Time.name

The name of the columns in paths gving the observation times. This column must be of class POSIXt, or numeric.

background

Three possibilities: (1) A single background image over which animation will be overlayed, or a SpatRaster objects with one layers corresponding to each frame.

(2) A list with values center (long/lat), zoom, and maptype (see ggmap::get_googlemap())

which will be used to generate a background for the animation based on Google

maps tiles. Additional arguments may be added which will be passed to ggmap::get_googlemap().

(3) A logical value of TRUE, which will cue the function to get the best Google Map tile combination it can come up with. Note: ggmap must be installed for (2) and (3). Note: if you are calling animate_paths() several times in a short period of time you may get an error from Google for trying to pull tiles too often (e.g., Error in download.file(url, destfile = tmp, quiet = !messaging, mode = "wb") : cannot open URL 'http://maps.googleapis...'). Waiting

a minute or so usually solves this.

bg.axes

logical: should animation place axis labels when using a background image (default is TRUE). If RGoogleMaps is used to produce background, labels will be "northing" and "easting". Otherwise, the strings given to coord will be used.

bg.misc

Character string which will be executed as R code after generating the background, and before adding trajectories, etc.

bg.opts

Options passed to plot() function call that makes background in each frame. For example, this could be used to specify blue ocean and gray landcover if background is a MULTIPOLYGON simple features object and bg.opts = list(bg = "dodgerblue4", col = "gray", border = "gray").

blur.size

a integer of the size for blur points; default is 8

covariate

The name of the column in paths that identifies the covariate to be mapped to a ring of color around each point.

covariate.colors

vector of colors which will be used in their given order to make a color ramp (see colorRamp())

covariate.legend.loc

either the location of the covariate legend, or NA if no legend is desired

covariate.thresh

if changed from its default value of NULL, the interpolated value of the covariate will be binarized based on this numeric value.

crawl.mu.color color for the main predictions for crawl interpolation; default is black
crawl.plot.type

a character string of what type of the plot you wish to generate when interpolation_type = "crawl". Default is "point.tail" for points with tails; input "point" for point plot and input "blur" for blur point plot; ; input "blur.point" for blur point with tails.

date.col default is "black"

delta.t The gap in time between each frame in the animation. Specify one of delta.t

or n. frames. If both are specified, delta.t is used.

dev.opts Options passed to png() before creating each frame.

dimmed Numeric vector of individuals to "dim" in the animation. Order corresponds to

the order of the ID.name variable, or order of paths list.

ID. name The name of the column in paths that identifies each individual. If left as NULL (default), a single individual is assumed.

interpolation_type

a character string of the type of interpolation. Default is "gam" for a generalized addictive model. Use "crawl" to interpolate using crawl package. Note: due to the ongoing shift in PROJ4/6 standards, warning about CRS comments may appear.

interval Seconds per frame in animation. Default is 1/12 (or 12 frames per second).

legend.loc passed to first argument of legend() function. Default is "topright". NA

removes legend.

main Title for each frame.

max_refit_attempts

an integer of number of resampling when the fit for crawl failed to run; default

method either "html" (default) or "mp4". The latter requires the user has installed ffmpeg (see ?animation::saveVideo()).

n. frames The number of frames used to animate the complete time domain of the data.

network Array of dimensions (# individuals, # individuals, n.frames) that gives a dyan-

mic network structure among the individuals.

network.colors A symmetric matrix of dimension length(paths) × length(paths) giving

the colors associated with each pairwise relationship.

network.thresh Network structure is summarized in the animation in a binary way, regardless of whether or not the network is continuously weighted or not. The value of network.thresh determines the level below which no connection is shown, and above which an active connection is shown via colored rings and connecting

segments.

network.times Numeric vector. If network time grid doesn't match n. frames, supply the times

at which the network has been evaluated so it can be interpolated using smooth-

ing splines.

network.ring.trans

transparency of network segments (default is 1)

network.ring.wt

thickness of network rings (default is 3)

network.segment.trans

transparency of network segments (default is 0.5)

network.segment.wt

thickness of network segments (default is 3)

override Logical variable toggling where or not to override warnings about how long the

animation procedure will take.

par.opts Options passed to par() before creating each frame.

paths.proj PROJ.4 string corresponding to the projection of the data. Default is "+proj=longlat".

