
Package ‘simcross’
November 29, 2023

Version 0.6

Date 2023-11-29

Title Simulate Experimental Crosses

Description Simulate and plot general experimental crosses. The focus is on simulating geno-
types with an aim towards flexibility rather than speed. Meiosis is simulated follow-
ing the Stahl model, in which chiasma locations are the superposition of two processes: a propor-
tion p coming from a process exhibiting no interference, and the remainder coming from a pro-
cess following the chi-square model.

Author Karl W Broman [aut, cre] (<https://orcid.org/0000-0002-4914-6671>)

Maintainer Karl W Broman <broman@wisc.edu>

Depends R (>= 3.1.0)

Imports graphics, stats, Rcpp (>= 0.12.17)

Suggests qtl, knitr, rmarkdown, testthat, devtools, roxygen2

License GPL-3

URL https://kbroman.org/simcross/, https://github.com/kbroman/simcross

BugReports https://github.com/kbroman/simcross/issues

VignetteBuilder knitr

LinkingTo Rcpp

LazyData true

Encoding UTF-8

ByteCompile true

RoxygenNote 7.2.3

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-11-29 12:30:06 UTC

1

https://orcid.org/0000-0002-4914-6671
https://kbroman.org/simcross/
https://github.com/kbroman/simcross
https://github.com/kbroman/simcross/issues

2 AILped

R topics documented:
AILped . 2
calc_Lstar . 3
CCcolors . 4
check_pedigree . 4
collapse_do_alleles . 5
convert2geno . 6
convert2geno_allchr . 7
create_parent . 9
cross . 9
get_geno . 11
mouseL_cox . 11
mouseL_mgi . 12
plot_crosslines . 13
plot_ind . 14
sim_4way_pedigree . 15
sim_ail_pedigree . 16
sim_ail_pedigree_fix_n . 17
sim_crossovers . 19
sim_dof1_pedigree . 20
sim_do_pedigree . 21
sim_do_pedigree_fix_n . 23
sim_from_pedigree . 24
sim_from_pedigree_allchr . 25
sim_meiosis . 26
sim_ril_pedigree . 27
where_het . 28

Index 30

AILped Example AIL pedigree

Description

Example matrix describing the pedigree for advanced intercross lines

Usage

data(AILped)

Format

A data frame with five columns: individual id, mom, dad, sex (0 for females and 1 for males) and
generation.

calc_Lstar 3

Source

Derived from the pedF8 dataset in the QTLRel package, https://cran.r-project.org/package=
QTLRel

Examples

data(AILped)
x <- sim_from_pedigree(AILped)

calc_Lstar Calculate adjusted chromosome length for obligate chiasma

Description

Calculate the reduced chromosome length that will give the target expected number of chiasmata
when conditioning on there being at least one chiasma on the four-strand bundle.

Usage

calc_Lstar(L, m = 0, p = 0)

Arguments

L Length of chromosome (in cM); must be > 50

m Interference parameter for chi-square model

p Proportion of chiasmata coming from no-interference process

Value

Adjusted length of chromosome

See Also

cross(), sim_meiosis(), sim_crossovers()

Examples

calc_Lstar(100, 0, 0)
calc_Lstar(60, 10, 0.1)

https://cran.r-project.org/package=QTLRel
https://cran.r-project.org/package=QTLRel

4 check_pedigree

CCcolors Collaborative Cross colors

Description

Get the vector of colors for the Collaborative Cross

Usage

CCcolors(palette = c("new", "original", "official"))

Arguments

palette Which version of the colors to use? (New or original)

Value

vector of eight colors

Examples

CCcolors()

check_pedigree Check a pedigree for errors

Description

Perform a series of checks on the tabular data for a pedigree, checking for problems

Usage

check_pedigree(pedigree, ignore_sex = FALSE)

Arguments

pedigree Numeric matrix or data frame with four columns: ID, mom ID, dad ID, sex. Sex
is coded as 0=female, 1=male. There can be additional columns, but they’ll be
ignored.

ignore_sex If TRUE, ignore the sex values completely (appropriate for hermaphroditic species.)

Details

The parents should be listed before any of their offspring. Founders should have 0’s for mother
and father; all others should have non-zero values for the parents, and the parents should appear
in the pedigree. Father should be male and mothers should be female (unless ignore_sex=TRUE).
Individual identifiers should be unique and non-zero. There should be no missing values anywhere.
(NAs are allowed in the sex column if ignore_sex=TRUE.)

collapse_do_alleles 5

Value

TRUE (invisibly) if everything is okay; otherwise gives an error.

See Also

sim_from_pedigree(), sim_ril_pedigree()

Examples

tab <- sim_ril_pedigree(7)
check_pedigree(tab)

collapse_do_alleles Collapse alleles for simulated DO genotypes

Description

When simulating Diversity Outbreds, we need to specify parents 1-16, with 9-16 being the males
from strains 1-8. This function collapses replaces alleles 9-16 with 1-8, to make the result ordinary
DO-type data.

Usage

collapse_do_alleles(xodata)

Arguments

xodata The sort of detailed genotype/crossover data generated by sim_from_pedigree().

