Package ‘llmflow’

January 31, 2026

Type Package
Title Reasoning and Acting Workflow for Automated Data Analysis
Version 3.0.2

Description Provides a framework for integrating Large Language Models (LLMs) with R program-
ming through workflow automation. Built on the ReAct (Reasoning and Acting) architecture, en-
ables bi-directional communication between LLMs and R environments. Features include auto-
mated code generation and execution, intelligent error handling with retry mechanisms, persis-
tent session management, structured JSON output validation, and context-aware conversa-
tion management.

License GPL (>=3)
Encoding UTF-8

URL https://github.com/Zaoqu-Liu/11mflow

BugReports https://github.com/Zaoqu-Liu/11mflow/issues
RoxygenNote 7.3.3

Depends R (>=4.1.0)

Imports callr, cli, glue, jsonlite, jsonvalidate

Suggests ellmer, testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Zaoqu Liu [aut, cre] (ORCID: <https://orcid.org/0000-0002-0452-742X>)
Maintainer Zaoqu Liu <liuzaoqu@163.com>

Repository CRAN

Date/Publication 2026-01-31 18:50:12 UTC

Contents
AutoFlow e e e e 2
extract_bash_code e 4
extract_chat_history 5

https://github.com/Zaoqu-Liu/llmflow
https://github.com/Zaoqu-Liu/llmflow/issues
https://orcid.org/0000-0002-0452-742X

2 AutoFlow
extract_code e 6
extract_function_examples L. 8
extract_javascript_code 8
EXIraCt_JSOM o v e e e 10
extract_python_code 11
extract_r_code e 12
extract_sql_code e 13
package_extraction_prompt. 15
package_function_schema 17
prompt_from_historyo 18
TEACE T . . v v o e e e e e e e e e s 18
TEACT_USINZ_T o . v v v v v e e e e e e e e e e e e e e e e e e 19
TESPONSE_AS_JSOM .« & v v v v v et e e e e e e e e e e e e e e e e e e 20
TESPONSE_LO_T « & v v v v v e e e e i e e e e e e e e e e e e e e 21
retrieve_dOCS e 22
save_code_to_file L e 23

Index 25

AutoFlow AutoFlow - Automated R Analysis Workflow with LLM

Description

AutoFlow - Automated R Analysis Workflow with LLM
Usage
AutoFlow(
react_l1lm,
task_prompt,
rag_llm = NULL,
max_turns = 15,
pkgs_to_use = c(),
objects_to_use = list(),
existing_session = NULL,
verbose = TRUE,
r_session_options = list(),
context_window_size = 3000,
max_observation_length = 800,
error_escalation_threshold = 3
)
Arguments
react_llm Chat object for ReAct task execution (required)

task_prompt Task description (required)

rag_l1lm Chat object for RAG documentation retrieval (default: NULL, uses react_IIm)

AutoFlow 3

max_turns Maximum ReAct turns (default: 15)
pkgs_to_use Packages to load in R session

objects_to_use Named list of objects to load
existing_session
Existing callr R session

verbose Verbose output (default: TRUE)
r_session_options

Options for callr R session
context_window_size

Context window size for history
max_observation_length

Maximum observation length
error_escalation_threshold

Error count threshold

Details

Dual-LLM Architecture:

AutoFlow supports using different models for different purposes: - ‘rag_llm*: Retrieval-Augmented
Generation - retrieves relevant function documentation - ‘react_llm‘: ReAct execution - performs
reasoning and action loops

Why separate models? - RAG tasks are simple (extract function names) - use fast/cheap models
- ReAct tasks are complex (coding, reasoning) - use powerful models - Cost savings: ~70

If ‘rag_llm* is NULL, both operations use ‘react_llm"*.

