A variable selection approach for generalized linear mixed models by L1-penalized estimation is provided, see Groll and Tutz (2014) <doi:10.1007/s11222-012-9359-z>. See also Groll and Tutz (2017) <doi:10.1007/s10985-016-9359-y> for discrete survival models including heterogeneity.
| Version: | 1.6.3 | 
| Imports: | stats, minqa, Matrix, Rcpp (≥ 0.12.12), methods | 
| LinkingTo: | Rcpp, RcppEigen | 
| Published: | 2023-08-23 | 
| DOI: | 10.32614/CRAN.package.glmmLasso | 
| Author: | Andreas Groll | 
| Maintainer: | Andreas Groll <groll at statistik.tu-dortmund.de> | 
| License: | GPL-2 | 
| NeedsCompilation: | yes | 
| In views: | MixedModels | 
| CRAN checks: | glmmLasso results | 
| Reference manual: | glmmLasso.html , glmmLasso.pdf | 
| Package source: | glmmLasso_1.6.3.tar.gz | 
| Windows binaries: | r-devel: glmmLasso_1.6.3.zip, r-release: glmmLasso_1.6.3.zip, r-oldrel: glmmLasso_1.6.3.zip | 
| macOS binaries: | r-release (arm64): glmmLasso_1.6.3.tgz, r-oldrel (arm64): glmmLasso_1.6.3.tgz, r-release (x86_64): glmmLasso_1.6.3.tgz, r-oldrel (x86_64): glmmLasso_1.6.3.tgz | 
| Old sources: | glmmLasso archive | 
| Reverse imports: | autoMrP | 
Please use the canonical form https://CRAN.R-project.org/package=glmmLasso to link to this page.