Value

The input object, with alleles 9-16 replaced by 1-8.

See Also

sim_do_pedigree(), sim_do_pedigree_fix_n(), sim_from_pedigree()

Examples

simulate DO pedigree
tab <- sim_do_pedigree(8)

simulate genotypes for that pedigree
dat <- sim_from_pedigree(tab)
collapse to alleles 1-8
dat <- collapse_do_alleles(dat)

also works with data on multiple chromosomes

6 convert2geno

dat <- sim_from_pedigree(tab, c("1"=100, "2"=75, "X"=100), xchr="X")
dat <- collapse_do_alleles(dat)

convert2geno Convert continuous allele information into marker genotypes

Description

Convert the continuous crossover location information produced by sim_from_pedigree to marker
genotypes

Usage

convert2geno(xodat, map, founder_geno = NULL, shift_map = FALSE)

Arguments

xodat The sort of detailed genotype/crossover data generated by sim_from_pedigree()

map vector of marker locations; can also be a list of such vectors (one per chro-
mosome), in which case xodat and founder_geno must be lists with the same
length.

founder_geno Optional matrix (size n_founders x length(map)) of founder genotypes. If
coded as 1/2 (or 1/3), results are 1/2/3 genotypes. If coded as A/T/G/C/N, results
are A/T/G/C/N/H genotypes. If coded as letters A-H for the 8 founders, results
are two-letter genotypes AA-HH with 36 possible values.

shift_map If TRUE, shift genetic map to start at 0

Value

If founder_geno is provided or there are just two founders, the result is a numeric matrix of geno-
types, individuals x markers, with genotypes 1/2/3 codes for 11/12/22 genotypes.

If founder_geno is not provided and there are more than two founders, the result is a 3-dimensional
array, individuals x markers x alleles, with the third dimensional corresponding to the maternal and
paternal allele.

If the input map is a list (the components being chromosomes), then xodat and founder_geno must
be lists of the same length, and the result will be a list of matrices.

See Also

get_geno(), sim_from_pedigree()

convert2geno_allchr 7

Examples

simulate AIL pedigree
tab <- sim_ail_pedigree(12, 30)
simulate data from that pedigree
dat <- sim_from_pedigree(tab)
marker map (could also use sim.map in R/qtl)
map <- seq(0, 100, by=5)
names(map) <- paste0("marker", seq(along=map))
convert data to marker genotypes
geno <- convert2geno(dat, map)

AIL with multiple chromosomes
dat <- sim_from_pedigree(tab, c("1"=100, "2"=75, "X"=100), xchr="X")
marker map
multmap <- list("1"=seq(0, 100, by=5),

"2"=seq(0, 75, by=5),
"X"=seq(0, 100, by=5))

for(i in 1:3)
names(multmap[[i]]) <- paste0("marker", i, "_", 1:length(map[[i]]))

geno <- convert2geno(dat, multmap)

simulate DO pedigree
tab <- sim_do_pedigree(8)
simulate data from that pedigree
dat <- sim_from_pedigree(tab)
simulate founder snp alleles
fg <- matrix(sample(1:2, 8*length(map), repl=TRUE), nrow=8)
for DO, need female & male founders (to deal with X chr)
fg <- rbind(fg, fg)
convert dat to SNP genotypes
geno <- convert2geno(dat, map, fg)
if fg not provided, result is a 3d array
genoarray <- convert2geno(dat, map)

convert2geno_allchr Convert continuous allele information into marker genotypes for mul-
tiple chromosomes

Description

Wrap up of convert2geno to adequate multiple chromosomes.

Usage

convert2geno_allchr(
xodat,
map,
id = NULL,

8 convert2geno_allchr

founder_geno = NULL,
return.matrix = TRUE,
shift_map = FALSE

)

Arguments

xodat The sort of detailed genotype/crossover data generated by sim_from_pedigree_allchr()

map marker locations, a list with elements for each chromosome

id ids for which individuals genotypes is desired

founder_geno Optional list of matrices (one per chromosome) of size n_founders x n_markers,
with the founder genotypes. If coded as 1/2 (or 1/3), results are 1/2/3 genotypes.
If coded as A/T/G/C/N, results are A/T/G/C/N/H genotypes. If coded as letters
A-H (in the case of 8 founders), results are two-letter genotypes AA-HH with
36 possible values.

return.matrix If FALSE, the result is a list of length n_chrs, otherwise it is converted into a
matrix if size length(id) x n_markers.

shift_map If TRUE, shift genetic map to start at 0

Value

If founder_geno is provided or there are just two founders, the result is a numeric matrix of geno-
types, individuals x markers, with genotypes 1/2/3 codes for 11/12/22 genotypes. If there are more
than two founders and founder_geno are letters, the result is a character matrix, too.

If founder_geno is not provided and there are more than two founders, the result is a 3-dimensional
array, individuals x markers x alleles, with the third dimensional corresponding to the maternal and
paternal allele.