Value

ReAct result object

Examples

Not run:

Simple: same model for both

11m <- 1lm_openai(model = "gpt-40")

result <- AutoFlow(llm, "Load mtcars and plot mpg vs hp")

Optimized: lightweight RAG, powerful ReAct
rag <- llm_openai(model = "gpt-3.5-turbo”) # Fast & cheap
react <- llm_openai(model = "gpt-40") # Powerful
result <- AutoFlow(
react_llm = react,
task_prompt = "Perform PCA on iris dataset”,
rag_llm = rag
)

Cross-provider: DeepSeek RAG + Claude ReAct
rag <- chat_deepseek(model = "deepseek-chat"”)
react <- chat_anthropic(model = "claude-sonnet-4-20250514")

4 extract_bash_code

result <- AutoFlow(react, "Complex analysis”, rag_llm = rag)

Batch evaluation with shared RAG
rag <- chat_deepseek(model = "deepseek-chat")
react <- chat_openai(model = "gpt-40")

for (task in tasks) {
result <- AutoFlow(react, task, rag_llm = rag, verbose = FALSE)

}

End(Not run)

extract_bash_code Extract Bash/Shell code from a string

Description
This function extracts Bash/Shell code from a string by matching all content between **“‘bash’,
,Aéésh7’ 94‘Ashell, and 94‘57.

Usage

extract_bash_code(input_string)

Arguments

input_string A string containing Bash/Shell code blocks, typically a response from an LLM

Value

A character vector containing the extracted Bash/Shell code

Examples

Simple bash example
text <- "Run this:\n~~~bash\necho 'Hello'\n~ ™"
extract_bash_code(text)

Using 'sh' tag
text <- ""“sh\nls -la\npwd\n~~""
extract_bash_code(text)

Using 'shell' tag
text <- "“““shell\nfor i in {1..5}; do echo $i; done\n™ ™"
extract_bash_code(text)

Multiple blocks with different tags
response <- "

Setup script:

* " “bash

extract_chat_history

#!/bin/bash
mkdir -p /tmp/test
cd /tmp/test

Installation:

“*7sh

apt-get update

apt-get install -y git

Configuration:

“~"shell

export PATH=$PATH:/usr/local/bin
source ~/.bashrc

n

codes <- extract_bash_code(response)
length(codes) # Returns 3

Complex script example
script_response <- "
Here's a backup script:
“~“bash

#!/bin/bash

Set variables
BACKUP_DIR="/backup'
DATE=$(date +%Y%m%d)

Create backup
tar -czf ${BACKUP_DIR}/backup_${DATE}.tar.gz /home/user/

Check if successful
if [$? -eq 0 1; then
echo 'Backup completed successfully'
else
echo 'Backup failed'
exit 1
fi

n

extract_bash_code(script_response)

extract_chat_history Extract chat history from ellmer chat object

Description

Extract chat history from ellmer chat object

6 extract_code

Usage

extract_chat_history(
chat_obj,
include_tokens = TRUE,
include_time = TRUE,
tz = "Asia/Shanghai”

Arguments

chat_obj An ellmer chat object
include_tokens Whether to include token information
include_time Whether to include timestamp information

tz Time zone for timestamps (default "Asia/Shanghai" for CST)

Value

A data frame with chat history

extract_code Generic function to extract code of any specified language

Description
This function provides a flexible way to extract code blocks of any language from a string by
specifying the language identifier(s).

Usage

extract_code(input_string, language, case_sensitive = FALSE)

Arguments

input_string A string containing code blocks
language Language identifier(s) to extract (e.g., "r", "python", c("bash", "sh"))

case_sensitive Whether the language matching should be case-sensitive (default: FALSE)

Value

A character vector containing the extracted code

extract_code

Examples

Extract R code
text <= "7 r\nx <= 1:10\n~ "
extract_code(text, "r")

Extract multiple language variants
text <- """ “bash\necho 'test'\n > \n"""sh\nls -la\n~ """
extract_code(text, c("bash”, "sh"))