paths.tranform.crs

a PROJ.4 string of coordinate projection transformation based on the animals'

location; default is "+proj=aea +lat_1=30 +lat_2=70".

plot.date Logical variable toggling date text at the time center of the animation.

pt.alpha alpha value for the points

pt.cex A numeric value giving the character expansion (size) of the points for each

individual. Default is 1.

pt.colors A vector of colors to be used for each individual in the animation. Default

values come from Color Brewer palettes. When a network is provided, this is ignored and individuals are all colored black. If NA, no plot colors are chosen to distinguish individuals. This can be useful when making animations involving a

covariate. Consider also setting legend. loc to NA in this case.

pt.wd size of the points; default is 1

res Resolution of images in animation. Increase this for higher quality (and larger)

images.

return.paths logical. Default is FALSE, but if TRUE then the interpolated paths are returned

and no animation is produced.

s_args Default is NULL, in which case anipaths attempts to select a reasonable number

of knots for the GAM interpolation. Alternatively, the user can provide a list of arguments to mgcv::s() the same length and order as number of unique individuals (i.e., unique(paths[, ID.name])). Each entry in the list should be a named list/vector (e.g., s_args = list(list(k = 10), list(k = 12), ...)).

simulation logical. Generate simulation predictions to have multiple projects for the animal

paths; default is FALSE.

simulation.iter

an integer of how many paths the crawl model will generate; default is 5.

tail.alpha alpha value for the tails

tail.colors default is "gray87". Can be single color or vector of colors.

tail.length Length of the tail trailing each individual.

tail.wd Thickness of tail trailing behind each individual. Default is 1.

theme_map plot theme for ggplot, default is NULL

times If all paths are already synchronous, another option for passing the data is to

define paths as a list of matrices, all with the same number of rows, and to

specify the times separately via this argument.

uncertainty.level

value in (0, 1) corresponding to level at which to draw uncertainty ellipses. NA

(default) results in no ellipses.

uncertainty.type

State what type of uncertainty plot 1 is default for tails more than 1 is amount of

predicted trajectories for each unique individual and blurs for blur plot

whole.path logical. If TRUE (default = FALSE), the complete interpolated trajectories will

be plotted in the background of the animation. If whole.path = TRUE, consider

also setting tail.length = 0.

xlim Boundaries for plotting. If left undefined, the range of the data will be used.

ylim Boundaries for plotting. If left undefined, the range of the data will be used.

verbose logical; TRUE prints messages about fitting details

... other arguments to be passed to ani options to animation options such as the

time interval between image frames.

Value

video file, possibly a directory containing the individual images, or interpolated paths.

Examples

```
vultures$POSIX <- as.POSIXct(vultures$timestamp, tz = "UTC")</pre>
vultures_paths <- vultures[vultures*POSIX > as.POSIXct("2009-03-01", origin = "1970-01-01") &
 vultures$POSIX < as.POSIXct("2009-05-01", origin = "1970-01-01"), ]</pre>
animate_paths(
 paths = vultures_paths,
 delta.t = "week",
 coord = c("location.long", "location.lat"),
 Time.name = "POSIX",
 ID.name = "individual.local.identifier"
)
## Not run:
background <- list(</pre>
 center = c(-90, 10),
 zoom = 3,
 maptype = "satellite"
library(ggmap)
library(RColorBrewer)
COVARIATE <- cos(as.numeric(vultures_paths$timestamp) /
 diff(range(as.numeric(vultures_paths$timestamp))) * 4 * pi)
animate_paths(
 paths = cbind(vultures_paths, COVARIATE),
 delta.t = "week",
```

8 blur_point

```
coord = c("location.long", "location.lat"),
 Time.name = "POSIX", covariate = "COVARIATE"
 covariate.colors = brewer.pal(n = 9, "RdYlGn"),
 ID.name = "individual.local.identifier",
 background = background
)
# animation using crawl interpolation
animate_paths(
 paths = vultures_paths,
 delta.t = "week",
 coord = c("location.long", "location.lat"),
 Time.name = "POSIX",
 ID.name = "individual.local.identifier",
 interpolation_type = "crawl"
)
## End(Not run)
# Run to remove files generated by this function
system("rm -r js; rm -r css; rm -r images; rm index.html")
```

blur_point

blur ellipses function

Description

blur ellipses function

Usage

```
blur_point(
    x,
    levels = seq(0.001, 1 - 0.1, 1 = 15),
    alpha_mult,
    col = "black",
    center
)
```