See Also

convert2geno()

Examples

library(qtl)
marker map
map <- sim.map(len=rep(100, 19), n.mar=10, include.x=FALSE)
simulate AIL pedigree
tab <- sim_ail_pedigree(12, 30)
simulate data from that pedigree
dat <- sim_from_pedigree_allchr(tab, map)
names(map) <- paste0("marker", seq(along=map))
convert data to marker genotypes
id <- which(tab[, "gen"]==12)
geno <- convert2geno_allchr(dat, map, id)

create_parent 9

create_parent Create a parent object

Description

Create a parent object

Usage

create_parent(L, allele = 1)

Arguments

L chromosome length in cM

allele vector of integers for alleles, of length 1 or 2

Value

A list with two components, for the individual’s two chromosomes. Each is a list with alleles in
chromosome intervals (as integers) and locations of the right endpoints of those intervals.

See Also

cross(), sim_meiosis()

Examples

create_parent(100, 1)
create_parent(100, 1:2)

cross Cross two individuals

Description

Simulate the cross of two individuals to create a single progeny

Usage

cross(
mom,
dad,
m = 10,
p = 0,
xchr = FALSE,
male = FALSE,

10 cross

obligate_chiasma = FALSE,
Lstar = NULL

)

Arguments

mom An individual object, as produced by create_parent() or this function.

dad An individual object, as produced by create_parent() or this function.

m interference parameter for chi-square model

p proportion of crossovers coming from no-interference process

xchr If TRUE, simulate X chromosome

male If TRUE, simulate a male (matters only if xchr=TRUE)

obligate_chiasma

If TRUE, require an obligate chiasma on the 4-strand bundle at meiosis.

Lstar Adjusted chromosome length, if obligate_chiasma=TRUE. Calculated if not
provided.

Details

Simulations are under the Stahl model with the interference parameter being an integer. This is an
extension of the chi-square model, but with chiasmata being the superposition of two processes, one
following the chi-square model and the other exhibiting no interference.

Value

A list with two components, for the individual’s two chromosomes. Each is a list with alleles in
chromosome intervals (as integers) and locations of the right endpoints of those intervals.

See Also

create_parent(), sim_meiosis(), sim_crossovers(), calc_Lstar()

Examples

mom <- create_parent(100, 1:2)
dad <- create_parent(100, 1:2)
child <- cross(mom, dad)

get_geno 11

get_geno Get genotype at a single position

Description

With data on the continuous crossover location information produced by sim_from_pedigree, grab
the genotype at a given position.

Usage

get_geno(xodat, position)

Arguments

xodat The sort of detailed genotype/XO data generated by sim_from_pedigree()

position Position (in cM) for which to obtain genotypes

Value

A numeric matrix with two columns: the maternal and paternal allele for each individual.

See Also

sim_from_pedigree(), convert2geno()

Examples

simulate AIL pedigree
tab <- sim_ail_pedigree(12, 30)
simulate data from that pedigree
dat <- sim_from_pedigree(tab)
get genotype at position 30 cM
geno <- get_geno(dat, 30)

mouseL_cox Mouse chromosome lengths

Description

Mouse chromosome lengths in cM from the Cox et al. map

Usage

data(mouseL_cox)

12 mouseL_mgi

Format

A numeric vector with lengths in cM for the 20 mouse chromosomes.

Source

Taken from Table 1 of Cox et al. (2009) A new standard genetic map for the laboratory mouse.
Genetics 182:1335-1344. doi:10.1534/genetics.109.105486

See Also

mouseL_mgi

Examples

data(mouseL_cox)

mouseL_mgi Mouse chromosome lengths

Description

Mouse chromosome lengths in cM from the Mouse Genome Informatics (MGI) standard map.

Usage

data(mouseL_mgi)

Format

A numeric vector with lengths in cM for the 20 mouse chromosomes.

Source

Taken from Table 1 of Cox et al. (2009) A new standard genetic map for the laboratory mouse.
Genetics 182:1335-1344. doi:10.1534/genetics.109.105486

See Also

mouseL_cox

Examples

data(mouseL_mgi)

https://doi.org/10.1534/genetics.109.105486
https://doi.org/10.1534/genetics.109.105486

plot_crosslines 13

plot_crosslines Plot cross lines

Description

Add lines for a cross

Usage

plot_crosslines(
momloc,
dadloc,
kidsloc,
gap = 3,
chrlength = 30,
cex = 1.5,
lwd = 2,
arrow_length = 0.1,
col = "white",
...

)

Arguments

momloc An (x,y) vector with center location for mother

dadloc An (x,y) vector with center location for mother

kidsloc Either an (x,y) vector with center location for a kid, or a list of such for multiple
kids

gap Gap arrows and points/rectangles

chrlength Length of chromosomes

cex Character expansion for x point

lwd Line width for points, segments, and arrows

arrow_length The length parameter in the call to graphics::arrows()

col Color of lines and points

... Additional arguments passed to arrows() and segments()

Value

None.