Case-sensitive extraction
text <= " R\nplot(1:10)\n "~ "\n~~"r\nprint('hello')\n~~""

nen

extract_code(text, "r", case_sensitive = TRUE) # Only matches lowercase 'r

extract_code(text, "r", case_sensitive = FALSE) # Matches both 'R' and 'r'

Extract custom language
text <= """ julia\nprintln(\"Julia code\")\n~ """
extract_code(text, "julia")

Extract YAML configuration
config_text <- "
Here's the configuration:
ST Tyaml
database:
host: localhost
port: 5432
name: mydb

n

extract_code(config_text, "yaml")

Extract multiple TypeScript and JavaScript blocks
mixed_text <- "
TypeScript:
T Ttypescript
interface User {
name: string;
age: number;

JavaScript:
s
const user = {name: 'John', age: 30};

n

Extract TypeScript

extract_code(mixed_text, "typescript")

Extract both TypeScript and JavaScript
extract_code(mixed_text, c("typescript”, "js"))

8 extract_javascript_code

extract_function_examples
Extract Examples from a Package Function

Description

This function extracts and cleans the examples section from a specific function’s documentation in
an R package. It uses the ‘tools‘ package to access the Rd database and extracts examples using
‘tools::Rd2ex()‘. The output is cleaned to remove metadata headers and formatting artifacts.

Usage

extract_function_examples(package_name, function_name)

Arguments

package_name A character string specifying the name of the package

function_name A character string specifying the name of the function

Value

A character string containing the cleaned examples code, or ‘NA°‘ if no examples are found or an
error occurs

Examples
Not run:
Extract examples from ggplot2's geom_point function
examples <- extract_function_examples(”ggplot2”, "geom_point")
cat(examples)

End(Not run)

extract_javascript_code
Extract JavaScript code from a string

Description

LRI

This function extracts JavaScript code from a string by matching all content between **“‘javascript’,

EXIT3PE I 1Y)

js’, ““Jsx” and *“*’.

Usage

extract_javascript_code(input_string)

extract_javascript_code

Arguments

input_string A string containing JavaScript code blocks, typically a response from an LLM

Value

A character vector containing the extracted JavaScript code

Examples

Simple JavaScript example
text <- "Code:\n" " javascript\nconsole.log('Hello');\n~ """
extract_javascript_code(text)

Using 'js' tag
text <- "“““js\nconst x = 42;\n> """
extract_javascript_code(text)

Using 'jsx' tag for React
text <- " ~"jsx\n<div>Hello World</div>\n~~""
extract_javascript_code(text)

Multiple blocks with different tags
response <- "
Frontend code:
* T javascript
function fetchData() {
return fetch('/api/data')
.then(response => response.json());

React component:
TTTsx
const MyComponent = () => {
const [data, setData] = useState([]);

useEffect(() => {
fetchData().then(setData);

3, [D;
return (
<div>
{data.map(item => <p key={item.id}>{item.name}</p>)3}
</div>
);

IE

Node. js backend:

s

const express = require('express');
const app = express();

10

extract_json

app.get('/api/data', (req, res) => {
res.json([{id: 1, name: 'Item 1'}1);

DN

app.listen(3000);

n

codes <- extract_javascript_code(response)
length(codes) # Returns 3

extract_json Extract and parse JSONs from a string (LLM response)

Description

This function extracts JSON blocks from a string and parses them using ‘jsonlite::fromJSON()‘.
This can be used to extract all JSONs from LLM responses, immediately converting them to R
objects.

Usage

extract_json(llm_response)

Arguments

llm_response A character string

Details

CRITICAL FIX: Now uses simplifyVector = FALSE to preserve array structure. This ensures that
JSON arrays remain as R lists, preventing single-element arrays from being simplified to character

vectors. This is essential for proper schema validation when used with auto_unbox = TRUE in
toJSON().