Arguments

x An object. In the default method the parameter x should be a correlation between -1 and 1 or a square positive definite matrix at least 2x2 in size. It will be treated

as the correlation or covariance of a multivariate normal distribution.

levels contour levels

alpha_mult multiplier on transparency level

col default is black

center two-vector giving center of ellipse

check_overwrite 9

|--|

Description

Check overwrite

Usage

```
check_overwrite(method, return.paths, ...)
```

Arguments

method passed from animate_paths()
return.paths passed from animate_paths()

... passed from animate_paths(); used to check for user-specified value for img.name

Value

NULL, unless there is risk of overwritting and the user interrupts animation (FALSE)

covariate_interp	Synchronous interpolation of covariate using either GAM (same as
	paths) or piece-wise constant if covariate is a factor

Description

Synchronous interpolation of covariate using either GAM (same as paths) or piece-wise constant if covariate is a factor

Usage

```
covariate_interp(paths, covariate = NULL, Time.name, time.grid, s_args)
```

Arguments

paths	lists of data.frames containing positions, times, and covariate for each individual
covariate	character string giving name of covariate variable in data.frames
Time.name	character string giving name of time variable in data.frames
time.grid	grid of possible times to use for interpolation (individuals will only be interpolated to times within the range of observation times)
s_args	arguments to mgcv::s() for GAM interpolation method

Value

list of interpolated covariate by individual

10 gam_interp

gam_interp

GAM interpolation using mgcv:gam().

Description

GAM interpolation using mgcv:gam().

Usage

```
gam_interp(
  formula = NULL,
  y,
  time,
  pred_times,
  se.fit = T,
  s_args = NULL,
  uncertainty.type,
  verbose = F
)
```

Arguments

formula optionally specify formula for mgcv::gam() using y as response and time as

predictor.

y observations

time times for observations

pred_times prediction times

se.fit logical default is TRUE; should standard pointwise errors be computed for inter-

polation

s_args Arguments to mgcv::s() can be passed using a named list/vector.

uncertainty.type

State what type of uncertainty plot 1 is default for tails more than 1 is amount of

predicted trajectories for each unique individual and blurs for blur plot

verbose logical; TRUE prints messages about fitting details

Value

interpolated values

```
get_googlemap_min_scale
```

Figure out scale and centering of google map by transforming reported lat long bounding box back to web mercator

Description

Figure out scale and centering of google map by transforming reported lat long bounding box back to web mercator

Usage

```
get_googlemap_min_scale(map)
```

Arguments

map

ggmap object

Value

scale (factor by which web mercator has been shrunk) and min (leftmost, bottom most coordinate of rectangle)

googlemap_proj

adjust center + scale for google map plotting

Description

```
adjust center + scale for google map plotting
```

Usage

```
googlemap_proj(x, map)
```

Arguments

x sf object map ggmap object

Value

two-column matrix of locations from x projected to match map

new_alpha

network_interp	Synchronous interpolation of network using piece-wise constant inter- polation

Description

Synchronous interpolation of network using piece-wise constant interpolation

Usage

```
network_interp(network = NULL, network.times, time.grid)
```

Arguments

network array of network observations of dimension (n.indiv, n.indiv, length(network.times))

network.times vector of times at which network observations are made

time.grid times at which network will be interpolated

Value

```
array of dimension n.indiv, n.indiv, length(time.grid))
```

new_alpha

Get good alpha_mult

Description

Get good alpha_mult

Usage

```
new_alpha(sd1, sd2)
```

Arguments

sd1	standard deviation of longitude
sd2	standard deviation of latitude

Value

scalar value to be used for alpha_mult in blur_point()

paths_gam_interp 13

paths_gam_interp	Synchronous GAM	interpolation of all paths
patrio_gam_Interp	Synchronous Offin	inicipolation of all pains

Description

Synchronous GAM interpolation of all paths

Usage

```
paths_gam_interp(
  paths,
  coord,
  Time.name,
  time.grid,
  s_args = NULL,
  uncertainty.type,
  verbose = F
)
```