See Also

plot_ind()

14 plot_ind

Examples

mom <- create_parent(100, 1:2)
dad <- create_parent(100, 3:4)
kids <- lapply(1:4, function(junk) cross(mom, dad))
plot(0,0, type="n", xlim=c(0, 100), ylim=c(0,100),

xaxt="n", yaxt="n", xlab="", ylab="")
loc <- list(c(25,75), c(75,75), c(12.5,25), c(37.5,25), c(62.5, 25), c(87.5,25))
plot_ind(mom, loc[[1]])
plot_ind(dad, loc[[2]])
for(i in 1:4) plot_ind(kids[[i]], loc[[i+2]])
plot_crosslines(loc[[1]], loc[[2]], loc[3:6])

plot_ind Plot an individual

Description

Add an individual, as a pair of chromosomes, to a plot

Usage

plot_ind(
ind,
center,
chrlength = 30,
chrwidth = 3,
gap = 3,
col = CCcolors(),
border = "black",
lend = 1,
ljoin = 1,
allborders = FALSE,
...

)

Arguments

ind An individual object, as output by create_parent() or cross()

center (x,y) vector for the center of the individual

chrlength Length of chromosomes (Can be a vector of length 2, in which case the two
chromosomes will be different lengths, aligned at the top. This is for the X
chromosome.)

chrwidth Width of chromosomes

gap Gap between chromosomes

col Vector of colors

sim_4way_pedigree 15

border Color for border

lend Passed to graphics::rect()

ljoin Passed to graphics::rect()

allborders If TRUE, put borders around all segments

... Additional arguments passed to rect()

Value

None.

See Also

plot_crosslines()

Examples

mom <- create_parent(100, 1:2)
dad <- create_parent(100, 3:4)
kid <- cross(mom, dad)
plot(0,0, type="n", xlim=c(0, 100), ylim=c(0,100),

xaxt="n", yaxt="n", xlab="", ylab="")
loc <- list(c(25,75), c(75,75), c(50,25))
plot_ind(mom, loc[[1]])
plot_ind(dad, loc[[2]])
plot_ind(kid, loc[[3]])
plot_crosslines(loc[[1]], loc[[2]], loc[[3]])

sim_4way_pedigree Simulate pedigree for 4-way intercross

Description

Simulate a 4-way cross, among four inbred lines (a table of individual, mom, dad, sex)

Usage

sim_4way_pedigree(ngen = 1, nsibs = 100)

Arguments

ngen Number of intercross generations (1 or 2)

nsibs Vector with number of siblings in the sibships in the last generation.

16 sim_ail_pedigree

Details

We start with a set of 4 individuals (representing four inbred lines), and make a pair of crosses
to generate a pair of heterozygous individuals. These are then crosses to generate a set of F1
individuals. If ngen==1, we stop there, with sum(nsibs) individuals in this last generation. If
gen==2, we generate length(nsibs) male/female pairs of F1 offspring; these are intercrossed to
generate a set of sibships, with lengths defined by the values in nsibs. Individuals in the last
generation are alternating female/male.

Value

A data frame with five columns: individual ID, mother ID, father ID, sex, and generation. Founders
have 0 for mother and father ID. Sex is coded 0 for female and 1 for male.

See Also

sim_from_pedigree(), sim_ril_pedigree(), sim_do_pedigree(), sim_ail_pedigree()

Examples

100 F1s between heterozygous parents
tab <- sim_4way_pedigree(1, 100)
could also do this
tab2 <- sim_4way_pedigree(1, rep(10, 10))

120 F2s in 10 sibships each of size 12
tab3 <- sim_4way_pedigree(ngen=2, rep(12, 10))

sim_ail_pedigree Simulate AIL pedigree

Description

Simulate a pedigree for advanced intercross lines (a table of individual, mom, dad, sex)

Usage

sim_ail_pedigree(
ngen = 12,
npairs = 30,
nkids_per = 5,
design = c("nosib", "random")

)

sim_ail_pedigree_fix_n 17

Arguments

ngen Number of generations of outbreeding

npairs Number of breeding pairs at each generation

nkids_per Number of offspring per pair for the last generation

design How to choose crosses: either random but avoiding siblings, or completely at
random

Details

Advanced intercross lines (AIL) are generated from a pair of inbred lines. We cross them and then
cross the F1 to generate npair breeding pairs. The subsequent ngen outbreeding generations then
proceed by crossing a male and female from the preceding generation (mated completely at random,
with design="random", or avoiding siblings, with design="nosib"). Each breeding pair gives a
single female and a single male to the next generation, except at the last generation nkids_per
offspring are mated, in equal numbers male and female. (If nkids_per is an odd number, the
number of males and females in each sibship will differ by one, alternating between sibships, with
one additional female and then one additional male.

Value

A data frame with five columns: individual ID, mother ID, father ID, sex, and generation. Founders
have 0 for mother and father ID. Sex is coded 0 for female and 1 for male.