Value

A list of parsed JSON objects

extract_python_code 11

extract_python_code Extract Python code from a string

Description

L3 L X T¥3)

This function extracts Python code from a string by matching all content between ’*““‘python’, **“‘py

and 266e
Usage

extract_python_code(input_string)

Arguments

input_string A string containing Python code blocks, typically a response from an LLM

Value

A character vector containing the extracted Python code

Examples

Simple example
text <- "Python code:\n" " ~python\nprint('Hello World')\n~~""
extract_python_code(text)

Using 'py' tag
text <= "7~ “py\nimport numpy as np\n
extract_python_code(text)

[T

Multiple blocks with different tags
response <- "

Data processing:

T “python

import pandas as pd

df = pd.read_csv('data.csv')
df.head()

Visualization:

Py
import matplotlib.pyplot as plt
plt.plot([1, 2, 3], [4, 5, 6])
plt.show()

n

codes <- extract_python_code(response)
length(codes) # Returns 2

Complex example with classes and functions

12

n

11m_response <-
Here's a complete Python solution:
T Tpython
class DataProcessor:
def __init__(self, data):
self.data = data

def process(self):
return [x * 2 for x in self.datal]

processor = DataProcessor([1, 2, 31)
result = processor.process()
print(result)

n

extract_python_code(1l1lm_response)

extract_r _code

extract_r_code Extract R code from a string

Description

This function extracts R code from a string by matching all content between **“‘r’ o

Usage

extract_r_code(input_string)

Arguments

r "“R’ and 9666

input_string A string containing R code blocks, typically a response from an LLM

Value

A character vector containing the extracted R code

Examples

Simple example
text <- "Here is some R code:\n” " r\nprint('Hello')\n~~""
extract_r_code(text)

Multiple code blocks
response <- "

First block:

ttr

x <- 1:10

mean(x)

extract_sql_code 13

Second block:

TR

library(ggplot2)

ggplot(mtcars, aes(mpg, hp)) + geom_point()

"

codes <- extract_r_code(response)
length(codes) # Returns 2

With surrounding text

1lm_response <- "

To calculate the mean, use this code:
r

data <- c(1, 2, 3, 4, 5)

result <- mean(data)

print(result)

The result will be 3.

n

extract_r_code(llm_response)

extract_sql_code Extract SOL code from a string

Description

EX3E3

This function extracts SQL code from a string by matching all content between *“‘sql” and *“*’

(case-insensitive).
Usage

extract_sql_code(input_string)

Arguments

input_string A string containing SQL code blocks, typically a response from an LLM

Value

A character vector containing the extracted SQL code

Examples

Simple SQL query
text <- "Query:\n~~~sql\nSELECT * FROM users;\n~~~"
extract_sql_code(text)

Case-insensitive matching

14

text <= "7 SQL\nSELECT COUNT(*) FROM orders;\n~~""
extract_sql_code(text)

Multiple SQL blocks

response <- "

Create table:

TTTsql

CREATE TABLE employees (
id INT PRIMARY KEY,
name VARCHAR(109),
department VARCHAR(50),
salary DECIMAL(10, 2)

);

Insert data:
TTTsql
INSERT INTO employees (id, name, department, salary)
VALUES
(1, 'John Doe', "IT', 75000),
(2, 'Jane Smith', 'HR', 65000);

Query data:

“TTsql

SELECT name, salary
FROM employees

WHERE department = 'IT'
ORDER BY salary DESC;

n

codes <- extract_sql_code(response)
length(codes) # Returns 3

Complex query with joins
complex_query <- "
Here's the analysis query:
TTTsql
WITH monthly_sales AS (
SELECT
DATE_TRUNC('month', order_date) as month,
SUM(total_amount) as total_sales,
COUNT(DISTINCT customer_id) as unique_customers
FROM orders
WHERE order_date >= '2024-01-01'
GROUP BY DATE_TRUNC('month', order_date)
)
SELECT
month,
total_sales,
unique_customers,
total_sales / unique_customers as avg_per_customer
FROM monthly_sales