Arguments

paths	lists of data.frames containing positions, times, and covariate for each individual	
coord	two-vector of character strings giving names of x and y coordinates in data.frames	
Time.name	character string giving name of time variable in data.frames	
time.grid	grid of possible times to use for interpolation (individuals will only be interpolated to times within the range of observation times)	
s_args	List of arguments to mgcv::s() the same length as number of unique individuals. Each entry in the list should be a named list/vector.	
uncertainty.type		
	State what type of uncertainty plot 1 is default for tails more than 1 is amount of predicted trajectories for each unique individual and blurs for blur plot	
verbose	logical; TRUE prints messages about fitting details	

Value

list of interpolated paths by individual

14 plot.paths_animation

Description

This is mainly intended as a way to check that the interpolations used in the animation are working as expected.

Usage

```
## S3 method for class 'paths_animation' plot(x, ..., i = 1, level = 0.05, type = "path", ylim_x = NULL, ylim_y = NULL)
```

Arguments

Examples

```
vultures$POSIX <- as.POSIXct(vultures$timestamp, tz = "UTC")
vultures_paths <- vultures[vultures$POSIX > as.POSIXct("2009-03-22", origin = "1970-01-01") &
  vultures$POSIX < as.POSIXct("2009-04-05", origin = "1970-01-01"), ]
interpolated_paths <-
  animate_paths(
  paths = vultures_paths,
  delta.t = 3600 * 6,
  coord = c("location.long", "location.lat"),
  Time.name = "POSIX",
  ID.name = "individual.local.identifier",
  s_args = rep(list(list(k = 10)), 6),
  return.paths = TRUE
  )
plot(interpolated_paths, i = 2)</pre>
```

vultures 15

vultures

GPS locations of turkey vultures.

Description

A dataset containing a subset of the locations of turkey vultures (2003–2006), with time stamps, from:

Usage

vultures

Format

A data frame with 215719 rows and 11 variables:

timestamp time of observation

location.long logitude

location.lat latitude

individual.local.identifier identifier for each individual ...

Details

Dodge S, Bohrer G, Bildstein K, Davidson SC, Weinzierl R, Mechard MJ, Barber D, Kays R, Brandes D, Han J (2014) Environmental drivers of variability in the movement ecology of turkey vultures (Cathartes aura) in North and South America. Philosophical Transactions of the Royal Society B 20130195. doi:10.1098/rstb.2013.0195

Bildstein K, Barber D, Bechard MJ (2014) Data from: Environmental drivers of variability in the movement ecology of turkey vultures (Cathartes aura) in North and South America. Movebank Data Repository. doi:10.5441/001/1.46ft1k05

Source

doi:10.5441/001/1.46ftlk05 Bildstein K, Barber D, Bechard MJ (2014) Data from: Environmental drivers of variability in the movement ecology of turkey vultures (Cathartes aura) in North and South America. Movebank Data Repository.

16 whales

whales

GPS locations of three species of whales.

Description

A dataset containing locations of whales, with time stamps, from:

Usage

whales

Format

A data frame with 4303 rows and 4 variables:

timestamp time of observation

location.long logitude

location.lat latitude

individual.local.identifier identifier for each individual ...

Details

Irvine LM, Winsor MH, Follett TM, Mate BR, Palacios DM (2020) An at-sea assessment of Argos location accuracy for three species of large whales, and the effect of deep-diving behavior on location error. Animal Biotelemetry 8:20.

Irvine LM, Follett TM, Winsor MH, Mate BR, Palacios DM (2020) Data from: Study "Blue and fin whales Southern California 2014-2015 - Argos data". Movebank Data Repository. doi:10.5441/001/1.98f5r6d0

Source

doi:10.5441/001/1.98f5r6d0 Irvine LM, Follett TM, Winsor MH, Mate BR, Palacios DM (2020) Data from: Study "Blue and fin whales Southern California 2014-2015 - Argos data". Movebank Data Repository.

Index

```
* datasets
    vultures, 15
    whales, 16
\verb"animate_paths", 2
\verb|blur_point|, 8
check_overwrite, 9
covariate_interp, 9
gam_interp, 10
get_googlemap_min_scale, 11
googlemap_proj, 11
network_interp, 12
new_alpha, 12
paths_gam_interp, 13
\verb|plot.paths_animation|, 14|\\
vultures, 15
whales, 16
```