See Also

sim_from_pedigree(), sim_ril_pedigree(), sim_do_pedigree(), sim_4way_pedigree()

Examples

tab <- sim_ail_pedigree(12, 30)

sim_ail_pedigree_fix_n

Simulate AIL pedigree with fixed n

Description

Simulate a pedigree for advanced intercross lines (a table of individual, mom, dad, sex) so that the
last generation reaches a desired sample size n

18 sim_ail_pedigree_fix_n

Usage

sim_ail_pedigree_fix_n(
ngen = 12,
nkids_per = 5,
nsample_ngen = 150,
npairs = NULL,
method = c("last2", "sub2"),
design = c("nosib", "random")

)

Arguments

ngen Number of generations of outbreeding

nkids_per Number of offspring per pair for the last generation

nsample_ngen Number of individuals desired at the last generation

npairs Number of breeding pairs at each generation. If missing, we use 30 when
method="last2" and 300 when method="sub2".

method Method used to generate pedigree: either expand at the last two generations or
generate a pedigree with a large number of pairs and select a subset to have the
desired sample size.

design How to choose crosses: either random but avoiding siblings, or completely at
random

Details

The default value for npairs depends on the choice of method. For method="last2", we use a
default of npairs=30; for method="sub2", we use a default of npairs=300.

Value

A data frame with five columns: individual ID, mother ID, father ID, sex, and generation. Founders
have 0 for mother and father ID. Sex is coded 0 for female and 1 for male.

See Also

sim_from_pedigree(), sim_ril_pedigree(), sim_ail_pedigree(), sim_do_pedigree(), sim_4way_pedigree(),
sim_do_pedigree_fix_n()

Examples

tab <- sim_ail_pedigree_fix_n(12)

sim_crossovers 19

sim_crossovers Simulate crossover locations using the Stahl model

Description

Simulate crossover locations on a single meiotic product using the Stahl model.

Usage

sim_crossovers(L, m = 10, p = 0, obligate_chiasma = FALSE, Lstar = NULL)

Arguments

L length of chr in cM

m Interference parameter (m=0 is no interference)

p Proportion of chiasmata from no-interference mechanism (p=0 gives pure chi-
square model)

obligate_chiasma

If TRUE, require an obligate chiasma on the 4-strand bundle at meiosis.

Lstar Adjusted chromosome length, if obligate_chiasma=TRUE. Calculated if not
provided.

Details

Chiasma locations are a superposition of two processes: a proportion p exhibiting no interference,
and a proportion (1-p) following the chi-square model with interference parameter m. Crossover
locations are derived by thinning the chiasma locations with probability 1/2.

Simulations are under the Stahl model with the interference parameter being an integer. This is an
extension of the chi-square model, but with chiasmata being the superposition of two processes, one
following the chi-square model and the other exhibiting no interference.

Value

Numeric vector of crossover locations, in cM

References

Copenhaver, G. P., Housworth, E. A. and Stahl, F. W. (2002) Crossover interference in arabidopsis.
Genetics 160, 1631–1639.

Foss, E., Lande, R., Stahl, F. W. and Steinberg, C. M. (1993) Chiasma interference as a function of
genetic distance. Genetics 133, 681–691.

Zhao, H., Speed, T. P. and McPeek, M. S. (1995) Statistical analysis of crossover interference using
the chi-square model. Genetics 139, 1045–1056.

20 sim_dof1_pedigree

Examples

x <- sim_crossovers(200, 10, 0)
x <- sim_crossovers(200, 10, 0.04)
x <- sim_crossovers(100, 0, 0, obligate_chiasma=TRUE)

sim_dof1_pedigree Simulate pedigree for F1 between diversity outbreds and another in-
bred line

Description

Simulate a pedigree for a set of DOF1 individuals: the F1 offspring of a set of diversity outbred
mice and another inbred strain (such as a mutant line).

Usage

sim_dof1_pedigree(
ngen = 12,
npairs = 144,
ccgen = rep(4:12, c(21, 64, 24, 10, 5, 9, 5, 3, 3)),
nkids_per = 5,
design = c("nosib", "random")

)

Arguments

ngen Number of generations of outbreeding

npairs Number of breeding pairs at each generation

ccgen Vector of length npairs, with the number of generations for each CC line. If
length 1, it is repeated to a vector of length npairs.

nkids_per Number of offspring per pair for the last DO generation (each will be crossed to
produce one F1)

design How to choose crosses: either random but avoiding siblings, or completely at
random

Details

Diversity outbred (DO) mice are generated from a set of 8 inbred lines. We need two individuals
from each line (one female and one male) as the order of the initial crosses will be randomized;
for example, sometimes the individual from line 1 will be a mother and sometimes a father. The
founders are numbered 1-8 for the females from the 8 lines, and 9-16 for the corresponding males.

Diversity Outbred mice are generated by first creating a panel of partially-inbred 8-way RIL (the
so-called pre-CC, for pre-Collaborative Cross). The ccgen argument specifies the number of in-
breeding generations for each of the CC lines. We generate a pre-CC line for each of the npairs
breeding pairs, and generate a sibling pair from each as the starting material.

sim_do_pedigree 21

The subsequent ngen outbreeding generations then proceed by crossing a male and female from the
preceding generation (mated completely at random, with design="random", or avoiding siblings,
with design="nosib"). Each breeding pair gives a single female and a single male to the next
generation, except at the last generation nkids_per offspring are mated, in equal numbers male
and female. (If nkids_per is an odd number, the number of males and females in each sibship
will differ by one, alternating between sibships, with one additional female and then one additional
male.