extract_sql_code

package_extraction_prompt 15

ORDER BY month;

n

extract_sql_code(complex_query)

package_extraction_prompt
Generate Function Extraction Prompt for LLM Analysis

Description

Creates a highly refined prompt that guides LLMs to identify ONLY the most documentation-
critical, domain-specific R functions from a task description. The prompt uses sophisticated fil-
tering criteria to exclude common, well-known functions (like read.csv, mean, order) that any LLM
can use correctly without explicit documentation, focusing instead on specialized functions where
examples truly add value.

Usage

package_extraction_prompt(
task_description,
include_criteria = NULL,
exclude_criteria = NULL,
prioritization_factors = NULL,
emphasis = NULL

Arguments

task_description
Character string. Detailed description of the R task or analysis workflow that
needs to be performed. Should include: - Data types and sources involved -
Analytical objectives and methods - Expected outputs or deliverables - Domain-
specific context (e.g., bioinformatics, spatial analysis) The more domain-specific
the description, the better the function selection.

include_criteria
Character vector. Additional inclusion criteria beyond the defaults. Specify
domain-specific requirements or function characteristics that should be docu-
mented. Default is NULL (use standard criteria).

exclude_criteria
Character vector. Additional exclusion criteria beyond the defaults. Specify
function types or patterns that should be skipped (e.g., "Basic ggplot2 themes",
"Standard dplyr verbs"). Default is NULL.

prioritization_factors
Character vector. Additional factors for prioritizing functions beyond the de-
faults. Specify what makes certain functions more important to document. De-
fault is NULL (use standard priorities).

16 package_extraction_prompt

emphasis Character string. Additional emphasis or context to guide the extraction process.
Use this to highlight specific aspects of the task or to emphasize certain types of
functions. Default is NULL.

Details

This function applies a "documentation necessity test": only include functions where a proficient
LLM would struggle without explicit documentation and examples. This dramatically improves
output quality and reduces token waste.

The enhanced prompt applies a rigorous "documentation necessity test" with four key questions:

1. Would a proficient LLM struggle without documentation? 2. Is this function domain-specific
or universally known? 3. Does it use specialized terminology or workflows? 4. Would examples
significantly improve usage accuracy?

** Automatic exclusions** (common functions that waste tokens): - Data I/O: read.csv, write.csv,
readLines - Basic operations: order, sort, subset, head, tail - Simple statistics: mean, median, sd,
sum - Core structures: c, list, data.frame - Well-known tidyverse: simple dplyr::filter, dplyr::mutate
- Basic control flow: if, for, while - Common utilities: paste, grep, unique

What gets included (documentation-critical functions): - Domain-specific methods (cluster-
Profiler::enrichGO for GO analysis) - Complex statistical procedures (DESeq2::DESeq) - Special-
ized transformations (sf::st_transform for spatial data) - Functions with many non-obvious parame-
ters - Methods where wrong usage produces plausible but incorrect results

This approach ensures that "GO enrichment analysis" returns clusterProfiler functions, NOT read.csv
or order.

Value

Character string containing the complete extraction prompt with:

* Clear documentation necessity principle

* Strict inclusion criteria for domain-specific functions

» Comprehensive exclusion rules with concrete examples
* Four-question decision heuristic for each function

* Concrete good/bad examples from multiple domains

* Prioritization by domain specialization and complexity

* Quality-over-quantity guidance

See Also

retrieve_docs for using this prompt in documentation extraction

Examples

Basic usage
prompt <- package_extraction_prompt(
"Perform GO enrichment analysis on differentially expressed genes”

)

package_function_schema 17

With domain-specific guidance
prompt <- package_extraction_prompt(
task_description = "Single-cell RNA-seq analysis with Seurat”,
include_criteria = c(
"Seurat-specific normalization and scaling methods”
),
exclude_criteria = c(
"Standard dplyr data manipulation”
)
)