The default for ccgen is taken from Figure 1 of Svenson et al. (2012).

We assume that the F1 offspring are all from a cross DO female x line 17 male, and so the last
generation of the DO is taken to be all females.

Value

A data frame with seven columns: individual ID, mother ID, father ID, sex, generation, a TRUE/FALSE
indicator for whether DO or pre-DO, and a TRUE/FALSE indicator for whether DOF1. Founders
have 0 for mother and father ID. Sex is coded 0 for female and 1 for male.

References

Svenson KL, Gatti DM, Valdar W, Welsh CE, Cheng R, Chesler EJ, Palmer AA, McMillan L,
Churchill GA (2012) High-resolution genetic mapping using the mouse Diversity Outbred popula-
tion. Genetics 190:437-447

See Also

sim_from_pedigree(), sim_ril_pedigree(), sim_ail_pedigree(), sim_4way_pedigree()

Examples

tab <- sim_dof1_pedigree(8)

sim_do_pedigree Simulate a pedigree for Diversity Outbred mice

Description

Simulate a pedigree for generating Diversity Outbred (DO) mice (a table of individual, mom, dad,
sex).

Usage

sim_do_pedigree(
ngen = 12,
npairs = 144,
ccgen = rep(4:12, c(21, 64, 24, 10, 5, 9, 5, 3, 3)),
nkids_per = 5,
design = c("nosib", "random")

)

22 sim_do_pedigree

Arguments

ngen Number of generations of outbreeding
npairs Number of breeding pairs at each generation
ccgen Vector of length npairs, with the number of generations for each CC line. If

length 1, it is repeated to a vector of length npairs.
nkids_per Number of offspring per pair for the last generation
design How to choose crosses: either random but avoiding siblings, or completely at

random

Details

Diversity outbred (DO) mice are generated from a set of 8 inbred lines. We need two individuals
from each line (one female and one male) as the order of the initial crosses will be randomized;
for example, sometimes the individual from line 1 will be a mother and sometimes a father. The
founders are numbered 1-8 for the females from the 8 lines, and 9-16 for the corresponding males.

Diversity Outbred mice are generated by first creating a panel of partially-inbred 8-way RIL (the
so-called pre-CC, for pre-Collaborative Cross). The ccgen argument specifies the number of in-
breeding generations for each of the CC lines. We generate a pre-CC line for each of the npairs
breeding pairs, and generate a sibling pair from each as the starting material.

The subsequent ngen outbreeding generations then proceed by crossing a male and female from the
preceding generation (mated completely at random, with design="random", or avoiding siblings,
with design="nosib"). Each breeding pair gives a single female and a single male to the next
generation, except at the last generation nkids_per offspring are mated, in equal numbers male
and female. (If nkids_per is an odd number, the number of males and females in each sibship
will differ by one, alternating between sibships, with one additional female and then one additional
male.

The default for ccgen is taken from Figure 1 of Svenson et al. (2012).

Value

A data frame with six columns: individual ID, mother ID, father ID, sex, generation, and TRUE/FALSE
indicator for whether DO or pre-DO. Founders have 0 for mother and father ID. Sex is coded 0 for
female and 1 for male.

References

Svenson KL, Gatti DM, Valdar W, Welsh CE, Cheng R, Chesler EJ, Palmer AA, McMillan L,
Churchill GA (2012) High-resolution genetic mapping using the mouse Diversity Outbred popula-
tion. Genetics 190:437-447

See Also

sim_from_pedigree(), sim_ril_pedigree(), sim_ail_pedigree(), sim_4way_pedigree()

Examples

tab <- sim_do_pedigree(8)

sim_do_pedigree_fix_n 23

sim_do_pedigree_fix_n Simulate a pedigree for Diversity Outbreds for a target sample size

Description

Simulate a pedigree for Diversity Outbred (DO) mice (a table of individual, mom, dad, sex) so that
the last generation reaches a desired sample size.

Usage

sim_do_pedigree_fix_n(
ngen = 12,
nkids_per = 5,
nccgen = 15,
nsample_ngen = 150,
npairs = NULL,
method = c("last2", "sub2", "fixcc"),
design = c("nosib", "random"),
selc.method = c("byfamily", "byindiv")

)

Arguments

ngen Number of generations of outbreeding

nkids_per Number of offspring per pair for the last generation

nccgen The number of generations for each CC line, only used when method is not
"fixcc".

nsample_ngen Number of individuals desired at the last generation

npairs Number of breeding pairs at each generation. If missing, we use 30 when
method="last2" and 300 when method="sub2".

method Method used to generate the pedigree: either expand at the last two generations
or generate a pedigree with a large number of pairs and then select a subset
to have the desired sample size. With method="fixcc", we use the pre-CC
generations as performed at the Jackson Lab.

design How to choose crosses: either random but avoiding siblings, or completely at
random

selc.method Method used to select the individuals from last generation.