Not run:
Use with retrieve_docs (requires LLM client)
docs <- retrieve_docs(
chat_obj = 11lm,
prompt = package_extraction_prompt(
task_description = "Perform differential expression analysis”
)
)

End(Not run)

package_function_schema
Create JSON Schema for Package Function Validation

Description

Create JSON Schema for Package Function Validation

Usage

package_function_schema(
min_functions = 0,
max_functions = 10,
description = NULL

)

Arguments

min_functions Integer. Minimum number of functions (default: O to allow empty)
max_functions Integer. Maximum number of functions (default: 10)

description Character string. Custom description

Value

List containing JSON schema

18 react r

prompt_from_history Build prompt from chat history

Description

Build prompt from chat history

Usage
prompt_from_history(
chat_obj,
add_text = NULL,
add_role = "user”,
start_turn_index = 1
)
Arguments
chat_obj Chat object
add_text Additional text to append
add_role Role for add_text ("user" or "assistant")

start_turn_index
Starting turn index (default 1)

Value

Formatted prompt string

react_r Simplified interface - Enhanced react_r

Description

Simplified interface - Enhanced react_r

Usage
react_r(chat_obj, task, ...)
Arguments
chat_obj Chat object
task Task description

Additional arguments passed to react_using_r

react_using_r

Value

Formatted result display

19

react_using_r ReAct (Reasoning and Acting) using R code execution - Optimized Ver-
sion

Description

ReAct (Reasoning and Acting) using R code execution - Optimized Version

Usage

react_using_r(
chat_obj,
task,
max_turns = 15,
pkgs_to_use = c(),
objects_to_use = list(),
existing_session = NULL,
verbose = TRUE,
r_session_options = list(),
context_window_size = 3000,
max_observation_length = 800,
error_escalation_threshold = 3

)

Arguments
chat_obj Chat object from ellmer
task Character string. The task description to be solved
max_turns Integer. Maximum number of ReAct turns (default: 15)
pkgs_to_use Character vector. R packages to load in session

objects_to_use Named list. Objects to load in R session
existing_session

Existing callr session to continue from (optional)
verbose Logical. Whether to print progress information
r_session_options

List. Options for callr R session
context_window_size

Integer. Maximum characters before history summary (default: 3000)
max_observation_length

Integer. Maximum observation length (default: 800)
error_escalation_threshold

Integer. Error count threshold for escalation (default: 3)

20 response_as_json

Value

List with complete ReAct results

response_as_json Get JSON response from LLM with validation and retry

Description

Get JSON response from LLM with validation and retry

Usage

response_as_json(
chat_obj,
prompt,
schema = NULL,
schema_strict = FALSE,
max_iterations = 3

)
Arguments
chat_obj Chat object (LLM client). Must be a properly initialized LLM client instance.
prompt Character string. The user prompt to send to the LLM requesting JSON output.
schema List or NULL. Optional JSON schema for response validation (as R list struc-
ture). When provided, validates the LLM response against this schema. Default
is NULL.

schema_strict Logical. Whether to use strict schema validation (no additional properties al-
lowed). Only applies when schema is provided. Default is FALSE.

max_iterations Integer. Maximum number of retry attempts for invalid JSON or schema valida-
tion failures. Must be positive. Default is 3.

Value

List. Parsed JSON response from the LLM.