Details

The default number of breeding pairs depends on the chosen method. With method="last2", the
default is npairs=30; with method="sub2", the default is npairs=300; with method="fixcc",
npairs is ignored and is fixed at 144.

24 sim_from_pedigree

Value

A data frame with six columns: individual ID, mother ID, father ID, sex, generation, and TRUE/FALSE
indicator for whether DO or pre-DO. Founders have 0 for mother and father ID. Sex is coded 0 for
female and 1 for male.

See Also

sim_from_pedigree(), sim_ril_pedigree(), sim_ail_pedigree(), sim_do_pedigree(), sim_4way_pedigree(),
sim_ail_pedigree_fix_n()

Examples

tab <- sim_do_pedigree_fix_n(8)

sim_from_pedigree Simulate genotypes for pedigree

Description

Simulate genotypes along one chromosome for a pedigree

Usage

sim_from_pedigree(
pedigree,
L = 100,
xchr = FALSE,
m = 10,
p = 0,
obligate_chiasma = FALSE

)

Arguments

pedigree Matrix or data frame describing a pedigree, with first four columns being indi-
vidual ID, mom ID, dad ID, and sex (female as 0, male as 1).

L Length of chromosome in cM (or a vector of chromosome lengths)

xchr If TRUE, simulate X chromosome. (If L is a vector, this should be a vector of
TRUE/FALSE values, of the same length as L, or a character string with the
name of the X chromosome, in L.)

m Crossover interference parameter, for chi-square model (m=0 corresponds to no
interference).

p proportion of crossovers coming from no-interference process
obligate_chiasma

If TRUE, require an obligate chiasma on the 4-strand bundle at meiosis.

sim_from_pedigree_allchr 25

Value

A list with each component being the data for one individual, as produced by the cross() function.
Those results are a list with two components, corresponding to the maternal and paternal chromo-
somes. The chromosomes are represented as lists with two components: an integer vector of alleles
in chromosome intervals, and a numeric vector of locations of the right-endpoints of those intervals;
these two vectors should have the same length.

If the input L is a vector, in order to simulate multiple chromosomes at once, then the output will be
a list with length length(L), each component being a chromosome and having the form described
above.

See Also

check_pedigree(), sim_ril_pedigree(), sim_ail_pedigree(), sim_from_pedigree_allchr()

Examples

simulate AIL pedigree
tab <- sim_ail_pedigree(12, 30)
simulate data from that pedigree
dat <- sim_from_pedigree(tab)
simulate multiple chromosomes
dat <- sim_from_pedigree(tab, c("1"=100, "2"=75, "X"=100), xchr="X")

sim_from_pedigree_allchr

Simulate genotypes for pedigree for multiple chromosomes

Description

Simulate genotypes along all chromosomes for a pedigree. This is a wrap up of sim_from_pedigree.

Usage

sim_from_pedigree_allchr(
pedigree,
map,
m = 10,
p = 0,
obligate_chiasma = FALSE

)

Arguments

pedigree Matrix or data frame describing a pedigree, with first four columns being indi-
vidual ID, mom ID, dad ID, and sex (female as 0, male as 1).

map marker locations, a list with elements for each chromosome

26 sim_meiosis

m Crossover interference parameter, for chi-square model (m=0 corresponds to no
interference).

p proportion of crossovers coming from no-interference process
obligate_chiasma

If TRUE, require an obligate chiasma on the 4-strand bundle at meiosis.

Value

A list with each component being the result from sim_from_pedigree, of length same as map.

See Also

check_pedigree(), sim_ril_pedigree(), sim_ail_pedigree() sim_from_pedigree()

Examples

library(qtl)
marker map
map <- sim.map(len=rep(100, 19), n.mar=10, include.x=FALSE)
simulate AIL pedigree
tab <- sim_ail_pedigree(12, 30)
simulate data from that pedigree
dat <- sim_from_pedigree_allchr(tab, map)

sim_meiosis Simulate meiosis

Description

Output a random meiotic product from an input individual.

Usage

sim_meiosis(parent, m = 10, p = 0, obligate_chiasma = FALSE, Lstar = NULL)

Arguments

parent An individual object, as output by create_parent() or cross()

m interference parameter for chi-square model

p Proportion of chiasmata coming from no-interference process.
obligate_chiasma

If TRUE, require an obligate chiasma on the 4-strand bundle at meiosis.

Lstar Adjusted chromosome length, if obligate_chiasma=TRUE. Calculated if not
provided.

sim_ril_pedigree 27

Details

Simulations are under the Stahl model with the interference parameter being an integer. This is an
extension of the chi-square model, but with chiasmata being the superposition of two processes, one
following the chi-square model and the other exhibiting no interference.

Value

A list with alleles in chromosome intervals (as integers) and locations of the right endpoints of those
intervals.

References

Copenhaver, G. P., Housworth, E. A. and Stahl, F. W. (2002) Crossover interference in arabidopsis.
Genetics 160, 1631–1639.