Examples

Not run:

Basic usage without schema

result <- response_as_json(
chat_obj = 1llm_client,
prompt = "List three colors”

)

With schema validation
schema <- list(

response_to_r 21

type = "object”,
properties = list(
equation = list(type = "string"),
solution = list(type = "number")
),
required = c("equation”, "solution")
)
result <- response_as_json(
chat_obj = 1lm_client,
prompt = "How can I solve 8x + 7 = -23?7",
schema = schema,
schema_strict = TRUE,
max_iterations = 3

)

End(Not run)

response_to_r Response to R code generation and execution with session continuity

Description

Response to R code generation and execution with session continuity

Usage

response_to_r(
chat_obj,
prompt,
add_text = NULL,
pkgs_to_use = c(),
objects_to_use = list(),
existing_session = NULL,
list_packages = TRUE,
list_objects = TRUE,
return_session_info = TRUE,
evaluate_code = TRUE,
r_session_options = list(),
return_mode = c("full”, "code”, "console”, "object”, "formatted_output”, "1lm_answer”,

"session"),
max_iterations = 3
)
Arguments
chat_obj Chat object from ellmer

prompt User prompt for R code generation

22

add_text Additional instruction text
pkgs_to_use Packages to load in R session

objects_to_use Named list of objects to load in R session

existing_session
Existing callr session to continue from (optional)

list_packages Whether to list available packages in prompt

list_objects Whether to list available objects in prompt

return_session_info
Whether to return session state information

evaluate_code Whether to evaluate the generated code

r_session_options
Options for callr R session

return_mode Return mode specification

max_iterations Maximum retry attempts

Value

Result based on return_mode

retrieve_docs

retrieve_docs

tion

Retrieve and Format R Function Documentation for LLM Consump-

Description

Retrieve and Format R Function Documentation for LLM Consumption

Usage

retrieve_docs(
chat_obj,
prompt,
schema = package_function_schema(),
schema_strict = TRUE,
skip_undocumented = TRUE,
use_llm_fallback = FALSE,
example_count = 2,
warn_skipped = TRUE

save_code_to_file 23

Arguments
chat_obj LLM chat client object
prompt Task description
schema JSON schema (default: package_function_schema())

schema_strict Strict schema validation

skip_undocumented
Skip functions without docs

use_l1lm_fallback
Use LLM to generate examples

example_count Number of examples per function

warn_skipped Show warning for skipped functions

Value

Formatted documentation string

save_code_to_file Save extracted code to file

Description

This function saves extracted code to a file with appropriate extension based on the programming

language.
Usage

save_code_to_file(code_string, filename = NULL, language = "r")
Arguments

code_string String or character vector containing the code to save

filename Output filename. If NULL, generates a timestamped filename

language Programming language for determining file extension (default: "r")
Value

The path to the saved file

24 save_code_to_file

Examples
Not run:
Extract and save R code
11m_response <- "~ ~“r\nplot(1:10)\n~ """

code <- extract_r_code(llm_response)
save_code_to_file(code) # Saves as "code_20240101_120000.R"

Save with custom filename
save_code_to_file(code, "my_plot.R")

Save Python code with auto extension
py_code <- "import pandas as pd\ndf = pd.DataFrame()”
save_code_to_file(py_code, language = "python") # Creates .py file

Save multiple code blocks

response <= " r\nx <= 1\n " \n " "r\ny <- 2\n~ """
codes <- extract_r_code(response)
save_code_to_file(codes, "combined_code.R")

End(Not run)

Index

AutoFlow, 2

extract_bash_code, 4
extract_chat_history, 5
extract_code, 6
extract_function_examples, 8
extract_javascript_code, 8
extract_json, 10
extract_python_code, 11
extract_r_code, 12
extract_sql_code, 13

package_extraction_prompt, 15
package_function_schema, 17
prompt_from_history, 18

react_r, 18
react_using_r, 19
response_as_json, 20
response_to_r, 21
retrieve_docs, 16, 22

save_code_to_file, 23

25

	AutoFlow
	extract_bash_code
	extract_chat_history
	extract_code
	extract_function_examples
	extract_javascript_code
	extract_json
	extract_python_code
	extract_r_code
	extract_sql_code
	package_extraction_prompt
	package_function_schema
	prompt_from_history
	react_r
	react_using_r
	response_as_json
	response_to_r
	retrieve_docs
	save_code_to_file
	Index