Foss, E., Lande, R., Stahl, F. W. and Steinberg, C. M. (1993) Chiasma interference as a function of
genetic distance. Genetics 133, 681–691.

Zhao, H., Speed, T. P. and McPeek, M. S. (1995) Statistical analysis of crossover interference using
the chi-square model. Genetics 139, 1045–1056.

See Also

create_parent(), cross(), sim_crossovers(), calc_Lstar()

Examples

ind <- create_parent(100, 1:2)
prod <- sim_meiosis(ind)

sim_ril_pedigree Generate a ril pedigree

Description

Generate a pedigree for multi-way recombinant inbred lines (a table of individual, mom, dad, sex)

Usage

sim_ril_pedigree(
ngen = 20,
selfing = FALSE,
parents = 1:2,
firstind = max(parents) + 1

)

28 where_het

Arguments

ngen Number of generations of inbreeding

selfing If TRUE, use selfing

parents Vector of the parents’ IDs. Should be integers, and length must be a power of 2
(i.e., 2, 4, 8, ...)

firstind Positive integer to assign to the first child. Must be greater than max(parents).

Value

A data frame with five columns: individual ID, mother ID, father ID, sex, and generation. Founders
have 0 for mother and father ID. Sex is coded 0 for female and 1 for male.

See Also

sim_from_pedigree(), sim_ail_pedigree(), sim_do_pedigree(), sim_4way_pedigree()

Examples

tab <- sim_ril_pedigree(7)

where_het Find heterozygous regions

Description

Find regions of heterozygosity in an individual

Usage

where_het(ind)

Arguments

ind An individual object, as output be create_parent() or cross()

Value

A matrix with two columns; each row indicates the start and end of a region where the individual is
heterozygous

See Also

sim_from_pedigree(), convert2geno()

where_het 29

Examples

mom <- create_parent(100, 1:2)
dad <- create_parent(100, 1:2)
child <- cross(mom, dad)
where_het(child)

Index

∗ color
CCcolors, 4

∗ datagen
create_parent, 9
cross, 9
sim_4way_pedigree, 15
sim_ail_pedigree, 16
sim_ail_pedigree_fix_n, 17
sim_crossovers, 19
sim_do_pedigree, 21
sim_dof1_pedigree, 20
sim_from_pedigree, 24
sim_from_pedigree_allchr, 25
sim_meiosis, 26
sim_ril_pedigree, 27

∗ datasets
AILped, 2
mouseL_cox, 11
mouseL_mgi, 12

∗ hplot
plot_crosslines, 13
plot_ind, 14

∗ utilities
calc_Lstar, 3
check_pedigree, 4
collapse_do_alleles, 5
convert2geno, 6
convert2geno_allchr, 7
get_geno, 11

AILped, 2

calc_Lstar, 3
calc_Lstar(), 10, 27
CCcolors, 4
check_pedigree, 4
check_pedigree(), 25, 26
collapse_do_alleles, 5
convert2geno, 6
convert2geno(), 8, 11, 28

convert2geno_allchr, 7
create_parent, 9
create_parent(), 10, 14, 26–28
cross, 9
cross(), 3, 9, 14, 25–28

get_geno, 11
get_geno(), 6
graphics::arrows(), 13
graphics::rect(), 15

mouseL_cox, 11
mouseL_mgi, 12

plot_crosslines, 13
plot_crosslines(), 15
plot_ind, 14
plot_ind(), 13

sim_4way_pedigree, 15
sim_4way_pedigree(), 17, 18, 21, 22, 24, 28
sim_ail_pedigree, 16
sim_ail_pedigree(), 16, 18, 21, 22, 24–26,

28
sim_ail_pedigree_fix_n, 17
sim_ail_pedigree_fix_n(), 24
sim_crossovers, 19
sim_crossovers(), 3, 10, 27
sim_do_pedigree, 21
sim_do_pedigree(), 5, 16–18, 24, 28
sim_do_pedigree_fix_n, 23
sim_do_pedigree_fix_n(), 5, 18
sim_dof1_pedigree, 20
sim_from_pedigree, 24
sim_from_pedigree(), 5, 6, 11, 16–18, 21,

22, 24, 26, 28
sim_from_pedigree_allchr, 25
sim_from_pedigree_allchr(), 8, 25
sim_meiosis, 26
sim_meiosis(), 3, 9, 10

30

INDEX 31

sim_ril_pedigree, 27
sim_ril_pedigree(), 5, 16–18, 21, 22,

24–26

where_het, 28

	AILped
	calc_Lstar
	CCcolors
	check_pedigree
	collapse_do_alleles
	convert2geno
	convert2geno_allchr
	create_parent
	cross
	get_geno
	mouseL_cox
	mouseL_mgi
	plot_crosslines
	plot_ind
	sim_4way_pedigree
	sim_ail_pedigree
	sim_ail_pedigree_fix_n
	sim_crossovers
	sim_dof1_pedigree
	sim_do_pedigree
	sim_do_pedigree_fix_n
	sim_from_pedigree
	sim_from_pedigree_allchr
	sim_meiosis
	sim_ril_pedigree
	where_het
	Index

